Общие физико химические свойства гетероциклических соединений. Ароматические гетероциклические соединения

Др. элементов (гетероатомов). Наиб. значение имеют Т.е., в цикл к-рых входят N, О, S. К ним относятся мн, прир. ; они входят в виде структурных фрагментов в нуклеиновых к-т, и др. Гетероциклические соединения-самый многочисленный класс орг. соед., включающий ок. 2 / 3 всех известных прир. и синтетич. орг. .

Номенклатура. Согласно правилам номенклатуры , для важнейших гетероциклических соединений сохраняются их тривиальные назв., напр. (ф-ла I), (II), (III). Систематич. назв. моноциклич. Т.е., содержащих в цикле от 3 до 10 , образуют путем сочетания приставок, обозначающих гетероатомы (N-аза, О-окса, S-тиа, Р-фосфа и т. п.), с корнями, к-рые для основных гетероциклических соединений приведены в таблице. Степень ненасыщ. гетероцикла отражается в назв. с помощью корней или приставок "дигидро" (присоединены два ), "тетрагидро", "пергидро" и т.д. Примеры систематич. назв.: (IV), тиирен (V), тает (VI), 1,3-диоксолан (VII), пергидропиримидин (VIII).

Для гетероциклических соединений с 11 и более членами в цикле, мостиковых и нек-рых конденсиров. систем используется "а"-номенклатура, по правилам к-рой первая составная часть назв. обозначает гетероатом, а вторая-назв. , к-рое м. б. образовано, если считать, что в ф-ле гетероциклического соединения все гетероатомы заменены на С, группы СН или СН 2 , напр. 1,5-диазабицикло (Xill). Для названия гетероциклических соединений этого типа используют также традиционные назв., напр. пентадеканолид (XIV), 18-краун-6-эфир (XV).

КОРНИ, ИСПОЛЬЗУЕМЫЕ ПРИ СОСТАВЛЕНИИ НАЗВАНИЙ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ ПО НОМЕНКЛАТУРЕ

Химические свойства. Для 3- и 4-членных гетероциклических соединений характерна легкость раскрытия напряженного цикла. 5- и 6-членные ненасыщ. гетероциклы (наиб. многочисл. тип гетероциклических соединений), замкнутая сопряженная система связей к-рых включает (4м + 2) , обладают ароматич. характером (правило Хюккеля) и наз. гетероароматич. соединениями. Для них, как и для бензоидных ароматич. соед., Наиб. характерны р-ции замещения. При этом гетероатом играет роль "внутренней" ф-ции, определяющей ориентацию, а также активирующее или дезактивирующее влияние на кольцо к действию разл. .

Гетероароматич. соед. подразделяют на я-избыточные идефицитные. К первым относят 5-членные гетероциклические соединения с одним гетероатомом, в к-рых секстет делокализован между пятью цикла, что обусловливает их повыш. по отношению к электроф. агентам. Кдефицитным относят 6-членные гетероциклы с шестью , к-рые распределяются, как и в случае , между шестью кольца, но один или неск. из них - гетероатомы с большей, чем у , . Такие соед. напоминают по реакц. способности производные

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1. Гетероциклические соединения

1.3 Нуклеофильность

1.5 Электрофильная реакция

1.6 Гетероциклы: Ферменты и витамины

1.7 Гетероциклы и медицина

2.4 Применение.Антибиотики в медицине

2.5 Пептидные антибиотики

Заключение

Список использованной литературы

Введение

В наше время большинство образованных людей хотя бы в общих чертах имеют представления о белках, жирах и углеводах и о роли этой триады веществ в процессах жизнедеятельности. Меньшая осведомленность проявляется в отношении так называемых гетероциклических соединений, или гетероциклов, значение которых в химии живого, однако, ничуть не меньше, а разнообразие проявлений даже заметно шире, чем у белков, жиров и углеводов. Гетероциклы, а конкретнее, некоторые производные пуринов и пиримидинов, играют фундаментальную роль в передаче наследственных признаков.

Антибиотики - это вещества, которые обладают токсическим свойством по отношению к другим микроорганизмам. Слово «антибиотик» в переводе с греческого означает «против жизни». Иными словами, антибиотики - это такие специфические продукты жизнедеятельности некоторых видов грибов, которые задерживают или полностью подавляют рост других видом микроорганизмов. Поэтому антибиотики принято считать токсинами бактерий и других микроорганизмов. (Ланчини, 2005)

По характеру действия антибиотики делятся на бактерицидные и бактериостатические. Бактерицидное действие характеризуется тем, что под влиянием антибиотика наступает гибель микроорганизмов. Достижение бактерицидного эффекта особенно важно при лечении ослабленных пациентов, а также в случаях заболевания такими тяжелыми инфекционными болезнями, как общее заражение крови (сепсис), эндокардит и др., когда организм не в состоянии самостоятельно бороться с инфекцией. Бактерицидным действием обладают такие антибиотики, как различные пенициллины, стрептомицин, неомицип, канамицин, ванкомицин, полимиксин.

При бактериостатическом действии гибель микроорганизмов не наступает, наблюдается лишь прекращение их роста и размножения. При устранении антибиотика из окружающей среды микроорганизмы вновь могут развиваться. В большинстве случаев при лечении инфекционных болезней бактериостатическое действие антибиотиков в совокупности с защитными механизмами организма обеспечивает выздоровление пациента.(Егоров, 2007 С.)

1.Гетероциклические соединения

Гетероциклические соединения (гетероциклы) -- органические соединения, содержащие циклы, в состав которых наряду с углеродом входят и атомы других элементов. Могут рассматриваться как карбоциклические соединения с гетерозаместителями (гетероатомами) в цикле. Наиболее разнообразны и хорошо изучены ароматические азотсодержащие гетероциклические соединения. Предельные случаи гетероциклических соединений -- соединения, не содержащие атомов углерода в цикле, например, пентазол.

1.2 Физико-химическая специфика гетероциклов

Во многих химических процессах, совершающихся в живых клетках, в той или иной форме участвуют различные гетероциклические соединения. Почему именно гетероциклы? - возникает вполне резонный вопрос. Чтобы ответить на него, надо хотя бы в общих чертах рассказать об основных физико-химических свойствах гетероциклов.

Первое, что следует отметить, это чрезвычайно широкий диапазон реакционной способности гетероциклов. В зависимости от рН среды они образуют анионы или катионы, одни охотно реагируют с положительно заряженными реагентами (электрофилами), другие с отрицательно заряженными (нуклеофилами); одни легко восстанавливаются, но трудно окисляются, другие, напротив, легко окисляются, но трудно восстанавливаются. Имеются и амфотерные гетероциклические системы, проявляющие одновременно все перечисленные свойства. Важное биохимическое значение имеет способность многих гетероциклов образовывать прочные комплексы с ионами металлов. Все эти проявления реакционной способности так или иначе связаны с распределением электронной плотности в гетероциклических молекулах.

Рассмотрим в качестве примера пиридин. Специфика пиридинового атома азота состоит в том, что он оттягивает на себя часть электронного облака молекулы. В результате атомы углерода, прежде всего находящиеся в орто- и пара-положениях, приобретают частичный положительный заряд. Дефицит электронной плотности на углеродном остове - характерное свойство всех гетероциклов, содержащих гетероатомы пиридинового типа. Их важнейшая особенность - легкость взаимодействия с отрицательно заряженными реагентами - нуклеофилами. Типичный пример - реакция пиридина с амидом натрия, в результате чего образуется 2-аминопиридин. (Кочеткова 1986)

Реакции замещения водорода при действии положительно заряженных реагентов для таких гетероциклов протекают очень трудно или не идут совсем. Однако электрофилы легко присоединяются к пиридиновому атому азота за счет его неподеленной пары электронов. Например, с кислотами и алкилгалогенидами пиридин образует соответственно соли пиридиния и N-алкилпиридиния. Пиридин выступает в подобных реакциях фактически как основание.

Известно, что введение в органическую молекулу электроноакцепторных групп вызывает понижение энергии молекулярных орбиталей. В результате соединения труднее отдают электроны (плохо окисляются), но зато легче присоединяют их (лучше восстанавливаются). Гетероатом пиридинового типа является акцептором электронов, из чего следует, что соответствующие гетероциклы должны быть склонны к легкому восстановлению. Это действительно так. Например, хлорид 1-бензил-3-карбамоилпиридиния восстанавливается до 1-бензил-3-карбамоил-1,4-дигидропиридина, который может быть окислен вновь до исходной соли.

Эта обратимая реакция лежит в основе действия множества природных катализаторов - ферментов, прежде всего тех, которые обеспечивают дыхательный процесс и аккумулирование энергии.

Противоположная ситуация имеет место в случае пиррола и других гетероциклов с гетероатомом пиррольного типа. В молекулах этих соединений на пять кольцевых атомов формально приходится шесть p-электронов. В результате кольцевые углеродные атомы имеют избыточный отрицательный заряд. Для таких гетероциклов уже не характерны реакции с нуклеофилами, но их взаимодействие с электрофилами протекает очень легко. Например, пиррол бромируется на холоду сразу до тетрабромпиррола, и эту реакцию трудно остановить на стадии монозамещения.

Гетероатом пиррольного типа практически лишен основных свойств. Напротив, для пиррола и других NH-гетероциклов характерно проявление кислотности. Так, при действии оснований они образуют N-анионы. Последние легко реагируют с различными электрофилами, что используется для получения разнообразных N-производных, например, 1-метилпиррола. Молекулярные орбитали в подобных гетероциклах имеют высокую энергию, поэтому они, в противоположность пиридину и его аналогам, трудно восстанавливаются, но легко окисляются. Так, контролируемым окислением пиррола и его N-замещенных можно получать полипирролы.

Соединения, содержащие одновременно гетероатомы пиррольного и пиридинового типа, соответственно проявляют амфотерные свойства. Показателен в этом отношении имидазол

Этот гетероцикл - один из самых распространенных, можно сказать ключевых, в живых организмах. Он входит в состав пуриновых оснований, витамина В 12 , многих ферментов. Биологические функции имидазола связаны с исключительным разнообразием и гибкостью его физико-химических свойств. Так, отщепляя протон, он превращается в анион, а присоединяя протон, - в катион имидазолия. Кислотно-основные свойства имидазола таковы, что в организме при рН=7 около половины его молекул находятся в форме катиона, другая половина - в виде нейтральных частиц. Еще одна особенность имидазола состоит в склонности к образованию межмолекулярных водородных связей как с себе подобными молекулами, так и с водой, аминокислотами, другими биомолекулами.

Водородные связи относятся к так называемым невалентным взаимодействиям. Хотя энергия одного невалентного взаимодействия на 1 - 2 порядка ниже энергии обычных ковалентных связей, именно невалентные взаимодействия и, прежде всего, водородные связи обеспечивают гибкость, быстроту и разнообразие биохимических процессов. Это объясняется множественностью межмолекулярных взаимодействий, которые, складываясь, становятся в химии живого определяющим фактором. Гетероциклические соединения с их полярностью, наличием неподеленных электронных пар, гетроатомов и связей N-H обладают уникальной способностью к невалентным взаимодействиям. В этой связи следует напомнить, что образование множества водородных связей между комплементарными парами оснований аденин-тимин и гуанин-цитозин обеспечивает достаточно прочное сцепление полинуклеотидных спиралей в молекулах двунитевых ДНК. (Шерстнев,1990)

1.3 Нуклеофильность

Нуклеофил в химии (лат. nucleus «ядро», др.-греч. цйлЭщ «любить») -- реагент, образующий химическую связь с партнером по реакции по донорно-акцепторному механизму, предоставляя электронную пару. Вследствие того, что нуклеофилы отдают электроны, они по определению являются основаниями Льюиса. В роли нуклеофилов теоретически могут выступать все ионы и нейтральные молекулы с неподеленной электронной парой.

Нуклеофил -- электроноизбыточный химический реагент, способный взаимодействовать с электронодефицитными соединениями (электрофилами). Примерами нуклеофилов являются анионы (Cl?, Br?, I?) и соединения с неподеленной электронной парой (NH 3 , H 2 O).

Так, для пятичленных гетероциклов с одним гетероатомом (пиррольный тип), ароматический секстет электронов распределяется по пяти атомам цикла так, что ведёт к высокой нуклеофильности этих соединений. Для них характерны реакции электрофильного замещения, они весьма легко протонируются по пиридиновому азоту или углероду цикла, галогенируются и сульфируются в мягких условиях. Реакционная способность при электрофильном замещении убывает в ряду пиррол > фуран > селенофен > тиофен > бензол.

Введение гетероатомов пиридинового типа в пятичленные гетероциклы ведёт к снижению электронной плотности, нуклеофильности, и соответственно, реакционной способности в реакциях электрофильного замещения, то есть эффект аналогичен влиянию электроноакцепторных заместителей для производных бензола. Азолы реагируют с электрофилами подобно пирролам с одним или несколькими электроноакцепторными заместителями в кольце, а для оксазолов и тиазолов становится возможным лишь при наличии активирующих заместителей с +M-эффектом (амино- и гидроксигруппы).

Благодаря подвижности р-электронов, нуклеофильными свойствами обладают также молекулы, содержащие р-связи:CH 2 =CH 2 , CH 2 =CH-CH=CH 2 , C 6 H 6 и т.п.

Для шестичленных гетероциклов (пиридиновый тип) пониженная по сравнению с бензолом электронная плотность ведёт с пониженной нуклеофильности этих соединений: реакции электрофильного замещения идут в жёстких условиях. Так, пиридин сульфируется олеумом при 220--270 °C.

1.4 Нуклеофильность гетероатомов

Положение атома Электронная плотность

2 (альфа) 0.84

3 (бетта) 1.01

4 (гамма) 0.87

Соответственно, атаки электрофилов в этом случае направляются на пиридиновый атом азота. В качестве электрофилов могут выступать разнообразные алкилирующие и ацилирующие агенты (реакция кватернизиции с образованием соответствующих четвертичных солей) и пероксикислоты (с образованием N-оксидов).

Атом азота пиррольного типа значительно менее нуклеофилен -- алкилирование N-замещенных имидазолов идёт преимущественно по азоту пиридинового типа, однако, при депротонировании незамещённого пиррольного азота направление замещения обращается. Так, 4-нитроимидазол при метилировании в нейтральных условиях даёт в основном 1-метил-5-нитроимидазол, а в щелочных растворах (где субстратом является его депротонированная форма) главным продуктом реакции оказывается 1-метил-4-нитроимидазол.

Такое повышение нуклеофильности азота пиррольного типа при депротонировании типично для всех гетероароматических соединений, однако направление атаки электрофила зависит от степени диссоциации образующегося аниона: если индолил- и пирролилмагнийгалогениды подвергаются электрофильной атаке преимущественно по углероду, то соответствующие соли щелочных металлов будут реагировать в основном по атому азота. Подтверждением влияния диссоциации комплекса N-анион -- металл на направление реакции является обращения направления электрофильной атаки при реакции индолилмагнийгалогенидов с метилйодидом в ГМФТА вследствие промотируемой растворителем диссоциации магниевого комплекса.

1.5 Электрофильная реакция

Гетеролитич. р-ции орг. соед. с электроф. реагентами (электрофилами, от греч. elektron - электрон и phileo - люблю). К электрофилам относят ионы и молекулы, к-рые имеют достаточно низкую по энергии вакантную орбиталь (льюисовские к-ты) - Н +, D+, Li+, Alk+, AlAlk3, Hal+, BF3, SO3H+, NO+, NO+2 и др.- и при р-ции с субстратом акцептируют на нее оба связывающих электрона.

В основе Электофильной реакции лежит -электронодонорная способность олефинов, ацетиленов и ароматич. углеводородов по отношению к электрофилам, а также возможность передачи гетероатомами и простыми связями С - С и С - Н своих электронных пар.

Электрофильность гетероароматических соединений растёт при падении п-электронной плотности, то есть при увеличении числа гетероатомов и, при их равном числе, выше для шестичленных, по сравнению с пятичленными, гетероциклами. Так, для пирролов и индолов реакции нуклеофильного замещения атипичны, пиридин и бензимидазол аминируются амидом натрия, а 1,3,5-триазин быстро гидролизуется до формиата аммония уже в водном растворе.

1.6 Гетероциклы: Ферменты и витамины.

Как правило, ферменты представляют собой белки с большой молекулярной массой. В их состав часто входят несколько полипептидных цепей, переплетенных друг с другом за счет невалентных взаимодействий. Благодаря такой надмолекулярной организации молекула фермента приобретает объемную форму, на поверхности которой имеются всевозможные неровности: углубления, ниши, щели. В одной из таких неровностей расположена активная зона фермента, в которую, как ключ в замок, входит реагирующая молекула. Как и каждый хороший замок, фермент откликается только на свой "ключ", то есть на молекулы строго определенного вещества - субстрата. Поэтому каждый тип превращения в организме требует участия своего специфического фермента.

В состав активных центров многих ферментов входят остатки гетероциклических соединений, в частности пиридина и имидазола. Имидазольный фрагмент входит в состав аминокислоты гистидина. Наряду с индолсодержащей аминокислотой триптофаном, это одна из наиболее важных природных аминокислот гетероциклического ряда.

Благодаря уникальным кислотно-основным свойствам, имидазольное кольцо может катализировать присоединение нуклеофилов к карбонильной группе. Эта реакция - одна из важнейших как в лабораторной практике, так и в живой природе.

Наряду с чисто белковыми ферментами, существует множество ферментов, в состав которых входит и небелковая часть, называемая коферментом. Большинство последних - производные азотистых гетероциклов: пиридина, пиримидина, тиазола и др. Многие коферменты не могут быть синтезированы в организмах человека и животных, поэтому они должны поступать с пищей. Готовые коферменты или их близкие химические предшественники называются витаминами. (Солдатенков 2001)

1.7 Гетероциклы и медицина

гетероцикл микроорганизм антибиотик резистентность

Мало кто из нас обходится в течение дня без чашки чая или кофе, Их бодрящий эффект вызывают присутствующие в листьях чая и в плодах кофе алкалоиды пуриновой группы - кофеин, теобромин и теофиллин. Все они являются стимуляторами центральной нервной системы, повышают жизнедеятельность тканей, усиливают общий обмен веществ. Теофиллин и теобромин применяются в медицине, как сосудорасширяющие средства, а также диуретики. Разумеется, их готовят сейчас синтетическим путем.

Двадцатый век называют иногда веком Великой лекарственной революции. Одним из ее ярких символов, безусловно, следует считать b-лактамные антибиотики - пенициллин и цефалоспорин, спасшие миллионы человеческих жизней. Оба они также являются производными гетероциклических соединений.

В последние годы наметился прорыв в решении такой сложной задачи, как создание эффективных противовирусных препаратов. В 1988 году американским ученым Г. Эллион и Дж. Хитчингсу была присуждена Нобелевская премия за создание ацикловира - первого высокоэффективного препарата против герпесных вирусных инфекций. Несколько ранее те же ученые получили и внедрили в клиническую практику азидотимидин, применяемый как средство против СПИДа. В связи с тем, что действие ацикловира и азидотимидина направлено на генетический аппарат вирусов, неудивительно, что оба препарата относятся к пуринам и пиримидинам.

Успехи в борьбе с инфекционными заболеваниями отодвинули их, как основную причину смертности, на третье место. В то же время на два первых места вышли сердечно-сосудистые и раковые заболевания. Вместе с расстройствами нервной системы, распространенными также чрезвычайно широко, их часто называют болезнями ХХ века. Современная революция в психофармакологии началась еще в 50-е годы с производных одного из гетероциклов - фенотиазина. Классическим и, пожалуй, самым ярким их представителем является хлорпромазин (аминазин). Только в США применение хлорпромазина за короткое время позволило высвободить несколько миллионов больничных коек, занятых людьми с различными психическими расстройствами. В 60-е годы в клиническую практику была введена другая группа успокаивающих препаратов, также относящаяся к гетероциклам. Речь идет о производных 1,4-бензодиазепина. Наиболее известные из них - диазепам, нитразепам, феназепам и др. За короткое время по количеству потребляемых таблеток они стали одними из самых распространенных в мире лекарств.

Точно так же в ряду сердечно-сосудистых препаратов в последние годы на первых местах обосновались производные 1,4-дигидропиридина, например, фенигидин. Распространенным противораковым средством является 5-фторурацил (Иванский, 1978)

2. Антибиотики и их воздействия на микроорганизмы

История антибиотиков началась с открытия, сделанного английским учёным-бактериологом Александром Флемингом. 15 сентября 1928 года, когда в ходе многолетнего исследования, посвященного изучению борьбы человеческого организма с бактериальными инфекциями, ученый проводил рядовой эксперимент, он столкнулся с интересным явлением. У него в лаборатории была большая коллекция различных микробов, растущих в чашках Петре на питательной среде. Его внимание привлекла одна из чашек, на краю которой появилась плесень, а все колонии микроорганизмов, находившиеся поблизости погибли. У Флеминга возникла мысль, что плесень распространяет вокруг себя некое вещество, способное убивать микробов. Он начал специально вносить эту плесень в чашки с колониями микробов. Вскоре им было установлено, что эта плесень действительно обладает антимикробным свойством. Вещество, выделяемое плесневелым грибком, он назвал пенициллином. В то время пенициллин не был выделен в чистом или концентрированном виде, а сама плесень производила слабое действие, и применять её было очень неудобно.

В течение 1930-х годов предпринимались безуспешные попытки улучшить качество пенициллина и других антибиотиков, научившись получать их в достаточно чистом виде. И только в 1938 году двум ученым Оксфордского университета, Говарду Флори и Эрнсту Чейну, удалось выделить чистую форму пенициллина, который начал применяться в 1941 году, а уже в 1943 году, в связи с большими потребностями в медикаментах во время Второй мировой войны, началось массовое производство этого лекарства.

В 1945 году Флемингу, Флори и Чейну за их работу была присуждена Нобелевская премия.

Благодаря пенициллину и другим антибиотикам было спасено бесчисленное количество жизней. Кроме того, пенициллин стал первым лекарством, на примере которого было замечено возникновение устойчивости микробов к антибиотикам. (Гудман, 1977)

Антибиотики в зависимости от концентрации могут задерживать рост чувствительных микроорганизмов (бактериостатическое действие), вызывать их гибель (бактерицидное действие) или растворять их (литическое действие). Без антибиотиков не обойтись при остром пиелонефрите, пневмониях, отите, осложненном гайморите, абсцессах, сепсисе, хламидиозе, инфекционном эндокардите и других весьма серьезных заболеваниях. Часто антибиотики назначают людям после хирургических операций. Однако все антибиотики обладают разным спектром действия. Например, пенициллин эффективен при пневмонии, вызванной стафилококковой инфекцией, а при воспалении легких, причина которого микоплазма, он не даст никакого результата.

Антибиотики пришли в нашу жизнь как избавление от инфекций, мучивших человечество тысячи лет. Однако, после появления новых мощных препаратов, заговорили об их вреде. В процессе совершенствования препаратов выяснилось, что лекарство убивает лишь чувствительных к нему бактерий. Самые сильные из них выживают, причем в их клетках происходит мутация. Получается, что каждый день пополняется армия супермикробов, устойчивых к антибиотикам. Выяснилось, что при длительном применении антибиотики "заодно" убивают и полезную микрофлору желудочно-кишечного тракта, способствуют появлению дисбактериоза кишечника, токсического поражения печени, почек и др. У многих людей на них развивается аллергия. Однако без антибиотиков сегодня не обойтись, они по-прежнему являются «центровыми» в преодолении сепсиса, интоксикации, туберкулеза. Пока не существует других препаратов, способных так мощно и быстро справиться с инфекцией, угрожающей жизни. Ученые создают все новые препараты, рассчитанные на новые штаммы.

А чтобы антибиотики не приносили вред, их нельзя принимать длительно и тем более "назначать" себе самостоятельно, их обязательно должен назначать врач. Правильно и с наименьшим риском для здоровья подобрать антибиотик врачу помогает анализ - посев крови, мочи или мокроты на чувствительность к препарату. Кроме того, существуют препараты, которые принимаются параллельно с антибиотиками в качестве прикрытия. Например, супрастин, тавегил и другие противогистаминные средства позволяют заметно снизить риск развития аллергии. Бификол или ацилакт почти на нет сводят вероятность появления дисбактериоза кишечника. К тому же, зависимость от антибиотиков никогда не формируется. А сгладить негативное действие антибиотиков на организм и восстановить микрофлору помогают бифидобактерии, содержащиеся в кисломолочных продуктах и современные препараты-пробиотики.

2.2 Гетероциклические антибиотики

Антибиотики (от анти- против и греч. bеоs - жизнь), вещества биологического происхождения, синтезируемые микроорганизмами и подавляющие рост бактерий и других микробов, а также вирусов и клеток. Многие антибиотики способны убивать микробов. Иногда к антибиотики относят также антибактериальные вещества, извлекаемые из растительных и животных тканей. Каждый антибиотики характеризуется специфическим избирательным действием только на определённые виды микробов. В связи с этим различают антибиотики с широким и узким спектром действия. Первые подавляют разнообразных микробов (например, тетрациклин действует как на грамположительных, так и на грамотрицательных бактерий, а также на риккетсий); вторые - лишь микробов какой-либо одной группы (например, эритромицин и олеандомицин подавляют лишь грамположительные бактерии). В связи с избирательным характером действия некоторые антибиотики способны подавлять жизнедеятельность болезнетворных микроорганизмов в концентрациях, не повреждающих клеток организма хозяина, и поэтому их применяют для лечения различных инфекционных заболеваний человека, животных и растений. Микроорганизмы, образующие антибиотики, являются антагонистами окружающих их микробов-конкурентов, принадлежащих к другим видам, и при помощи антибиотики подавляют их рост. Мысль об использовании явления антагонизма микробов для подавления болезнетворных бактерий принадлежит И.И. Мечникову, который предложил употреблять молочнокислые бактерии, обитающие в простокваше, для подавления вредных гнилостных бактерий, находящихся в кишечнике человека. До 40-х гг. 20 в. антибиотики, обладающие лечебным действием, не были выделены в чистом виде из культур микроорганизмов. Первым таким антибиотики был тиротрицин, полученный американским учёным Р. Дюбо (1939) из культуры почвенной споровой аэробной палочки Bacillus brevis. Сильное лечебное действие тиротрицина было установлено в опытах на мышах, зараженных пневмококками. В 1940 английские учёные Х. Флори и Дж. Чейн, работая с пенициллином, образуемым плесневым грибом Penicillium notatuip, открытым английским бактериологом Флемингом в 1929, впервые выделили пенициллин в чистом виде и обнаружили его замечательные лечебные свойства. В 1942 советские учёные Г. Ф. Гаузе, М. Г. Бражцикова получили из культуры почвенных бактерий грамицидин С, а в 1944 американский учёный З. Ваксман получил стрептомицин из культуры актиномицета Streptomyces griseus. Описано около 2000 различных антибиотики из культур микроорганизмов, но лишь немногие из них (около 40) могут служить лечебными препаратами, остальные по тем или иным причинам не обладают химиотерапевтическим действием. Антибиотики можно классифицировать по их происхождению (из грибов, бактерий, актиномицетов и др.), химической природе или по механизму действия. Антибиотики из грибов. Важнейшее значение имеют антибиотики группы пенициллина, образуемые многими расами Penicillium notatum, P. chrysogenum и другими видами плесневых грибов. Пенициллин подавляет рост стафилококков в разведении 1 на 80 млн. и мало токсичен для человека и животных. Он разрушается энзимом пенициллиназой, образуемой некоторыми бактериями. Из молекулы пенициллина было получено её "ядро" (6-аминопенициллановая кислота), к которому затем химически присоединили различные радикалы. Так, были созданы новые «полусинтетические» пенициллины (метициллин, ампициллин и др.), не разрушаемые ценициллиназой и подавляющие некоторые штаммы бактерий, устойчивые к природному пенициллину. Другой антибиотик - цефалоспорин С - образуется грибом Cephalosporium. Он обладает близким к пенициллину химическим строением, но имеет несколько более широкий спектр действия и подавляет жизнедеятельность не только грамположительных, но и некоторых грамотрицательных бактерий. Из «ядра» молекулы цефалоспорина (7-аминоцефалоспорановая кислота) были получены его полусинтетические производные (например, цефалоридин), которые нашли применение в медицинской практике. Антибиотик гризеофульвин был выделен из культур Penicillium griseofulvum и других плесеней. Он подавляет рост патогенных грибков и широко используется в медицине антибиотики из актиномицетов весьма разнообразны по химической природе, механизму действия и лечебным свойствам. Ещё в 1939 советские микробиологи Н. Красильников и И. Кореняко описали антибиотик мицетин, образуемый одним из актиномицетов. Первым антибиотиком из актиномицетов, получившим применение в медицине, был стрептомицин, подавляющий наряду с грамположительными бактериями и грамотрицательными палочки туляремии, чумы, дизентерии, брюшного тифа, а также туберкулёзную палочку. Молекула стрептомицина состоит из стрептидина (дигуанидиновое производное мезоинозита), соединённого глюкозидной связью со стрептобиозамином (дисахаридом, содержащим стрентозу и метилглюкозамин). Стрептомицин относится к антибиотикам группы воднорастворимых органических оснований, к которой принадлежат также антибиотики аминоглюкозиды (неомицин, мономицин, канамицин и гентамицин), обладающие широким спектром действия. Часто используют в медицинской практике антибиотики группы тетрациклина, например хлортетрациклин (ауреомицин, биомицин) и окситетрациклин (террамицин). Они обладают широким спектром действия и наряду с бактериями подавляют риккетсий (например, возбудителя сыпного тифа). Воздействуя на культуры актиномицетов, продуцентов этих антибиотиков, ионизирующей радиацией или многими химическими агентами, удалось получить мутанты, синтезирующие антибиотики с измененным строением молекулы (например, деметилхлортетрациклин антибиотик хлорамфеникол-левомицетин), обладающий широким спектром действия, в отличие от большинства других антибиотиков, производят в последние годы путём химического синтеза, а не биосинтеза. Другим таким исключением является противотуберкулёзный антибиотик циклосерин, который также можно получать промышленным синтезом. Остальные антибиотики производят биосинтезом. Некоторые из них (например, тетрациклин, пенициллин) могут быть получены в лаборатории химическим синтезом; однако этот путь настолько труден и нерентабелен, что не выдерживает конкуренции с биосинтезом. Значительный интерес представляют антибиотики макролиды (эритромицин, олеандомицин), подавляющие грамположительные бактерии, а также антибиотики полиены (нистатин, амфотерицин, леворин), обладающие противогрибковым действием. Известны антибиотики, образуемые актиномицетами (см. Актиномицины), которые оказывают подавляющее действие на некоторые формы злокачественных новообразований и применяются в химиотерапии рака, например актиномицин (хризомаллин, аурантин), оливомицин, брунеомицин, рубомицин С. Интересен также антибиотик гигромицин В, обладающий противогельминтным действием. Антибиотики из бактерий в химическом отношении более однородны и в подавляющем большинстве случаев относятся к полипептидам. В медицине используют тиротрицин и грамицидин С из Bacillus brevis, бацитрацин из Bac. subtilis и полимиксин из Bac. polymyxa. Низин, образуемый стрептококками, не применяют в медицине, но употребляют в пищевой промышленности в качестве антисептика, например при изготовлении консервов. Антибиотические вещества из животных тканей. Наиболее известны среди них: лизоцим, открытый английским учёным Флемингом (1922); это энзим - полипептид сложного строения, который содержится в слезах, слюне, слизи носа, селезёнке, лёгких, яичном белке и др., подавляет рост сапрофитных бактерий, но слабо действует на болезнетворных микробов; интерферон - также полипептид, играющий важную роль в защите организма от вирусных инфекций; образование его в организме можно повысить с помощью специальных веществ, называемых интерфероногенами. Антибиотики могут быть классифицированы не только по происхождению, но и разделены на ряд групп на основе химического строения их молекул. Такая классификация была предложена советскими учёными М. М. Шемякиным и С. Хохловым: антибиотики ациклического строения (полиены нистатин и леворин); алициклического строения; антибиотики ароматического строения; антибиотики - хиноны; антибиотики - кислородсодержащие гетероциклические соединения (гризеофульвин); антибиотики - макролиды (эритромицин,олеандомицин); антибиотики- азотсодержащие гетероциклические соединения (пенициллин); антибиотики - полипептиды или белки; антибиотики - депсипептиды. Третья возможная классификация основана на различиях в молекулярных механизмах действия антибиотиков. Например, пенициллин и цефалоспорин избирательно подавляют образование клеточной стенки у бактерий. Ряд антибиотиков избирательно поражает на разных этапах биосинтез белка в бактериальной клетке; тетрациклины нарушают прикрепление транспортной рибонуклеиновой кислоты (РНК) к рибосомам бактерий; макролид эритромицин, как и линкомицин, выключает передвижение рибосомы по нити информационной РНК; хлорамфеникол повреждает функцию рибосомы на уровне фермента пептидилтранслоказы; стрептомицин и аминоглюкозидные антибиотики (неомицин, канамицин, мономицин и гентамицин) искажают «считывание» генетического кода на рибосомах бактерий. Другая группа антибиотиков избирательно поражает биосинтез нуклеиновых кислот в клетках также на различных этапах: актиномицин и оливомицин, вступая в связь с матрицей дезоксирибонуклеиновой кислоты (ДНК), выключают синтез информационной РНК; брунеомицин и митомицин реагируют с ДНК по типу алкилирующих соединений, а рубомицин - путём интеркаляции. Наконец, некоторые антибиотики избирательно поражают биоэнергетические процессы: грамицидин С, например, выключает окислительное фосфорилирование.

2.3 Устойчивость микроорганизмов к антибиотикам

Устойчивость микроорганизмов к антибиотикам - важная проблема, определяющая правильный выбор того или иного препарата для лечения больного. В первые годы после открытия пенициллина около 99% патогенных стафилококков были чувствительны к этому антибиотики; в 60-е гг. к пенициллину остались чувствительны уже не более 20-30%. Рост устойчивых форм связан с тем, что в популяциях бактерий постоянно появляются устойчивые к антибиотики мутанты, обладающие вирулентностью и получающие распространение преимущественно в тех случаях, когда чувствительные формы подавлены антибиотики С популяционно-генетической точки зрения, этот процесс обратим. Поэтому при временном изъятии данного антибиотики из арсенала лечебных средств устойчивые формы микробов в популяциях вновь заменяются чувствительными формами, которые размножаются более быстрым темпом. Промышленное производство антибиотики ведётся в ферментерах, где продуцирующие антибиотики микроорганизмы культивируются в стерильных условиях на специальных питательных средах. Большое значение при этом имеет селекция активных штаммов, для чего предварительно используются различные мутагены с целью индукции активных форм. Если исходный штамм продуцента пенициллина, с которым работал Флеминг, образовывал пенициллин в концентрации 10 ЕД/мл, то современные продуценты образуют пенициллин в концентрации 16000 ЕД/мл. Эти цифры отражают прогресс технологии. Синтезированные микроорганизмами антибиотиков извлекают и одвергают химической очистке. Количественное определение активности антибиотиков проводят микробиологическими (по степени антимикробного действия) и физико-химическими методами.

Продуценты, химическая природа и спектр действия важнейших антибиотиков.

2.4 Применение. Антибиотики в медицине.

В клинике применяют около 40 антибиотиков, не оказывающих вредного действия на организм человека. Для достижения лечебного действия необходимо поддержание в организме так называемых терапевтических концентраций, особенно в очаге инфекции. Повышение концентрации антибиотики в организме более эффективно, но может осложниться побочными действиями препаратов. При необходимости усилительное действие антибиотика можно применять несколько антибиотиков (например, стрептомицин с пенициллином), а также эфициллин (при воспалении лёгких) и другие лекарственные средства (гормональные препараты, антикоагулянты и др.). Сочетания некоторых антибиотиков оказывают токсическое действие, и поэтому их комбинации применять нельзя. Пенициллинами пользуются при сепсисе, воспалении лёгких, гонорее, сифилисе и др. Бензилпенициллин, экмоновоциллин (новокаиновая соль пенициллина с экмолином) эффективны против стафилококков; бициллины-1, -3 и -5 (дибензилэтилендиаминовая соль пенициллина) используют для профилактики ревматических атак. Ряд антибиотиков - стрептомицина сульфат, паскомицин, дигидрострептомицинпаскат, пантомицин, дигидрострептомицинпантотенат, стрептомицин-салюзид, а также циклосерин, виомицин (флоримицин), канамицин и рифамицин - назначают при лечении туберкулёза. Препараты синтомицинового ряда используют при лечении туляремии и чумы; тетрациклины - для лечения холеры. Для борьбы с носительством патогенных стафилококков применяют лизоцим с экмолином. Полусинтетические пенициллины с широким спектром действия - ампициллин и гетациллин - задерживают рост кишечной, брюшнотифозной и дизентерийной палочек. Длительное и широкое применение антибиотиков вызывало появление большого количества устойчивых к ним патогенных микроорганизмов. Практически важно возникновение устойчивых микробов одновременно к нескольким антибиотикам - перекрёстная лекарственная устойчивость. Для предупреждения образования устойчивых к антибиотикам форм периодически заменяют широко применяющиеся антибиотики и никогда не применяют их местно на раневые поверхности. Заболевания, вызванные устойчивыми к антибиотикам стафилококками, лечат полусинтетическими пенициллинами (метициллин, оксациллин, клоксациллин и диклоксациллин), а также эритромицином, олеандомицином, новобиоцином, линкомицином, лейкоцином, канамицином, рифамицином; против стафилококков, устойчивых ко многим антибиотикам, применяют шинкомицин и йозамицин. Кроме устойчивых форм, при применении антибиотиков (чаще всего стрептомицина) могут появляться и так называемые зависимые формы (микроорганизмы, развивающиеся только в присутствии антибиотика). При нерациональном использовании антибиотиков активизируются патогенные грибы, находящиеся в организме, что приводит к кандидозу. Для профилактики и лечения кандидозов употребляют антибиотики нистатин и леворин. В некоторых случаях при лечении антибиотиками развиваются побочные явления. Пенициллин при длительном применении в больших дозах оказывает токсическое действие на центральную нервную систему, стрептомицин - на слуховой нерв, и т. п. Эти явления ликвидируют уменьшением доз. Сенсибилизация (повышенная чувствительность) организма может проявляться независимо от дозы и способа введения антибиотика и выражаться в обострении инфекционного процесса (поступление в кровь больших количеств токсинов вследствие массовой гибели возбудителя), в рецидивах заболевания (в результате подавления иммунобиологических реакций организма), суперинфекции, а также аллергических реакциях. Получение солей из антибиотики позволило преодолеть специфическую токсичность некоторых антибиотики Например, пантотеновая соль стрептомицина - пантомицин, не отличаясь от стрептомицина терапевтическим действием, хорошо влияет на больных, не переносящих стрептомицина. Значительно менее токсичной, чем стрептомицин, оказалась и аскорбиновокислая соль дигидрострептомицина. Если при применении пенициллинов развивается аллергия, применяют антибиотики цефалоспорин. При лечении антибиотиками необходимо одновременно вводить витамины, питание должно быть богато белками, т. к. стрептомицин снижает в организме количество пантотеновой кислоты (витамин B3), фтивазид и циклосерин - витаминаB6.

2.5 Пептидные антибиотики

Пептидные антибиотики, антимикробные соединения, в молекулах которых имеются пептидные связи. В химическом отношении это весьма разнородная группа веществ, большинство из которых-цикличны или линейные олиго- и полипептиды, содержащие заместители непептидной природы (остатки жирных кислот, алифатических аминов и спиртов, гидроксикислот, а также Сахаров и гетероциклов).

Различают пять основные видов пептидных антибиотиков: 1) производные аминокислот (например, циклосерин, b-лактамные антибиотики)и дикетопиперазина (глиотоксин, ф-ла I); 2) гомомерные пептиды-линейные (грамицидин А, II) и циклические (бацитрацин А, III (здесь и ниже буквы греч. алфавита показывают положение аминогрупп, которые участвуют в образовании связей); виомицин, IV; капреомицин 1-А, V), а также олиго-пептиды (нетропсин, VI; дистамицин, VII); 3) гетеромерные пептиды (например, полимиксины В, E и M, ф-лы соотв. VIII, IX и X; R = 6-метилоктаноил (B1, E1 и M1) или изооктаноил (В2, E2 и M2); Dab -2,4-диаминомасляная к-та), в т.ч. хелато-образующие (блеомицины); 4) пептолиды-хромопептолиды (актиномицины), липопептолиды (стендомицин, XI; здесь и ниже буквы Me перед латинскими обозначениями аминокислот, кроме Pro, указывают на наличие в них метильной группы у атома N; МеРго 4-метилпролин), гетеропептолиды (микамицин В, XII; стафиломицин S, XIII), простые пептолиды (гризелимицин A, XIV) и депсипептиды (валиномицин; см. Ионофоры); 5) макромолекулярные пептиды полипептиды (низин, XV; сульфидные мостики связывают b-С-атомы Ala и Abu), белки (неокарциностатин, содержащий 109 аминокислотных остатков), протеиды (аспарагиназа, лизостафнин с мол. м. 32000).

Гомо- и гетеромерные пептиды, пептолиды имеют ряд характерных особенностей, которые отличают их от обычных полипептидов и белков: а) низкое содержание некоторых простых аминокислот (аргинин, гистидин, метионин), наличие аминокислот D-конфигурации и аминокислот необычной структуры (серосодержащих, сложных гетероциклич., ненасыщенных, N-метилированных, имино-, b- и g-аминокислот, производных пролина); б) наличие в составе молекул заместителей непептидной природы; в) преимущественно циклические или линейноциклические, структура без свобных карбокси- и аминогрупп; циклизация между собственно аминокислотными радикалами с образованием тиазолинов, оксазолинов и других гетероциклических структур. Кроме того, пептидные антибиотики, как правило, устойчивы к действию гидролаз, хотя некрые из них (полимиксины, блеомицины) чувствительны к аминоацилазам и пептидазам микробного и растительного происхождения.

Пептидные антибиотики продуцируются в виде смеси родственных соединений, отличающихся друг от друга одним или несколькими аминокислотными остатками или вариациями в строении компонентов непептидной природы. Продуцентами являются различные виды актиномицетов, бактерий и грибов. Биосинтез пептидов и депсипептидов осуществляется без участия рибосом и РНК с помощью специфических ферментных комплексов-синтетаз антибиотиков, содержащих всю необходимую информацию. Для ряда пептидных антибиотиков выяснен молекулярный механизм биосинтеза или установлен состав синтетаз. В процессе полимеризации или после образования пептидной цепи происходит циклизация молекулы и модификация отдельных аминокислот. Биосинтез макромолекулярных пептидных антибиотиков (в частности, низина) происходит на рибосомах в следствии модификацией белка-предшественника.

Пептидные антибиотики имеют разнообразные биологические свойства. Среди них встречаются ингибиторы синтеза клеточной стенки (бацитрацин А) и синтеза липопротеидов наружной мембраны грамотрицательных бактерий (бицикломицин), ингибиторы репликации и транскрипции (актиномицин D, блеомицины) и синтеза белка (виомицин), ингибиторы функционирования клеточной мембраны (полимиксины, грамицидин, валиномицин), антиметаболиты (аланозин, циклосерин). Пептидные антибиотики обладают высокой антибиотические активностью в отношении грамположительные (бацитрацин А) и грамотрицательные (полимиксины) бактерий, а также микобактерий (капреомицин 1-А, виомицин). Ряд антибиотиков проявляют противоопухолевую (актино-мицины, аспарагиназа) и противогрибковую активность; дистамицин весьма активен в отношении вирусов.

Пептидные антибиотики широко применяют в ветеринарии (микамицин В, нетропсин), в качестве кормовых добавок (бацитрацин А, стафиломицины), как консерванты (низин), в биохимических исследованиях (валиномицин, грамицидины, актиномицины). Использование пептидных антибиотиков в терапии довольно ограниченно из-за нежелательных побочных эффектов, в частности нефротоксичности. Широко применяют лишь полимиксины В, E и M, нек-рые противоопухолевые (блеомицин A2, актиномицин D, аспарагиназа) и противотуберкулезные препараты (циклосерин, виомицин, капреомицин 1-А, лизостафнин). Пептидные антибиотики, однако, вытесняются из медецинской практики менее токсичными антибиотиками.

3. Проблема лекарственной устойчивости микрооргонизмов

Устойчивость к противомикробным препаратам - это не новая проблема, но она становится всё более опасной. Мы живём в эпоху зависимости от антибиотиков и других противомикробных препаратов для лечения таких болезней, как, например, ВИЧ/СПИД, которые несколько лет назад были бы смертельными. Когда появляется к ним устойчивость микроорганизмов, известная как лекарственная устойчивость, эти лекарства становятся неэффективными.

В настоящее время лекарственная устойчивость микроорганизмов -- не только чисто микробиологическая, но и огромная государственная проблема (например, смертность детей от стафилококкового сепсиса находится в настоящее время примерно на том же высоком уровне, что и до появления антибиотиков). Это связано с тем, что среди стафилококков -- возбудителей различных гнойно-воспалительных заболеваний -- довольно часто выделяются штаммы, одновременно устойчивые к нескольким препаратам (5--10 и более).

Среди микроорганизмов -- возбудителей острых кишечных инфекций до 80% выделяемых возбудителей дизентерии устойчивых сразу к нескольким антибиотикам.

В основе развития лекарственной устойчивости к антибиотикам и другим химиотерапевтическим препаратам лежат мутации хромосомных генов или приобретение плазмид лекарственной устойчивости.

Существуют роды и семейства микроорганизмов, природно-устойчивыё к отдельным антибиотикам; в их геноме есть гены, контролирующие этот признак. Для рода ацинетобактер, например, устойчивость к пенициллину является таксономическим признаком. Полирезистентны к антибиотикам и многие представители псевдомонад, неклостридиальных анаэробов и другие микроорганизмы.

Такие бактерии являются природными банками (хранилищами) генов лекарственной устойчивости.

Как известно, мутации, в том числе по признаку лекарственной устойчивости, спонтанны и возникают всегда. В период массового применения антибиотиков в медицине, ветеринарии и растениеводстве микроорганизмы практически живут в среде, содержащей антибиотики, которые становятся селективным фактором, способствующим отбору устойчивых мутантов, получающим определенные преимущества.

Плазмидная устойчивость приобретается микробными клетками в результате процессов генетического обмена. Сравнительно высокая частота передачи R-плазмид обеспечивает широкое и достаточно быстрое распространение устойчивых бактерий в популяции, а селективное давление антибиотиков -- отбор и закрепление их в биоценозах.

Плазмидная устойчивость может быть множественной, т. е. к нескольким лекарственным препаратам, и при этом достигать достаточно высокого уровня.(Аксенова, 2003)

3.2 Биохимическая основа резистентности

Биохимическую основу резистентности обеспечивают разные механизмы:

1) энзиматическая инактивация антибиотиков -- осуществляется с помощью синтезируемых бактериями ферментов, разрушающих активную часть антибиотиков. Одним из таких широко известных ферментов является бета-лактамаза, обеспечивающая устойчивость микроорганизмов к бета-лактамным антибиотикам за счет прямого расщепления бета-лактамного кольца этих препаратов. Другие ферменты способны не расщеплять, а модифицировать активную часть молекулы антибиотиков, как это имеет место при энзиматической инактивации аминогли-козидов и левомицетина;

2) изменение проницаемости клеточной стенки для антибиотика или подавление его транспорта в бактериальные клетки. Этот механизм лежит в основе устойчивости к тетрациклину;

3) изменение структуры компонентов микробной клетки, например изменение структуры бактериальных рибосом, сопровождается повышением устойчивости к аминогликозидам и макролидам, а изменение структуры РНК-синтетаз - к рифампицину.

У бактерий одного и того же вида могут реализовываться несколько механизмов резистентности. В то же время развитие того или другого типа резистентности определяется не только свойствами бактерий, но и химической структурой антибиотика. Так, цефалоспорины 1-гопоколения устойчивы к действию стафилококковых бета-лактамаз, норазрушаются бета-лактамазамиграм-отрицательных микроорганизмов, тогда как цефалоспорины 4-го поколения иимипинемы высокоустойчивы к действию бета-лактамази 1грам-положительных, и грам-отрицательных микроорганизмов.

3.3 Борьба с лекарственной устойчивостью

Для борьбы с лекарственной устойчивостью, т. е. для преодоления резистентности микроорганизмов к химио-препаратам,cyществует несколько путей:

1) в первую очередь -- соблюдение принципов рациональной химиотерапии;

2) создание новых химиотерапевтических средств, отличающихся механизмом антимикробного действия (например созданная в последнее время группа химиопрепаратов -- фторхинолоны) и мишенями;

3) постоянная ротация (замена) используемых в данном лечебном учреждении или на определенной территории химиопрепаратов (антибиотиков);

4) комбинированное применение бета-лактамных антибиотиков совместно с ингибиторами бета-лактамаз (клавулановая кислота, сульбактам, тазобактам).

Заключение

Логично ожидать, что при такой значимости гетероциклов в химии живого они должны были найти применение и в медицине. Это действительно так. По данным на начало 90-х годов, из 1070 наиболее широко применяемых синтетических лекарственных препаратов 661 (62 %) относились к гетероциклам.

Еще задолго до развития фармацевтической химии люди лечили болезни, используя гетероциклические соединения из природной аптеки: листья, плоды и кору деревьев, корни и стебли трав, вытяжки из насекомых и т.д. Вероятно, ни о каком другом природном соединении не сложено столько историй, как о хинине. Хинин - один из представителей многочисленного семейства алкалоидов - азотсодержащих органических соединений преимущественно растительного происхождения. Почти все алкалоиды являются производными азотистых гетероциклов. Хинин сыграл историческую роль в борьбе с малярией. Примером другого алкалоида является папаверин, который используют в медицине как спазмолитическое и сосудорасширяющее средство.

Подобные документы

    Антибиотики: сущность, механизм действия и классификация. Антагонизм в мире микроорганизмов. Применение антибиотиков в сельском хозяйстве. Антибиотикорезистентность как феномен устойчивости штамма возбудителей инфекции к действию лекарственных препаратов.

    курсовая работа , добавлен 09.05.2013

    Антибиотики как вещества, избирательно угнетающие жизнедеятельность микроорганизмов, их классификация по группам, разновидности и сферы действия. Принципы комбинированного применения антибиотиков, схема их назначения и оценка практической эффективности.

    презентация , добавлен 30.03.2011

    Классификация антибиотиков по спектру биологического действия. Свойства бета-лактамных антибиотиков. Бактериальные осложнения при ВИЧ-инфекции, их лечение. Природные соединения, обладающие высокой антибактериальной активностью и широким спектром действия.

    реферат , добавлен 20.01.2010

    Классификация гетероциклических соединений. Общее понятие и свойства алканоидов. История применения растений, содержащих алкалоиды. Ф. Сертюрнер - немецкий аптекарь, выделивший морфин из опиума. Биологическая роль и применение алконоидов в медицине.

    презентация , добавлен 05.04.2016

    Разработка и производство антибиотиков, хронология изобретений. История открытия пенициллина и его целебного воздействия при различных инфекционных болезнях. Бактериостатические и бактерицидные антибиотики, их свойства и применение; побочные действия.

    презентация , добавлен 18.12.2016

    Методы диагностики и идентификации микроорганизмов. Методы воздействия на микроорганизмы. Антибиотики, их виды и побочные действия. Роль микроорганизмов в круговороте веществ в природе. Микрофлора почвы, воды, воздуха. Микрофлора человека и ее значение.

    реферат , добавлен 21.01.2010

    Понятие об антибиотиках - химических веществ биологического происхождения, подавляющих активность микроорганизмов. Функции цитоплазматических мембран и влияние на них антибиотиков. Характеристика групп антибиотиков, нарушающих структуру и функцию ЦПМ.

    реферат , добавлен 05.12.2011

    Классификация антибиотиков по механизму действия на клеточную стенку. Изучение ингибиторов функций цитоплазматической мембраны. Рассмотрение антимикробного спектра тетрациклинов. Тенденции развития резистентности микроорганизмов в настоящее время в мире.

    реферат , добавлен 08.02.2012

    Лечение антибиотиками при беременности. Рациональное и эффективное применение антибиотиков во время беременности. Основной риск для матери и для ее развивающегося малыша. Когда антибиотики бесполезны. Что должна знать будущая мама про антибиотики.

    презентация , добавлен 26.09.2015

    Морфология риккетсий и хламидий, их характеристика. Размножение бактерий на жидкой и плотной питательной среде. Микрофлора воздушной среды: количественный и качественный состав, методы исследования. Антибиотики животного и синтетического происхождения.

13.1. Общая характеристика 13.1.1. Классификация

Гетероциклическими называют циклические органические соединения, в состав цикла которых, помимо атомов углерода, входят один или несколько атомов других элементов (гетероатомов).

Гетероциклические соединения очень разнообразны. Их классифицируют согласно следующим структурным признакам:

Природа гетероатома;

Число гетероатомов;

Размер цикла;

Степень насыщенности.

В зависимости от природы гетероатома различают, в частности, азот-, кислород-, серосодержащие гетероциклические соединения. Гетероциклы с этими гетероатомами наиболее важны в связи с их биологической ролью.

По числу гетероатомов гетероциклические соединения подразделяют на гетероциклы с одним, двумя и т. д. гетероатомами. При этом гетероатомы могут быть как одинаковыми, так и разными.

Размер цикла может быть различным, начиная с трехчленного. Наибольшее распространение в природе имеют пяти- и шестичленные циклы, содержащие в качестве гетероатомов азот, кислород, серу. В таких соединениях валентные углы между атомами в цикле существенно не отличаются от обычных валентных углов sp 3 - или sр 2 -гибридизованного атома углерода. Причина этого заключается в одинаковой гибридизации атомов С, N, О, S и сравнительно небольших размерах указанных атомов, близких по размеру к группе СН 2, поэтому замена группировки -СН 2- или -СН= в цикле на такой гетероатом практически не изменяет геометрию молекулы.

Гетероциклы могут быть ароматическими, насыщенными и ненасыщенными.

Ароматические гетероциклы - самые распространенные в природе, поэтому им уделено основное внимание в данной главе. Наиболее важные гетероциклы, составляющие основу многих природных биологически активных веществ и лекарственных средств, приведены на схеме 13.1.

Насыщенные гетероциклы, например приведенные ниже, представляют собой циклические простые эфиры (см. 8.2) или вторичные амины с циклическим скелетом.

Ненасыщенные гетероциклы (кроме ароматических) часто неустойчивы и встречаются, как правило, в виде производных. Кислородсодержащий гетероцикл α-пиран вообще не известен, так как термодинамически неустойчив.

Схема 13.1. Ароматические гетероциклические соединения

13.1.2. Номенклатура

Названия ароматических гетероциклов, как правило, тривиальные, и они приняты номенклатурой ИЮПАК (см. схему 13.1).

В моноциклических соединениях нумерация атомов всегда начинается от гетероатома (примеры нумерации приведены выше). В гетероциклах с несколькими одинаковыми гетероатомами эти атомы получают наименьшие номера. Если имеются два атома азота с различным электронным строением (-N= и -NH-), то нумерацию ведут от фрагмента -NH-, как показано на примерах пиразола и имидазола. В гетероциклах с разными гетероатомами старшим считается кислород, далее сера и затем азот.

В конденсированных гетероциклах нумерацию ведут от одной из вершин бициклической структуры так, чтобы гетероатом полу- чил наименьший номер (см. примеры хинолина и изохинолина). Однако имеются исключения из этого правила, как, например, пурин (см. схему 13.1), для которого сохранена исторически сложившаяся нумерация.

Производные гетероциклов называют по общим правилам заместительной номенклатуры (см. 1.2.1), где в качестве названий родоначальных структур приняты тривиальные названия гетероциклов. В приведенных примерах в скобках указаны также тривиальные названия некоторых производных.

13.2. Реакционная способность ароматических гетероциклов

13.2.1. Ароматические свойства

Пиридин по электронному строению напоминает бензол. Все атомы углерода и атом азота находятся в состоянии sp 2 -гибридизации, и все σ-связи (C-C, C-N и C-H) лежат в одной плоскости (рис. 13.1, а). Из трех гибридных орбиталей атома азота две участвуют в образовании

Рис. 13.1. Пиридиновый атом азота (а), (б) и сопряженная система в молекуле пиридина (в) (связи С-Н для упрощения рисунка опущены)

σ-связей с атомами углерода (показаны только оси этих орбиталей), а третья орбиталь содержит неподеленную пару электронов и в образовании связи не участвует. Атом азота с такой электронной конфигурацией называют пиридиновым.

За счет электрона, находящегося на негибридизованной р-орбитали (см. рис. 13.1, б), атом азота участвует в образовании единого электронного облака ср -электронами пяти атомов углерода (см. рис. 13.1, в). Таким образом, пиридин является π,π-сопряженной системой и удовлетворяет критериям ароматичности (см. 2.3.2).

В результате большей электроотрицательности по сравнению с атомом углерода пиридиновый атом азота понижает электронную плотность на атомах углерода ароматического кольца, поэтому системы с пиридино-

вым атомом азота называют π-недостаточными. Кроме пиридина, примером таких систем служит пиримидин, содержащий два пиридиновых атома азота.

Пиррол также относится к ароматическим соединениям. Атомы углерода и азота в нем, как и в пиридине, находятся в состоянии sp2-гибридизации. Однако в отличие от пиридина атом азота в пирроле имеет иную электронную конфигурацию (рис. 13.2, а, б).


Рис. 13.2. Пиррольный атом азота (а), распределение электронов по орбиталям (б) и сопряженная система в молекуле пиррола (в) (связи С-Н для упрощения рисунка опущены)

На негибридизованной р -орбитали атома азота находится неподеленная пара электронов. Она участвует в сопряжении с р -электрона- ми четырех атомов углерода с образованием единого шестиэлектронного облака (см. рис. 13.2, в). Три sp2-гибридные орбитали образуют три σ-связи - две с атомами углерода, одну с атомом водорода. Атом азота в таком электронном состоянии получил название пиррольного.

Шестиэлектронное облако в пирроле благодаря р,п -сопряжению делокализовано на пяти атомах цикла, поэтому пиррол представляет собой π-избыточную систему.

В фуране и тиофене ароматический секстет также включает неподеленную пару электронов негибридизованной p-АО кислорода или серы соответственно. В имидазоле и пиразоле два атома азота вносят разный вклад в образование делокализованного электронного облака: пиррольный атом азота поставляет пару и-электронов, а пиридиновый - один p-электрон.

Ароматичностью обладает также пурин, представляющий собой конденсированную систему двух гетероциклов - пиримидина и имидазола.

Делокализованное электронное облако в пурине включает 8 π-электронов двойных связей и неподеленную пару электронов атома N-9. Общее число электронов в сопряжении, равное десяти, соответствует формуле Хюккеля (4n + 2, где п = 2).

Гетероциклические ароматические соединения обладают высокой термодинамической устойчивостью. Неудивительно, что именно они служат структурными единицами важнейших биополимеров - нуклеиновых кислот.

13.2.2. Кислотно-основные и нуклеофильные свойства

Основные свойства гетероциклических соединений обусловлены неподеленной парой электронов гетероатома, способной присоединять протон. Такими свойствами обладает пиридиновый атом азота, у которого n-электроны находятся на sp2-гибридной орбитали и не вступают в сопряжение. Пиридин является основанием и с сильными кислотами образует пиридиниевые соли, подобные аммониевым солям.

Аналогично основные свойства проявляют и другие гетероциклы, содержащие пиридиновый атом азота. Так, имидазол и пиразол образуют соли с минеральными кислотами за счет пиридинового атома азота.

Пиррольный атом азота в молекулах имидазола, пиразола и, естественно, самого пиррола не склонен связывать протон, так как его неподеленная пара электронов является частью ароматического секстета. В результате пиррол практически лишен основных свойств.

В то же время пиррольный атом азота может служить центром кислотности. Пиррол ведет себя, как слабая NH-кислота, поэтому протон будет отщепляться только при действии очень сильных оснований, например амида натрия NaNH 2 или гидрида натрия NaH. За счет пиррольного атома азота в реакциях со щелочными металлами также образуются соли, которые легко гидролизуются.

Таким образом, имидазол и пиразол могут проявлять как основные, так и кислотные свойства, т. е. являются амфотерными соединениями.

Гетероциклы, содержащие пиридиновый атом азота, проявляют и нуклеофильные свойства, т. е. способность атаковать атом углерода, несущий частичный положительный заряд (электрофильный центр). Так, взаимодействие пиридина с галогеноалканами приводит к образованию алкилпиридиниевых солей.

13.2.3. Особенности реакций электрофильного замещения

Пиррол и фуран относятся к π-избыточным системам. У них легче протекают реакции электрофильного замещения по сравнению с бензолом. Следует, однако, учитывать, что сильные кислоты, часто при- меняемые при электрофильном замещении, атакуют атомы углерода

π-избыточных гетероциклов, что приводит к образованию смесей полимерных продуктов, не имеющих практического применения. Способность гетероциклических соединений подвергаться глубоким превращениям под действием кислот называют ацидофобностью (боязнью кислот), а сами гетероциклы - ацидофобными.

Пиридин и другие гетероциклы с пиридиновым атомом азота являются электронодефицитными. Они гораздо труднее, чем бензол, вступают в реакции электрофильного замещения, а некоторые реакции (например, алкилирование по атомам углерода кольца) не идут вовсе. Низкая реакционная способность пиридина обусловлена еще и тем, что в сильнокислых средах, в которых осуществляется электрофильное замещение, пиридин находится в протонированной форме в виде катиона пиридиния C 5 H 5 NH + , что существенно затрудняет электрофильную атаку.

13.3. Пятичленные гетероциклы

13.3.1. Гетероциклы с одним гетероатомом

Важнейшим представителем пятичленных гетероциклов с одним гетероатомом является пиррол. Видимо, неслучайно сам пиррол был первым гетероциклическим соединением, выделенным из природных источников еще в 1834 г. К пиррольным соединениям относят конденсированную систему индола (см. схему 13.1) и полностью насыщенный аналог пиррола - пирролидин, которые входят в состав сложных по структуре молекул хлорофиллов, гема крови и алкалои- дов, например никотина и тропана (см. 13.6). Так, в основе структуры гема и хлорофиллов лежит тетрапиррольная система порфина.

Индол. По химическим свойствам эта ароматическая система очень напоминает пиррол. Индол также ацидофобен и практически лишен основных свойств. При взаимодействии с сильными основаниями ведет себя, как слабая NH-кислота.

Индол является структурным фрагментом белковой аминокислоты триптофана и продуктов его метаболических превращений - триптамина и серотонина, относящихся к биогенным аминам, а также (индол-3-ил)уксусной кислоты (гетероауксина).

Гетероауксин в растительном мире является гормоном роста и применяется в сельском хозяйстве для стимуляции роста растений.

Немало синтетических производных индола применяется в медицине. Примером таких соединений может служить антидепрессант индопан.

Фуран. Соединения фуранового ряда не обнаружены в продуктах метаболизма животных организмов, но они встречаются в растительном мире. Известны многие лекарственные средства, содержащие фурановое ядро, часто в комбинации с другими гетероциклами. Примерами служат противомикробные препараты фурацилин и фуразолидон.


13.3.2. Гетероциклы с двумя гетероатомами

Пятичленные гетероциклы с двумя гетероатомами, один из которых азот, имеют общее название азолы. Важнейшими из них являются имидазол, пиразол и тиазол (см. схему 13.1). Эти соединения, в отличие от пятичленных гетероциклов с одним гетероатомом, не разрушаются при действии кислот (т. е. неацидофобны), а образуют с ними соли (см. 13.2.1).

Имидазол. Этот гетероцикл является структурным фрагментом белковой аминокислоты гистидина и продукта ее декарбоксилирования - биогенного амина гистамина.

Имидазол, конденсированный с бензольным кольцом - бензимидазол - входит в состав ряда природных веществ, в частности витамина В 12 , а также вазодилатирующего средства дибазола (2-бен- зилбензимидазола).

Пиразол. Производные пиразола в природе не обнаружены. Наиболее известным производным пиразола является пиразолон, одна из изомерных форм которого приведена ниже. На основе пиразолона созданы анальгетические средства - анальгин, бутадион и др.

Тиазол. В цикле тиазола содержатся два разных гетероатома. Структура тиазола встречается в составе важных биологически активных веществ - тиамина (витамина В 1) и ряде сульфаниламидных препаратов, например, противомикробного средства фталазола.

Цикл полностью гидрированного тиазола - тиазолидин - является структурным фрагментом пенициллиновых антибиотиков (см. 15.6).

13.4. Шестичленные гетероциклы

13.4.1. Гетероциклы с одним гетероатомом

Пиридин. Этот наиболее типичный представитель ароматических гетероциклов проявляет большинство химических свойств ароматических соединений: легче вступает в реакции замещения, чем присоединения; его атомы углерода устойчивы к действию окислителей. Он термодинамически устойчив.

В то же время гомологи пиридина (аналогично гомологам бензола) легко окисляются в соответствующие пиридинкарбоновые кислоты. Важное значение имеет окисление изомерных метилпиридинов. Так, 3-метилпиридин превращается в никотиновую кислоту, а его 4-изо- мер - в изоникотиновую (пиридин-4-карбоновую) кислоту.

Кстати, никотиновая кислота получила свое название оттого, что была получена при окислении никотина (см. 13.6.1).

Как уже говорилось (см. 13.2.2), пиридин проявляет основные свойства; его основность несколько выше, чем ароматических аминов (например, анилина), но значительно ниже, чем алифатических аминов. Это

связано с тем, что неподеленная пара электронов атома азота занимает sp2-гибридную орбиталь. Атом азота в пиридине более электроотрицателен, чем sp3-гибридизованный атом азота в алифатических аминах, и, следовательно, прочнее удерживает свою электронную пару.

Благодаря пониженной электронной плотности на атомах углерода кольца пиридин может вступать в не характерные для бензола реакции с нуклеофильными реагентами. Наиболее восприимчиво к нуклеофильной атаке кольцо алкилпиридиниевого иона, где электронная плотность на атомах углерода особенно понижена. Так, алкилпиридиниевые соли способны восстанавливаться комплексными гидридами металлов в частично насыщенное производное пиридина, как упрощенно показано ниже.

В 1,4-дигидро-N-метилпиридине ароматичность нарушена, поэтому его молекула обладает большим запасом энергии и стремится путем обратной реакции окисления вновь перейти в ароматическое состояние. Эти реакции окисления-восстановления моделируют действие важного кофермента НАД+, в состав которого входит замещенный катион пиридиния (см. 14.3.2).

Структура полностью насыщенного пиридина - пиперидина - лежит в основе анальгетика промедола.

Важными производными пиридина являются некоторые витамины группы В, выступающие в роли структурных элементов кофер- ментов. Ниже приведены различные формы витамина В 6 , участвующие в виде фосфатов в реакции биосинтеза α-аминокислот (см. Приложение 12-4).

Никотиновая и изоникотиновая кислоты и их производные. Никотиновая кислота и ее амид - никотинамид - известны как две формы витамина РР. Никотинамид является составной частью ферментных систем, ответственных за окислительно-восстановительные процессы в организме, а диэтиламид никотиновой кислоты - кордиамин - служит эффективным стимулятором ЦНС.

На основе изоникотиновой кислоты синтезированы противотуберкулезные средства изониазид (тубазид) - гидразид этой кислоты и его производное фтивазид.


Хинолин и изохинолин. Эти конденсированные системы (см. схему 13.1) по свойствам подобны пиридину: проявляют основные свойства, способны образовывать четвертичные соли.

Ядро хинолина входит в состав противомикробного средства нитроксолина (5-НОК).

13.4.2. Гетероциклы с двумя гетероатомами

В этой группе наиболее важными являются гетероциклы, содержащие два атома азота. Они имеют общее название диазины и различаются взаимным расположением атомов азота.

Эти гетероциклы содержат атомы азота пиридинового типа, поэтому каждый из диазинов представляет собой шестиэлектронную ароматическую систему. Введение второго атома азота в шестичленное кольцо еще больше понижает активность гетероциклического ядра (по сравнению с пиридином) в реакциях электрофильного замещения.

Основность диазинов значительно (на 3-4 порядка) ниже, чем пиридина, поскольку один атом азота выступает в роли электроноакцептора по отношению к другому. Диазины образуют соли только с одним эквивалентом сильной кислоты.

Среди производных диазинов, имеющих биологическое значение и применяемых в медицине, наиболее важны гидрокси- и аминопроизводные пиримидина.

Для 2-гидроксипроизводных гетероциклов, содержащих фрагмент -N=C-OH, типична лактим-лактамная таутомерия как частный случай прототропной таутомерии (см. 9.2.3). Взаимопревращение тауто- мерных форм связано с переносом протона от гидроксильной группы, напоминающей фенольную группу ОН, к основному центру - пиридиновому атому азота и обратно. В полярных растворителях и в кристаллическом состоянии лактамные формы явно преобладают, что связано с большим сродством к протону атома азота, нежели атома кислорода.

Три пиримидиновых основания - урацил (2,4-дигидроксипи- римидин), тимин (2,4-дигидрокси-5-метилпиримидин) и цитозин (4-амино-2-гидроксипиримидин) - являются компонентами нуклеотидов и нуклеиновых кислот. Пиримидиновые основания существуют практически только в лактамной форме (лактамный фрагмент выделен цветной рамкой, лактимный - черной).

Очевидно, что в лактимной форме, т. е. гидроксиформе, пиримидиновое ядро ароматично. Однако и в лактамной форме ароматичность не нарушена, так как ароматическая система образована в результате участия в сопряжении неподеленной пары электронов «амидного» атома азота. Разрыв сопряжения в кольце отсутствует.

К производным пиримидина относится барбитуровая кислота (2,4,6-тригидроксипиримидин), которая может существовать в несколь- ких таутомерных формах, три из которых приведены ниже. Структуры (I) и (II) представляют соответственно лактимный и лактамный таутомеры, а структуры (II) и (III) - енольный и кетонный таутомеры. В кристаллическом состоянии барбитуровая кислота имеет строение триоксопроизводного (III), которое преобладает и в растворе.

Барбитуровая кислота легко образует соли при действии щелочей. Ее весьма высокая кислотность (p K a 3,9) обусловлена эффективной делокализацией отрицательного заряда в барбитурат-ионе с участием двух атомов кислорода.

Широкое применение в медицине нашли барбитураты - производные барбитуровой кислоты, у которых в положении 5 находятся два (реже - один) углеводородных заместителя. С начала ХХ в. в качестве снотворных средств использовались барбитал (веронал), фенобарбитал (люминал). Последний применяют в настоящее время как противоэпилептическое средство.

Барбитураты также обладают определенной кислотностью (например, p K a барбитала равен 7,9). Некоторые из них применяются в виде натриевых солей, например барбитал-натрий, что обусловлено хорошей растворимостью таких солей в воде.

Представителем шестичленных гетероциклических соединений с двумя различными гетероатомами (азота и серы) служит фенотиазин.

Важное значение имеют 2,10-дизамещенные производные фенотиазина, составляющие большую группу лекарственных средств психотропного действия. Один из них - аминазин - широко применяется как антипсихотическое средство.

13.5. Конденсированные гетероциклы

Из систем с двумя конденсированными гетероциклами важное значение имеют соединения пуринового ряда, в частности гидроксипурины и аминопурины, принимающие активное участие в процессах жизнедеятельности.

13.5.1. Гидроксипурины

Гипоксантин (6-гидроксипурин), ксантин (2,6-дигидроксипурин) и мочевая кислота (2,6,8-тригидроксипурин) образуются в организме при метаболизме нуклеиновых кислот. Ниже они изображены в лактамной форме, в которой находятся в кристаллическом состоянии.

У гидроксипуринов возможна как лактим-лактамная таутомерия, так и таутомерия азолов, связанная с миграцией атома водорода от атома N-7 к N-9, как показано на примере гипоксантина.

Мочевая кислота - конечный продукт метаболизма пуриновых соединений в организме. Она выделяется с мочой в количестве 0,5-1 г/сут. Мочевая кислота двухосновна, плохо растворима в воде, но легко растворяется в щелочах, образуя соли с одним или двумя эквивалентами щелочи (приведено вероятное строение солей).

Соли мочевой кислоты называют уратами. При некоторых нарушениях в организме они откладываются в суставах, например при подагре, а также в виде почечных камней.

Ксантин и гипоксантин по химическому поведению во многом аналогичны мочевой кислоте. Они амфотерны и образуют соли с кислотами и щелочами.

Метилированные в различной степени по атомам азота производные ксантина обычно относят к алкалоидам (см. 13.6). Это кофе- ин (1,3,7-триметилксантин), теофиллин (1,3-диметилксантин) и тео- бромин (3,7-диметилксантин). Их природными источниками служат листья чая, зерна кофе, бобы какао.

Кофеин - эффективный возбудитель ЦНС, он стимулирует работу сердца. Общестимулирующее действие теофиллина и теобромина выражено меньше, но они обладают довольно сильными мочегонными свойствами.

13.5.2. Аминопурины

Из аминопуринов наиболее важны аденин (6-аминопурин) и гуанин (2-амино-6-гидроксипурин), являющиеся структурными фрагмента- ми нуклеиновых кислот. Аденин также входит в состав некоторых

коферментов (см. 14.3). Преобладающей таутомерной формой гуанина является лактамная. Для обоих соединений возможна и таутомерия азолов в результате миграции атома водорода между атомами

N-7 и N-9.

При действии на аденин азотистой кислоты HNO 2 происходит его дезаминирование (см. 4.3) с образованием гипоксантина. Аналогичная реакция в случае гуанина приводит к ксантину.

13.6. Алкалоиды

Алкалоидами называют основные азотсодержащие вещества природного (главным образом растительного) происхождения.

Благодаря высокой фармакологической активности алкалоиды известны с давних времен и используются в медицине. Хрестоматийным примером служит применение с середины XVII в. хинина, выделяемо- го из коры хинного дерева, для лечения малярии.

Почти все алкалоиды имеют в структуре атом азота. Это обусловливает основные свойства алкалоидов, что нашло отражение в их групповом названии (от араб. al-qali - щелочь). В растениях алкалоиды содержатся в виде солей органических кислот - лимонной, яблочной, щавелевой и др.

Важнейшим структурным фрагментом большинства алкалоидов служит какой-либо азотсодержащий гетероцикл. Этот признак положен в основу химической классификации алкалоидов, по которой они подразделяются на группы в соответствии с типом гетероцикла в их структуре, например пиридина, хинолина и т. д. Такие алкалоиды имеют единство в биогенетическом происхождении от аминокислот, их называют истинными алкалоидами.

Наряду с этим существуют алкалоиды, у которых атом азота не включен в гетероциклическую структуру. Эти алкалоиды представляют собой растительные амины, их относят к протоалкалоидам.

При большом разнообразии структур алкалоидов в качестве общего химического свойства можно выделить реакции солеобразования. Эти реакции используют в двух направлениях:

Для получения хорошо растворимых в воде солей, например, с минеральными кислотами (хлориды, ацетаты);

Для получения окрашенных солей с ограниченной растворимостью (с органическими и неорганическими кислотами).

Первое направление используется главным образом для извлечения алкалоидов из природных источников, второе - в аналитических целях для качественного обнаружения алкалоидов.

13.6.1. Алкалоиды группы пирролидина, пиридина и пиперидина

Никотин - весьма токсичный алкалоид, содержание которого в листьях табака доходит до 8%. Включает связанные простой связью

ядра пиридина и пирролидина. Воздействует на вегетативную нервную систему, сужает кровеносные сосуды.

Никотиновая кислота (одна из форм витамина РР) является одним из продуктов окисления никотина и используется для синтеза других препаратов.

Лобелин и родственные ему алкалоиды обнаружены в североамериканском растении лобелия. Они близки по структуре и используются в медицине в качестве эффективных рефлекторных стимуляторов дыхания.

13.6.2. Алкалоиды группы тропана

Базовая структура алкалоидов этой группы - тропан - является бициклическим соединением, в состав которого входят пирролидино- вое и пиперидиновое кольца.

К тропановым алкалоидам относятся атропин и кокаин, применяемые в медицине как холиноблокаторы.

Атропин содержится в растениях семейства пасленовых: красавке, белене, дурмане. Несмотря на высокую токсичность, он широко применяется в глазной практике, благодаря способности расширять зрачок.

Кокаин - основной алкалоид южноамериканского кустарника Erythroxylon coca Lam. Это одно из первых используемых в медицине анестезирующих и наркотических средств. Синтетические аналоги кокаина, лишенные наркотических свойств, являются производными п-аминобензойной кислоты (см. 9.3).

13.6.3. Алкалоиды группы хинолина и изохинолина

Наибольшую известность из хинолиновых алкалоидов получил хинин, выделенный из коры хинного дерева. В состав хинина входят две гетероциклические системы - хинолиновая и хинуклидиновая.

Хинин используется в медицине более 300 лет в качестве противомалярийного средства. В настоящее время из-за ряда негативных побочных эффектов его использование сократилось и на смену ему пришли новые синтетические противомалярийные препараты.

Ядро изохинолина содержится в алкалоидах опия, представляющего собой высохший млечный сок незрелых коробочек мака опийного. Основной из них - морфин - обладает сильным обезболивающим свойством, но при длительном употреблении вызывает привыкание. Морфин был первым алкалоидом, выделенным в чистом виде (1806) и был назван по имени бога сна и сновидений Морфея.

Монометиловый эфир морфина - кодеин - оказывает противокашлевое действие, а диацетильное производное - героин - наркотик.

Другим алкалоидом группы изохинолина, также выделенным изопия, служит папаверин, применяемый в качестве эффективного спазмолитического средства. Синтетический аналог папаверина ношпа имеет с ним явное структурное сходство.

13.6.4. Протоалкалоиды

В эту группу алкалоидов входят растительные основания, не имеющие в своей структуре какого-либо гетероцикла. Важнейшим их представителем является эфедрин, выделяемый из различных видов эфедры.

В молекуле эфедрина содержатся два хиральных центра, в соответствии с этим эфедрин существует в виде четырех стереоизомеров и двух рацематов. Наибольшей фармакологической активностью обладает природный эфедрин, являющийся одним из стереизомеров.

ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ
Гетероциклические соединения - это углеродные циклические соединения, в которых один или несколько атомов кольцевой системы являются отличными от углерода неметаллами (кислородом, азотом или серой). Как и карбоциклические соединения, гетероциклы можно подразделить на имеющие ароматический характер и продукты восстановления таких ароматических гетероциклов, которые аналогично алициклическим соединениям обнаруживают свойства и реакции, сходные со свойствами и реакциями алифатических соединений. Гетероциклы удобно классифицировать а) по числу атомов в кольце, б) по числу и природе гетероатомов. Ненасыщенные гетероциклы, обнаруживающие максимально ароматический характер, берутся в качестве ключевых представителей каждой циклической системы.
А. ПЯТИЧЛЕННЫЕ ГЕТЕРОЦИКЛЫ
1. Один гетероатом

2. Два гетероатома

3. Три и более гетероатомов


Резонанс (см. "Резонанс" в начале разд. IV-3) пятичленных колец включает значительный вклад следующих структур:


Приобретенная таким путем энергия резонанса делает эти системы весьма устойчивыми к реакциям присоединения по двойным связям, и они вступают во многие типичные реакции ароматического замещения.
Б. ШЕСТИЧЛЕННЫЕ ГЕТЕРОЦИКЛЫ
1. Один гетероатом


2. Два гетероатома


В. КОНДЕНСИРОВАННЫЕ ГЕТЕРОЦИКЛИЧЕСКИЕ СИСТЕМЫ
Важные ряды соединений в каждом классе получают конденсацией гетероциклического кольца с одним или несколькими бензольными, например:


Гетероциклические системы широко распространены в природе, особенно в алкалоидах, растительных пигментах (антоцианины, флавоны), порфиринах (гемин, хлорофилл) и витаминах группы В (тиамин, рибофлавин, фолевая кислота). Ниже рассмотрены подробнее некоторые гетероциклические соединения.
Г. ПРАКТИЧЕСКИ ВАЖНЫЕ ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ
Фуран, летучая жидкость, устойчивая к действию щелочей, но чувствительная к кислотам

Его легче всего получить декарбоксилированием пирослизевой кислоты (2,5-дикарбоксифурана), продукта пиролиза слизевой (тетрагидроксиадипиновой) кислоты. Наиболее общим методом получения фурановых производных является дегидратация g-дикетонов над хлоридом цинка:


Сухая перегонка пентоз HOCH2(CHOH)3CHO дает фурфурол (a-формилфуран). Фурфурол проявляет многие свойства ароматического альдегида. Так, подобно бензальдегиду, он вступает в реакцию Канниццаро и в бензоиновую конденсацию. Кумарон (бензофуран) (см. выше "Конденсированные гетероциклические системы") вместе с его гомологами содержится в каменноугольной смоле. Он имеет некоторую ценность для получения кумароновых смол, которые образуются при его обработке серной кислотой. Производные кумарона могут быть получены разложением дибромкумаринов щелочью:


или действием щелочи на о-гидрокси-b-хлорстирол, о-HO-C6H4-CH=CH-Cl. Кумароновая структура встречается во многих природных растительных веществах, которые являются мощными инсектицидами и ядами для рыб, например:


Тиофен (формулу см. выше, т. кип. 84° С) содержится в каменноугольной смоле и сопровождает бензол при ее фракционировании. Его можно удалить из бензола осаждением комплекса с ацетатом ртути, из которого при обработке соляной кислотой можно регенерировать тиофен. Серная кислота также удаляет его из бензола путем образования a-тиофенсульфокислоты. Производные тиофена можно получить следующими способами: 1) перегонкой янтарных кислот или g-кетокислот с P2S3:


2) перегонкой g-дикетонов с P2S5:


Тиофен и его гомологи очень устойчивы к окислению или восстановлению кольца. Реакции ароматического замещения (сульфирование, нитрование и т.д.) идут в a-положение. Тионафтен (бензотиофен) получают окислением о-меркаптокоричной кислоты красной кровяной солью (феррицианидом калия). Его 3-гидроксипроизводное, имеющее большое промышленное значение в химии красителей, получают действием уксусного ангидрида на о-карбоксифенилтиогликолевую кислоту о-HOOCC6H4-S-CH2COOH. Оно легко сочетается с солями диазония в положение 2, давая азокрасители, и конденсируется с альдегидами и кетонами, образуя тиоиндигоидные красители.


Пиррол (формулу см. выше), бесцветная, приятно пахнущая жидкость, содержащаяся в каменноугольной смоле, легко полимеризуется на воздухе. У него практически нет свойств основания, он устойчив к окислителям и щелочам, но легко полимеризуется в форме компонентов белков (пролин, триптофан), алкалоидов (никотин, атропин) и порфиринов (гемин, хлорофилл). Производные пиррола можно получить: 1) перегонкой сукцинимидов

С цинковой пылью; 2) нагреванием g-дикетонов с аммиаком; 3) нагреванием слизевой кислоты (см. выше) с аммиаком или первичными аминами; 4) одновременным восстановлением эквивалентных количеств b-кетоэфира и изонитрозокетона


Пирролы вступают в типичные реакции ароматического замещения в a-положение. Обработка реактивов Гриньяра превращает их в a-пиррилмагнийгалогениды


которые вступают в типичные реакции Гриньяра. Расширения кольца с образованием пиридиновой системы можно достичь: 1) обработкой хлороформом и этилатом натрия


2) пропусканием a-алкилпирролов через трубку, нагретую до красного каления


Восстановление путем каталитического гидрирования под давлением, хотя и медленно, ведет к пирролидинам:

Индол (бензопиррол; формулу см. в табл. 4, разд. III) содержится в каменноугольной смоле и эфирных маслах цветов апельсина и жасмина. Производные индола получают: 1) из о-аминофенилацетальдегида о-H2NC6H4CH2CH=O отщеплением воды; 2) нагреванием гидрохлоридов о-оў-диаминостильбенов:

3) из фенилгидразонов нагреванием с галогенидами меди или цинка


По своим реакциям индол похож на пиррол с тем исключением, что в реакциях замещения участвует b-положение. Заслуживают упоминания следующие производные индола: 1) скатол (b-метилиндол), вещество с неприятным запахом, присутствующее в экскрементах; 2) триптофан (b-(b-индолил)аланин), аминокислота, встречающаяся во многих белках; 3) гетероауксин (b-индолилуксусная кислота или 3-индолилуксусная кислота), фактор роста растений; 4) индиго


Оксазол (формулу см. выше) известен в чистом виде. Его производные можно получить конденсацией амидов с a-галогенокетонами:


или действием пентахлорида фосфора на ациламинокетоны:


Оксазолы - слабые основания, чувствительные к расщеплению сильными кислотами. Изоксазол

И его производные представляют меньший интерес. Они могут быть получены дегидратацией монооксимов b-дикетонов. Тиазол и его гомологи - слабые основания, в которых кольцо обнаруживает высокую устойчивость к окислению, восстановлению и действию сильных кислот

Тиазолы можно получить из a-ациламинокетонов действием P2S5, а также реакцией тиоамидов с a-галогенокетонами:


Сильные кислоты превращают тиазолы в соли (C3H3SN + HX (r) C3H3SNH+X-), которые устойчивы, но заметно гидролизуются в водных растворах. С алкилгалогенидами образуются N-замещенные соли тиазолия, содержащие четвертичный азот:

Наиболее важным природным соединением, содержащим тиазольное кольцо, является витамин B1 (тиамин). Ценный химиотерапевтический препарат сульфатиазол получают действием N-ацетилсульфанилхлорида на 2-аминотиазол с последующим удалением ацетильной группы гидролизом:


Имидазол (глиоксалин) и его гомологи

Получают из альдегидов, a-дикетонов и аммиака:


Их также можно приготовить взаимодействием амидинов

С a-галогенокетонами. Имидазолы - более сильные основания, чем пирролы. С алкилгалогенидами они дают N-алкилимидазолы. Эти вещества при пропускании через трубку при температуре красного каления изомеризуются в 2-алкилимидазолы; при взаимодействии со второй молекулой алкилгалогенида они превращаются в соли имидазолия, содержащие четвертичный азот

Действие реактивов Гриньяра RMgX на имидазолы ведет к соответствующим 2-имидазолилмагнийгалогенидам C3H3N2MgX, которые вступают в реакции, обычные для реактивов Гриньяра. Имидазольное кольцо встречается во многих природных соединениях, в том числе в аминокислоте гистидине (см. разд. IV-1.Б.4, "Аминокислоты"), алкалоидах группы пилокарпина и пуриновых основаниях. Пиразол и его производные - только синтетические соединения; кольцевая система пиразола

Не встречается в природе. Пиразолы получают взаимодействием гидразина с b-дикетонами:


или действием диазоалканов на ацетилен:


Реакция фенилгидразина с a,b-ненасыщенными кетонами или эфирами дает дигидропиразолы, или пиразолины:


Эти соединения легко окисляются в соответствующие пиразолы. Пиразольное кольцо очень устойчиво к окислению, восстановлению и действию сильных кислот. Пиразолиниевые соли, получаемые действием сильных кислот на пиразолины, нестойки и разлагаются в вакууме. Наиболее важный класс пиразолов - пиразолоны


получаемые действием гидразина и его производных на b-кетоэфиры, например,


Пиразолоны ведут себя как смесь трех таутомерных (т.е. находящихся в равновесии) форм, например:


1-Фенил-3-метилпиразол-5 является важным веществом. Окисление красной кровяной солью (феррицианидом калия) превращает его в индигоидный краситель пиразоловый голубой:


Метилирование (CH3I при 100° С) превращает его в жаропонижающий препарат антипирин (1-фенил-2,3-диметилпиразолон), 4-N-диметиламинопроизводное которого представляет собой аналогичное лекарственное средство амидопирин (пирамидон). Кольцевые системы с тремя и более гетероатомами не представляют практического интереса. Все они устойчивы к окислению, восстановлению и действию сильных кислот. Фуразаны получают дегидратацией диоксимов a-дикетонов. 1,2,3-Триазолы и тетразолы также относятся к этой группе соединений.

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ" в других словарях:

    - (гетероциклы) органические соединения, содержащие циклы, в состав которых наряду с углеродом входят и атомы других элементов. Могут рассматриваться как карбоциклические соединения с гетерозаместителями (гетероатомами) в цикле. Наиболее… … Википедия

    Органические соединения, содержащие в молекуле цикл, в состав которого наряду с атомами углерода входят атомы других элементов, чаще всего азота, кислорода, серы (т. н. гетероатомы). Природные гетероциклические соединения, напр., хлорофилл, гем,… … Большой Энциклопедический словарь

    ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ - см. ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ новые гербициды, из которых перспективны реглон и базагран. Они могут попадать в водоемы с поверхностным стоком и со сточными водами химической промышленности. Реглон и базагран представляют собой коричневые… … Болезни рыб: Справочник

    ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ - ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ, обширный класс органич. соединений с циклическим строением молекул, в состав цикла к рых входят не только атомы углерода, но и атомы других элементов (гетероатомы). Известны циклические соединения, в к рых роль… … Большая медицинская энциклопедия

    ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ, см. ЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ … Научно-технический энциклопедический словарь

    Органические соединения, содержащие в молекуле цикл, в состав которого наряду с атомами углерода входят атомы других элементов, чаще всего азота, кислорода, серы (так называемые гетероатомы). Природные гетероциклические соединения, например… … Энциклопедический словарь

    Орг. соединения, молекулы к рых содержат циклы, включающие наряду с атомами углерода один или неск. атомов др. элементов (гетероатомов). Наиб. значение имеют Т. е., в цикл к рых входят атомы N, О, S. К ним относятся мн, алкалоиды, витамины,… … Химическая энциклопедия

    - (см. гетеро... + циклический) органические соединения с циклическим (кольцевым) строением, в состав цикла которых входят атомы не только углерода, но и других элементов (азота, кислорода, серы и др.). Новый словарь иностранных слов. by EdwART,… … Словарь иностранных слов русского языка

    Гетероциклы (от гетеро… (См. Гетеро...) и греч. kýklos круг), органические вещества, содержащие цикл, в состав которого, кроме атомов углерода, входят атомы других элементов (гетероатомы), наиболее часто N, О, S, реже Р, В, Si и др.… … Большая советская энциклопедия

    - (от гетеро... и греч. kyklos круг, цикл) органич. соединения, содержащие в молекуле цикл, в состав к рого, кроме атомов углерода, входят атомы др. элементов (гетероатомы), чаще всего азота (см., напр., Пиридин), кислорода, серы, реже фосфора,… … Большой энциклопедический политехнический словарь

Книги

  • Гетероциклические соединения с тремя и более гетероатомами. Учебное пособие , Миронович Людмила Максимовна. В учебном пособии излагаются основы химии гетероциклических соединений, имеющих в своем составе три и более гетероатома. Представлены основные способы полученияоксадиазолов, тиадиазо-лов,…

К числу гетероциклических относят органические соединения, циклы которых включают, кроме атомов углерода, один или несколько других элементов. В образовании циклов могут принимать участие различные гетероатомы, но чаще всего - кислород, азот и сера.

Гетероциклические соединения широко распространены в природе. На их долю приходится около 50% природных веществ, в том числе отличающихся высокой биологической активностью (алкалоиды, витамины, ферменты, антибиотики). Многие из этих биологически активных веществ применяют в качестве лекарственных средств или исходных продуктов для их синтеза. Источниками биологически активных природных веществ, имеющих гетероциклическую структуру, служат продукты растительного и животного происхождения.

За счет гетероциклических соединений непрерывно пополняется число синтетических лекарственных веществ. Предпосылкой для этого является «родство» их строения с природными биологически активными веществами организма человека. Поэтому в настоящее время на долю гетероциклических соединений приходится более половины применяемых в медицине лекарственных веществ.

По химическому строению гетероциклические соединения очень разнообразны. Они различаются общим числом атомов в цикле, природой гетероатомов и их количеством в цикле.

По числу всех атомов в циклах гетероциклические соединения делят на трех-, четырех-, пяти-, шести- и семичленные, а по характеру гетероатомов - на азот-, кислород-, серосодержащие. Число этих гетероатомов может быть от одного до четырёх.

Классифицируют гетероциклические соединения на следующие группы.

Трехчленные гетероциклы с одним гетероатомом:

Пятичленные гетероциклы с одним гетероатомом:

Пятичленные гетероциклы с несколькими гетероатомами:

Шестичленные гетероциклы с одним гетероатомом:

Шестичленные гетероциклы с несколькими гетероатомами:

Семичленные гетероциклы с одним и двумя гетероатомами:

Молекулы гетероциклов могут содержать различные заместители. Известно также большое число систем, в которых гетероциклы конденсированы между собой и с другими ароматическими или гидроароматическими циклами. Конденсированные гетероциклические системы составляют структурную основу многих природных и синтетических лекарственных веществ.

Наличие гетероатомов в молекулах гетероциклических соединений обусловливает значительную лабильность их молекул по сравнению с другими органическими соединениями. Это особенно проявляется у гетероциклов с несколькими гетероатомами и при наличии различных заместителей в молекуле. Такие производные имеют наибольшую тенденцию к раскрытию цикла и рециклизации, а также к различного рода таутомерным превращениям.

Перечисленные особенности химической структуры имеют важное значение для синтеза и анализа гетероциклических соединений. Кроме того, есть все основания предполагать, что одной из основных причин высокой биологической активности многих гетероциклических соединений является особенность их химической структуры, обеспечивающая в широких пределах возможность перемещения электронов.

Лекарственные средства, имеющие гетероциклическую структуру, можно получить из природного сырья или синтетическим путем. Некоторые гетероциклические соединения выделяют из продуктов переработки каменноугольной смолы, содержащей пиридин и его гомологи, хинолин, изохинолин, акридин, индол и др. Древесная смола содержит метилфуран, фурфурол. Более сложные по химической структуре гетероциклические соединения представляют собой многие алкалоиды, витамины, ферменты, содержащиеся в растениях.

Способы синтеза гетероциклических соединений разнообразны. Их синтезируют из ряда алифатических производных путем замыкания цикла, превращения гетероциклов друг в друга (рециклизация), гидрирования ненасыщенных гетероциклических соединений до насыщенных, введения различных радикалов в простые по структуре гетероциклы или получения из них конденсированных систем.

Большинство методов синтеза основано на так называемой гетероциклизации, т.е. на образовании гетероцикла в результате замыкания в цикл одного или двух алифатических соединений. Такие реакции основаны главным образом на конденсации дикарбонильных соединений (альдегидов, карбоновых кислот) с аммиаком или алифатическими и ароматическими соединениями, содержащими в молекуле первичную ароматическую аминогруппу. Этот общий принцип использован для получения различных азотсодержащих гетероциклов, составляющих структурную основу многих синтетических и природных лекарственных веществ. Гетероциклические системы получают также из ароматических и гетероциклических соединений, содержащих в молекулах аминогруппы, путем конденсации их с карбонильными соединениями (альдегидами, кетонами).

ГЛАВА 51.

ПРОИЗВОДНЫЕ ФУРАНА

Производные 5-нитрофурана

Используемые в качестве лекарственных веществ, производные 5-нитрофурана имеют различные заместители в положении 2:

Из многочисленных синтезированных в 50-е годы XX века в Институте органического синтеза АН Латвии (С.А. Гиллер, К.К. Вентер, Р.Ю. Калнберг) производных нитрофурана в качестве химиотерапевтических средств наиболее широко применяют: нитрофурал (фурацилин), нитрофурантоин (фурадонин), фуразолидон, фуразидин (фурагин).

Исходный продукт синтеза производных 5-нитрофурана - фурфурол (a-фурилальдегид). Его получают из отходов деревообрабатывающей промышленности, а также из соломы, шелухи подсолнечника, коробочек хлопчатника путем обработки разведенной серной кислотой и отгонки с водяным паром. При этом происходит образование фурфурола из пентоз (моносахаридов) и пентозанов (полисахаридов), содержащихся в этом сырье.

Из фурфурола нитрованием получают 5-нитрофурфурол. Процесс этот наиболее экономичен при последовательном получении вначале диацетата 5-нитрофурфурола, который затем гидролизуется разведенной серной кислотой до 5-нитрофурфурола:

Дальнейший синтез основан на конденсации 5-нитрофурфурола с различными веществами, содержащими аминогруппу, по общей схеме:

Для синтеза нитрофурала на 5-нитрофурфурол действуют семикарбазида гидрохлоридом:

Фуразолидон синтезируют аналогично конденсацией 5-нитрофурфурола с 3-аминооксазолидоном-2:

При синтезе фуразидина, у которого иминная группа отделена от нитрофуранового фрагмента этиленовым радикалом, 5-нитрофурфурол вначале конденсируют с ацетальдегидом, а затем сочетают с 1-аминогидантоином:

Производные нитрофурана сходны по физическим свойствам (табл.51.1). Это желтые с зеленоватым оттенком кристаллические вещества, без запаха. Они очень мало растворимы или практически нерастворимы в воде и в этаноле (нитрофурал очень мало и медленно растворим), мало или умеренно растворимы в диметилформамиде, мало или очень мало - в ацетоне. Ввиду наличия не только нитро-, но и имидной группы, нитрофурал проявляет в растворах кислотные свойства и лучше других растворяется в щелочах. В кипящей воде нитрофурал растворим в соотношении 1:5000. Фуразидин выпускают также в виде растворимой в воде калиевой соли.

51.1. Свойства производных 5-нитрофурана

Лекарственное вещество Химическая структура Описание
Nitrofural- нитрофурал (Фурацилин) 5-нитрофурфурола семикарбазон Желтый или зеленовато-желтый мелкокристаллический порошок без запаха. Т.пл. 230–236 °C
Nitrofurantoin- нитрофурантоин (Фурадонин) N -(5-нитро-2-фурфурилиден)-1-аминогидантоин Порошок желтого или желтого с зеленым оттенком цвета. Т.пл. 258–263°C (с разложением)
Furazolidone- фуразолидон N -(5-нитро-2-фурфурилиден)-3-аминооксазолидон-2 Желтый или желтый с зеленоватым оттенком мелкокристаллический порошок без запаха. Т.пл. 253–258 °C (с разложением)
Furazidin- фуразидин (Фурагин) 1--гидантоин Порошок от желтого до оранжевого цвета без запаха

Для испытания подлинности используют ИК-спектры производных нитрофурана. Их спрессовывают в виде таблеток с бромидом калия и снимают спектры в области 1900-700 см –1 . ИК-спектры должны полностью совпадать с ИК-спектрами ГСО. ИК-спектр нитрофурала имеет полосы поглощения при 971, 1020, 1205, 1250, 1587, 1724 см –1 .

Используемые для испытаний производных 5-нитрофурана химические реакции основаны на их гидролитическом расщеплении, окислительно-восстановительных, кислотно-основных свойствах, образовании ацисолей (нитрогруппа).

Подлинность производных 5-нитрофурана устанавливают по цветной реакции с водным раствором гидроксида натрия. Структура образующихся продуктов находится в зависимости от условий проведения реакции, особенностей химического строения производных 5-нитрофурана, температуры, растворителя и концентрации реактива. Нитрофурал при использовании разбавленных растворов щелочей образует ацисоль, окрашенную в оранжево-красный цвет:

При нагревании нитрофурала в растворах гидроксидов щелочных металлов происходит разрыв фуранового цикла и образуется карбонат натрия, гидразин и аммиак. Последний обнаруживают по изменению окраски влажной красной лакмусовой бумаги:

Фуразидин после нагревания (2 мин) с 30%-ным раствором гидроксида натрия приобретает коричневое окрашивание.

Нитрофурантоин в разбавленных растворах щелочей при комнатной температуре образует в результате таутомерных превращений гидантоина ацисоль, окрашенную в темно-коричневый цвет:

Раствор фуразолидона в тех же условиях, но при нагревании, приобретает бурое окрашивание за счет разрыва лактонного цикла и образования ацисоли:

Эта реакция может быть использована для отличия нитрофурала от нитрофурантоина и фуразолидона.

Фуразолидон и нитрофурантоин можно отличить друг от друга по различной окраске продуктов взаимодействия с едкими щелочами в среде неводных растворителей основного характера, например диметилформамида. В качестве реактива используют водно-спиртовый раствор гидроксида калия. Нитрофурантоин при этом последовательно окрашивается в желтый, а затем в коричневато-жёлтый и светло-коричневый цвет. Фуразолидон приобретает красно-фиолетовое окрашивание, переходящее в темно-синее, а затем в фиолетовое или красно-фиолетовое.

Характерные цветные реакции, позволяющие отличать друг от друга производные 5-нитрофурана, дает спиртовый раствор гидроксида калия в сочетании с ацетоном: нитрофурал приобретает темно-красное окрашивание, нитрофурантоин - зеленовато-желтое, переходящее в бурое с выпадением бурого осадка, фуразолидон - постепенно появляющееся красное окрашивание, переходящее в бурое, фуразидин приобретает красное окрашивание с выпадением объемного красного осадка.

Нитрофурал, нитрофурантоин и фуразолидон идентифицируют с помощью общей реакции образования 2,4-динитрофенилгидразона (температура плавления 273 °C). Он выпадает в осадок при кипячении раствора лекарственного вещества в диметилформамиде с насыщенным раствором 2,4-динитрофенилгидразина и 2М раствора хлороводородной кислоты.

Раствор нитрофурала в диметилформамиде после добавления свежеприготовленного 1%-ного раствора нитропруссида натрия и 1М раствора гидроксида натрия дает красное окрашивание. Нитрофурантоин в этих условиях приобретает желтое, а фуразолидон (через 5 мин) - оливково-зеленое окрашивание.

Производные нитрофурана образуют в слабощелочной среде окрашенные нерастворимые комплексные соединения с солями серебра, меди, кобальта и других тяжелых металлов. При добавлении к раствору нитрофурантоина (в смеси диметилформамида и воды) 1%-ного раствора сульфата меди (II), нескольких капель пиридина и 3 мл хлороформа, после встряхивания хлороформный слой приобретает зеленое окрашивание. Комплексные соединения нитрофурала и фуразолидона в этих условиях не извлекаются хлороформом.

Окислительно-восстановительные реакции (образования «серебряного зеркала», с реактивом Фелинга) могут быть выполнены после щелочного гидролиза, сопровождающегося образованием альдегидов.

При испытаниях на чистоту устанавливают в производных 5-нитрофурана допустимое содержание посторонних примесей (от 0,4 до 1%). Испытания выполняют методом ТСХ, используя готовые хроматографические пластинки типа Силуфол УФ-254 или Силикагель Г, различные системы растворителей для восходящей хроматографии. Проявителем служит фенилгидразина гидрохлорид или УФ-свет при длине волны 254 нм. Сравнивают со свидетелями количество, величину и окраску пятен на хроматограммах. В фуразидине определяют отсутствие легко обугливающихся (при 250 °C) примесей.

Количественное определение проявляющего восстановительные свойства нитрофурала выполняют иодометрическим методом, основанным на окислении иодом в щелочной среде (для улучшения растворимости к навеске прибавляют хлорид натрия и смесь подогревают). Титрованный раствор иода в щелочной среде образует гипоиодит:

I 2 + 2NaOH ® NaI + NaIO + H 2 O

Гипоиодит окисляет нитрофурал до 5-нитрофурфурола:

После окончания процесса окисления нитрофурала раствор подкисляют и титруют выделившийся избыток иода тиосульфатом натрия:

NaI + NaIO + H 2 SO 4 ¾® I 2 + Na 2 SO 4 + H 2 O

I 2 + 2Na 2 S 2 O 3 ¾® 2NaI + Na 2 S 4 O 6

Нитрофурантоин (по ФС) и фуразолидон, проявляющие слабые основные свойства, количественно определяют методом неводного титрования в диметилформамиде. Титруют 0,1 М раствором метилата натрия (индикатор тимоловый синий).

Известен способ определения нитрофурала броматометрическим методом, основанным на окислении гидразиновой группы в присутствии концентрированных кислот при температуре 80–90 °C:

H 2 N–NH 2 ¾¾® N 2 ­ + 2H 2 O

Фуразидин-калий количественно определяют ацидиметрически, титруя 0,01 М раствором хлороводородной кислоты (индикатор бромтимоловый синий).

Для установления подлинности и количественного определения нитрофурала используют УФ-спектры его 0,0006%-ных растворов в смеси диметилформамида с водой (1:50). Максимумы поглощения такого раствора в области 245-450 нм находятся при 260 и 375 нм, а минимум - при 306 нм. Максимумы второй полосы поглощения (365-375 нм) более специфичны для производных 5-нитрофурана, т.к. обусловлены наличием различных электронодонорных групп в положении 2 фуранового цикла. Количественное спектрофотометрическое определение выполняют при 375 нм и рассчитывают содержание с использованием стандартного образца нитрофурала.

Для испытания подлинности нитрофурантоина, фуразолидона и фуразидина используют УФ-спектры растворов в области 240-450 нм. Растворителем служит диметилформамид с водой или ацетатным буферным раствором. В этих условиях нитрофурантоин имеет максимумы поглощения при 266 и 367 нм; фуразолидон - максимумы при 260 и 367 нм и минимум - при 302 нм; фуразидин - максимумы при 292 и 396 нм. Количественное спектрофотометрическое определение фуразолидона выполняют при 367 нм (растворитель 0,5%-ный раствор диметилформамида в воде). Содержание рассчитывают по ГСО фуразолидона или по величине удельного показателя поглощения (750). Фуразидин количественно определяют при длине волны 396 нм (растворитель 0,6%-ный раствор диметилформамида в ацетатном буферном растворе). Расчёты выполняют по ГСО стандартного образца фуразидина.

Растворителем для УФ-спектрофотометрического определения может служить 50%-ный раствор серной кислоты, в котором нитрофурал, нитрофурантоин и фуразолидон имеют максимумы поглощения при 227 нм.

Количественное определение нитрофурала, нитрофурантоина и фуразолидона можно проводить фотоколориметрическим методом, основанным на использовании цветных реакций с едкой щелочью в различных растворителях.

Производные 5-нитрофурана хранят по списку Б в прохладном месте в хорошо укупоренной таре, предохраняющей от действия света и влаги.

Нитрофурал назначают наружно для лечения и предупреждения гнойно-воспалительных процессов (в виде 0,02%-ных водных, 0,066%-ных спиртовых растворов и 0,2%-ной мази) и внутрь (по 0,1 г) для лечения бактериальной дизентерии. Нитрофурантоин назначают внутрь для лечения инфекционных заболеваний мочевых путей (по 0,1–0,15 г). Фуразолидон в тех же дозах менее токсичен и более активен. Назначают при смешанных инфекциях. Фуразидин применяют внутрь по 0,1-0,2 г и местно в виде глазных капель 1:13000, для промывания ран, ожогов и др. Фуразидин калия применяют при тяжелых инфекционно-воспалительных процессах. Вводят в виде 1%-ного раствора внутривенно.

Производные бензофурана

Бензофуран лежит в основе химической структуры двух лекарственных веществ, различных по фармакологическому действию - амиодарона и гризеофульвина (табл. 41.2).

Амиодарон - синтетическое антиангинальное и антиаритмическое средство. Гризеофульвин - антибиотик, продуцируемый различными видами плесневых грибов, в частности Penicillium nigricans griseofulvum. При биосинтезе накапливается в мицелии и ферментативном растворе, откуда извлекается экстракцией хлороформом. Экстракт упаривают, остаток экстрагируют горячим бензолом и перекристаллизовывают из этанола. Он проявляет противогрибковое действие.

Помимо бензофуранового ядра, в молекуле амиодарона имеется фенильный радикал с двумя атомами иода и две алифатические цепи (табл. 51.2). Основой химической структуры гризеофульвина является гетероциклическая система гризан, включающая 2,3-дигидробензофуран и конденсированный с ним (в положении 2) циклогексан:

51.2. Свойства лекарственных веществ, производных бензофурана

Амиодарон и гризеофульвин - белые или с желтоватым (кремоватым) оттенком кристаллические вещества. Амиодарон очень мало растворим в воде, умеренно растворим в этаноле, легко растворим в метиленхлориде. Гризеофульвин практически нерастворим в воде и эфире, мало растворим в этаноле, ацетоне, бутилацетате, легко растворим в диметилформамиде.

Для испытания подлинности амиодарона и гризеофульвина используют ИК-спектроскопию, УФ-спектрофотометрию, а также методы ТСХ и ВЭЖХ. Сравнивают ИК-спектры испытуемых веществ и стандартных образцов, снятых в дисках с бромидом калия в области 4000-400 см –1 (амиодарон) или 3300-680 см –1 (гризеофульвин). Они должны полностью совпадать. С теми же стандартными образцами сравнивают УФ-спектры поглощения гризеофульвина в области 230-300 нм. Его растворы в этаноле должны иметь максимумы поглощения при 231 и 291 нм. Хроматограммы испытуемого и стандартного растворов амиодарона, полученные на пластинках силикагеля F 254 , не должны отличаться по расположению и интенсивности окраски основного пятна (в УФ-свете). Должны также совпадать времена удерживания амиодарона и его ГСО при выполнении анализа методом ВЭЖХ.

Для испытания подлинности используют цветные реакции. Раствор гризеофульвина в концентрированной серной кислоте под действием дихромата калия приобретает темно-красное окрашивание. Если поместить в пробирку амиодарон, прибавить дихромат калия и концентрированную серную кислоту, накрыть пробирку фильтровальной бумагой, смоченной раствором дифенилкарбазида в уксусной кислоте, то бумага окрашивается в фиолетово-красный цвет. Подлинность гризеофульвина устанавливают также по голубовато-сиреневому свечению нанесённого на фильтровальную бумагу его 1%-ного раствора в ацетоне, возникающему при облучении ртутно-кварцевой лампой. При нагревании до кипения спиртового раствора гризеофульвина с 0,2 г бисульфита натрия и 2 мл раствора гидроксида натрия появляется лимонно-желтое окрашивание. Тот же раствор после добавления концентрированной хлороводородной кислоты и порошка магния приобретает жёлтое окрашивание, переходящее в желто-коричневое. Окрашенное соединение извлекается амиловым спиртом.

Амиодарон испытывают на наличие хлорид-иона.

Для испытания на чистоту амиодарона используют различные методы. Наличие примеси иодидов определяют фотоколориметрическим методом по интенсивности поглощения испытуемого и стандартного растворов при длине волны 420 нм после действия раствором иодата калия в кислой среде. Примеси родственных по структуре соединений (не более 0,5%) и примесь (2-хлорэтил)-диэтиламина (не более 0,2%) определяют методом ТСХ. Остаточные растворители: ацетон (не более 0,5%), метиленхлорид (не более 0,01%) определяют методом ГЖХ с плазменно-ионизационным детектором.

Методом ВЭЖХ на хроматографе с УФ-детектором устанавливают наличие в гризеофульвине специфических примесей с относительными временами удерживания 0,56-0,57; 0,87-0,88 и 1,09-1,10. Подвижная фаза состоит из воды, ацетонитрила и ледяной уксусной кислоты (49:45:1). Детектируют при длине волны 291 нм. Суммарное содержание примесей не должно превышать 2%. При испытании на чистоту порошка гризеофульвина требуется микроскопический контроль с помощью окулярмикрометра, т.к. его активность повышается с увеличением степени дисперсности и достигает оптимального значения при размере кристаллов не более 4 мкм. Проводится также испытание на микробиологическую чистоту.

Количественное определение амиодарона (по НД) выполняют методом нейтрализации. Навеску растворяют в смеси этанола и 0,01 М раствора хлороводородной кислоты. Титруют с использованием потенциометра 0,1 М раствором натрия гидроксида. Объём титранта, пошедшего на титрование, устанавливают на потенциометрической кривой между двумя точками перегиба.

Количественное определение амиодарона и гризеофульвина можно выполнить методом ВЭЖХ. При определении гризеофульвина используют подвижную фазу вода-ацетонитрил-тетрагидрофуран (60:35:5). Детектируют при длине волны 254 нм, сравнивая со стандартным раствором гризеофульвина в метаноле.

Можно определить содержание гризеофульвина спектрофотометрическим методом (по МФ) при длине волны 291 нм, используя в качестве растворителя безводный этанол. Расчёты выполняют по величине удельного показателя поглощения (686). Известен фотоколориметрический метод, основанный на использовании цветной реакции со стабилизированной солью диазония из 4-амино-2’,5’-диметоксибензанилида. Описан люминесцентный способ определения гризеофульвина.

Хранят амиодарон и гризеофульвин по списку Б в сухом, защищенном от света месте при температуре не выше 25 °C, в хорошо укупоренной таре. Применяют амиодарон внутрь при хронической ишемии сердца с синдромом стенокардии и нарушением сердечного ритма в виде таблеток по 0,2 г или вводят внутривенно 5%-ный раствор. Гризеофульвин, являющийся фунгицидным средством, назначают внутрь в таблетках по 0,125 г или наружно в виде 2,5%-ного линимента (суспензии) для лечения больных дерматомикозами, вызванными патогенными грибами.

ГЛАВА 52.

error: