Как отремонтировать паяльник в домашних условиях. С форсированным подогревом

В наше время при создании различных трубопроводов все чаще используют полимерные каналы. Они обладают массой преимуществ перед аналогами из металла. Особого внимания заслуживают полимерные трубы. Цена за 1 метр этих конструкций существенно ниже, чем у металлических аналогов. Их отличительной особенностью является удобный монтаж. Такие трубные конструкции спаиваются посредством

В этой статье мы разберем устройство упомянутого прибора, перечислим наиболее популярных производителей техники и расскажем об устранении своими руками наиболее типичной поломки. У вас также будет возможность посмотреть фото и видео по теме данного материала.

Устройство прибора

Большинство паяльных аппаратов обладают приблизительно одинаковой конструкцией. Отличия заключаются лишь в форме и способах установки специальных насадок.

Любой паяльник для полипропиленовых труб состоит из:

  • корпуса и рукоятки;
  • терморегуляторе;
  • нагревательном тэне, помещенном в кожух из металла;
  • сменных насадок, покрытых тефлоном.

По способу функционирования рассматриваемые приборы во много напоминают обычный утюг.

Некоторые специалисты так и называют эти аппараты. Функционирование прибора достаточно простое. Тэн увеличивает температуру плиты, внутри которой он находится. От нее тепло передается на насадки. Именно эти нагревательные элементы способствуют размягчению полимера до нужной консистенции.

Терморегулятор позволяет контролировать процесс нагрева. Эта деталь отвечает за поддержку необходимого температурного режима, не допуская перегрева установленных насадок. Если терморегулятор неисправен, работать прибором будет непросто. Нагревательные элементы могут сильно перегреваться. Это негативно отразится на длительности их эксплуатации. Металлическая часть плиты со временем начнет плавиться. В результате прибор станет непригодным .

Важно выбирать паяльный аппарат, оснащенный качественным терморегулятором. У дешевых моделей данный элемент работает нестабильно. Это приводит к тому, что подогрев полипропиленовых конструкций осуществляется неравномерно. Уровень температуры может быть чрезмерно высоким или, наоборот, низким.

Заметим, что для опытных специалистов такой дефект не является критичным. В то же время новички смогут эффективно выполнить задачу лишь с применением абсолютно исправного паяльника. Связано это с тем, что профессионалы интуитивно работают с прибором, и благодаря своим навыкам смогут свести к минимуму последствия использования нестабильного аппарата.

На основе выше написанного делается простой вывод - лучше применять качественную и надежную технику, чем возиться с плохо функционирующим паяльником. При этом желательно использовать аппаратуру с терморегулятором, позволяющим осуществлять плавную регулировку температурного режима.

Типичная поломка: паяльный аппарат не нагревается

Разберем реальный случай ремонта прибора RSP-2a-Pm от чешской компании Wavin ekoplastik. Проблема заключалась в следующем: аппарат грелся, но не набирал необходимый показатель температуры. При этом во время работы внутри прибора возникал звук искрящихся контактов. Аппарат интенсивно использовался в течение года.

Ремонт устройства был начат с его разборки. Дальше нужно было установить причину неисправности. Сначала была проверена плата управления. Далее, паяльник включили и определили показатель напряжения на выходе упомянутой схемы.

Выполняя проверку, не нужно дожидаться полного разогрева жала. Подобная процедура будет уместна в случае тестирования электроники. В нашем примере нужно было лишь определить причину поломки. После проверки платы необходимо было бы переходить к диагностике тэна.

Рассматриваемый экземпляр паяльного аппарата включался. Четко загорались индикаторы нагрева. Было сделано предположение о том, что проблема кроется в цепях тэна. Для точной идентификации поломки пришлось разобрать защитную решетку нагревательного элемента.

Было принято решение проверить терморегулятор, прикрученный к нагревателю. Основной задачей этого компонента является дополнительная защита. Работа прибора полностью управлялась посредством электроники. Терморегулятор был вмонтирован для того, чтобы избежать неуправляемости тэна в случае повреждения тиристора.

В случае достижения максимально допустимой температуры биметаллические контакты предохранительного устройства разомкнуться, и прекратят работу главного нагревательного компонента. В конкретном случае произошло подгорание упомянутых элементов. В результате размыкание контактов начало происходить при температуре меньше предельной. Это и было главной причиной постоянного недогрева прибора.

Для устранения этой проблемы можно было осуществить ремонт терморегулятора. Но это задача очень сложная и трудоемкая. Замена рассматриваемого элемента была неосуществимой по причине отсутствия запчастей.

В итоге ремонтником было принято решение об удалении из цепи терморегулятора и соединения ее напрямую. Для этого элемент отсоединили от контакта тэна. Затем новая, приобретенная в магазине, клемма была обжата на другом проводе, синего цвета. Для решения этой задачи допускается использования клемм в изоляции.

Старайтесь применять исключительно термоустойчивые кембрики. Они должны выдерживать режим высоких температур.

Обжатие клеммы выполняется специальными клещами. На худой конец можно использовать и плоскогубцы. Главное, чтобы процедура выполнялась качественно и надежно. После ее осуществления кабель в клемме должен быть неподвижным.

После выполнения процедуры отключения терморегулятора нужно было выполнить сборку прибора. В процессе ее осуществления было установлено повреждение фиксатора проводов. Для устранения этой поломки был использован обычный пластиковый хомут. После выполнения фиксации кабелей, лишние части пластика были обрезаны.

Далее была закончена сборка прибора. После этого аппарат был протестирован на исправность. Паяльник снова заработал как часы. Информацию из этой статьи вы сможете использовать при ремонте различных моделей паяльников.

Смотреть видео:

Собрать паяльник своими руками домашних (и не только) мастеров побуждают прежде всего экономические соображения. Простой паяльник на 220 В для обычных мелких спаечных работ лучше, конечно, купить. Однако и его возможно доработать, не разбирая, чтобы продлить жизнь жала. Но вот «топор» на 150-200 Вт, которым можно паять металлические водопроводные трубы, стоит уже не 4,25, а вдесятеро больше. И не советских рублей, а вечнозеленых условных единиц. Та же проблема возникает, если паять нужно вне доступности электросети от автомобильных 12 В или карманного литий-ионного аккумулятора. Как самостоятельно сделать паяльник на такие случаи, и не только на такие, рассматривается в сегодняшней публикации.

Что такое smd

Sub Micro Devises, сверхминиатюрные устройства. Наглядно можно увидеть smd, открыв мобильный телефон, смартфон, планшет или компьютер. По технологии smd малюсенькие (возможно, меньше среза спички) компоненты без проволочных выводов монтируются пайкой на контактные площадки, по терминологии smd называемые полигонами. Полигон может быть с тепловым барьером, предотвращающим растекание тепла по дорожкам печатной платы. Тут опасность не только и не столько в возможности отслоения дорожек – от нагрева может порваться пистон, соединяющий слои монтажа, что приведет устройство в полную негодность.

Паяльник для smd должен быть не только микромощным, до 10 Вт. Запас тепла в его жале не должен превышать того, который может выдержать паяемая деталь. Но долгая пайка слишком холодным паяльником еще более опасна: припой все не плавится, но деталюшка-то греется. А на режим пайки существенно влияет наружная температура, и тем больше, чем меньше мощность паяльника. Поэтому паяльники для smd выполняются либо с ограничением времени и/или величины теплоотдачи при пайке, либо в оперативной, на протяжении текущей технологической операции, регулировкой температуры жала. Причем держать ее нужно на 30-40 градусов выше температуры плавления припоя с точностью буквально до 5-10 градусов; это т. наз. допустимый температурный гистерезис жала. Этому очень мешает тепловая инерция самого паяльника, и основная задача при конструировании такового – добиться его возможно меньшей постоянной времени по теплу, см. далее.

Сделать паяльник в домашних условиях возможно для любой из указанных целей. В т.ч. и мощный для пайки стального либо медного водопровода, и достаточно точный мини для smd.

Примечание: вообще-то в паяльнике жало это рабочая (залуживаемая) часть его стержня. Но, поскольку стержни бывают и другие разные, будем для ясности считать весь стержень жалом. Если рабочая часть паяльника насаживается на стержень, она называется наконечником. Примем, что наконечник со стержнем это тоже жало.

Самый простой

Пока не будем вдаваться в сложности. Допустим, нам нужен обычный паяльник на 220В без затей. Идем выбирать и видим, разница в ценах достигает 10 и более раз. Разбираемся – почему. Первое: нагреватель, нихромовый или керамический. Последний (не «альтернативный»!) практически вечен, но, если паяльник уронить на твердый пол, может расколоться. Жало паяльников на керамике обязательно несменное – значит, надо покупать новый. А нихромовый нагреватель, если паяльник не забывать включенным на ночь, служит более 10 лет; при эпизодическом пользовании – свыше 20. И в крайнем случае его можно перемотать.

Разница в цене сократилась теперь до 3-4 раз, в чем еще дело? В жале. Никелированное из меди со специальными присадками мало растворяется припоем и очень медленно пригорает в обойме паяльника, но стоит дорого. Латунное или бронзовое хуже греется, и паять им smd нельзя – температурный гистерезис никак не удается вогнать в норму вследствие много худшей, чем у меди, теплопроводности материала. Красномедное жало и съедается припоем, и довольно быстро распухает от окиси меди, но зато дешевле.

Примечание: жало из электротехнической меди (отрезок обмоточного провода) для обычного паяльника непригодно – быстро растворяется и обгорает. Однако для smd такое жало самое то, его теплопроводность максимально возможная, а тепловая инерция и гистерезис минимальны. Правда, менять его придется часто, но жало-то со спичку или меньше.

С обгоранием и распуханием красномедного жала можно бороться просто аккуратностью: окончив работу и дав паяльнику остыть, жало вынимают, обколачивают от окисла, постукивая о край стола, а канал обоймы паяльника продувают. С растворением припоем хуже: часто подтачивать жало неудобно и оно быстро срабатывается.

Сделать жало для паяльника из обычной красной меди в разы более стойким к действию расплавленного припоя можно, не заточив его рабочий конец, а проковав до нужной формы. Холодная медь отлично куется обычным слесарным молотком на наковальне настольных тисков. У автора этой статьи в древнем советском ЭПЦН-25 кованое жало сидит уже более 20 лет, хотя в работе этот паяльник бывает если не каждый день, то уж точно каждую неделю.

Простой из резистора

Расчет

Самый простой паяльник можно сделать из проволочного резистора, это готовый нихромовый нагреватель. Рассчитать его также несложно: при рассеивании номинальной мощности в свободном пространстве проволочные резисторы греются до 210-250 градусов. С теплоотводом в виде жала «проволочник» держит долговременную перегрузку по мощности в 1,5-2 раза; температура жала при этом будет не ниже 300 градусов. Ее можно повысить до 400, дав перегрузку по мощности в 2,5-3 раза, но тогда после 1-1,5 час работы паяльнику нужно будет давать остыть.

Рассчитывают необходимое сопротивление резистора по формуле: R = (U^2)/(kP), где:

R – искомое сопротивление;

U – рабочее напряжение;

P – требуемая мощность;

k – указанный выше коэффициент перегрузки по мощности.

Напр., нужен паяльник на 220 В 100 Вт для пайки медных труб. Теплоотдача большая, поэтому берем k = 3. 220^2 = 48400. kP = 3*100 = 300. R = 48400/300 = 161,3… Ом. Берем резистор на 100 Вт 150 или 180 Ом, т.к. «проволочников» на 160 Ом не бывает, этот номинал из ряда на 5% допуск, а «проволочники» не точнее 10%.

Обратный случай: есть резистор на мощность p, какой мощности из него можно сделать паяльник? От какого напряжения его запитывать? Вспоминаем: P = U^2/R. Берем P = 2 p. U^2 = PR. Берем из этой величины квадратный корень, получаем рабочее напряжение. Напр., есть резистор 15 Вт 10 Ом. Мощность паяльника выходит до 30 Вт. Берем квадратный корень из 300 (30 Вт*10 Ом), получаем 17 В. От 12 В такой паяльник разовьет 14,4 Вт, можно паять мелочь легкоплавким припоем. От 24 В. От 24 В – 57,6 Вт. Перегрузка по мощности почти в 6 раз, но изредка и недолго спаять этим паяльником что-то большое возможно.

Изготовление

Как сделать паяльник из резистора, показано на рис. выше:

  • Подбираем подходящий резистор (поз. 1, см. также далее).
  • Готовим детали жала и крепеж к нему. Под кольцевую пружину надфилем выбирается канавка на стержне. Под болт (винт) и наконечник делаются резьбовые глухие отверстия, поз. 2.
  • Собираем стержень с наконечником в жало, поз.3.
  • Закрепляем жало в резисторе-нагревателе болтом (винтом) с широкой шайбой, поз. 4.
  • Крепим нагреватель с жалом к подходящей рукоятке любым удобным способом, поз. 5-7. Одно условие: термостойкость рукоятки не ниже 140 градусов, до такой температуры могут нагреваться выводы резистора.

Тонкости и нюансы

Описанный выше паяльник из резисторов на 5-20 Вт делали многие (в т.ч. и автор во дни пионерской молодости) и, попробовав, убеждались – работать им всерьез нельзя. Греется невыносимо долго, и паяет только мелочь тычком – слой керамики мешает теплопередаче от нихромовой спирали в жало. Именно поэтому нагреватели фабричных паяльников мотаются на слюдяные оправки – теплопроводность слюды на порядки выше. К сожалению, свернуть слюду в трубочку дома невозможно, да и мотать нихром 0,02-0,2 мм дело тоже не для каждого.

Но вот с паяльниками от 100 Вт (резисторы от 35-50 Вт) дело другое. Тепловой барьер из керамики в них относительно тоньше, слева на рис., а запас тепла в массивном жале на порядок больше, т.к. его объем растет по кубу размеров. Качественно пропаять стык медных труб 1/2″ 200 Вт паяльником из резистора вполне возможно. Особенно, если жало не сборное, а цельное кованое.

Примечание: проволочные резисторы выпускаются на мощность рассеяния до 160 Вт.

Только для паяльника надо искать резисторы старых типов ПЭ или ПЭВ (в центре на рис., в производстве до сих пор). Их изоляция остеклованная, выдерживает многократный нагрев до светло-красного без потери свойств, только темнеет, остывая. Керамика внутри чистая. А вот резисторы С5-35В (справа на рис.) крашеные, внутри тоже. Снять краску в канале полностью невозможно – керамика пористая. При нагреве краска обугливается и жало прикипает намертво.

Регулятор для паяльника

Пример с низковольтным паяльником из резистора приведен выше не зря. Резистор ПЭ (ПЭВ) из хлама или с железного базара чаще всего оказывается неподходящего номинала под наличное напряжение. В таком случае нужно делать регулятор мощности для паяльника. В наши дни это гораздо проще даже людям, имеющим об электронике самое смутное представление. Идеальный вариант – купить у китайцев (ну, Али Экспресс, а то как же) готовый универсальный регулятор напряжения и тока TC43200, см. рис. справа; стоит он недорого. Допустимое входное напряжение 5-36 В; выходное – 3-27 В при токе до 5 А. Напряжение и ток выставляются отдельно. Поэтому можно не только выставить нужное напряжение, но и регулировать мощность паяльника. Есть, напр., инструмент на 12 В 60 Вт, а сейчас нужно 25 Вт. Выставляем ток в 2,1 А, на паяльник пойдет 25,2 Вт и ни милливаттом больше.

Примечание: для использования с паяльником штатные многооборотные регуляторы TC43200 лучше заменить обычными потенциометрами с градуированными шкалами.

Импульсные

Многие предпочитают импульсные паяльники: они лучше подходят для микросхем и др. мелкой электроники (кроме smd, но см. и далее). В ждущем режиме жало импульсного паяльника или холодное, или немного подогревается. Паяют, нажав на кнопку пуска. Жало при этом быстро, за доли-единицы с, греется до рабочей температуры. Контролировать пайку очень удобно: растекся припой, выдавил из капли флюс – отпустил кнопку, жало так же быстро остыло. Нужно только успеть его убрать, чтобы не припаялось туда же. Опасность сжечь компонент, имея некоторый опыт, минимальна.

Типы и схемы

Импульсный разогрев жала паяльника возможен несколькими способами в зависимости от рода работы и требований к эргономике рабочего места. В любительских условиях, или мелкому ИП-одиночке импульсный паяльник удобнее и доступнее будет сделать по одной из след. схем:

  1. С токоведущим жалом под током промышленной частоты;
  2. С изолированным жалом и форсированным его разогревом;
  3. С токоведущим жалом под током высокой частоты.

Электрические принципиальные схемы импульсных паяльников указанных типов приведены на рис: поз. 1 – с токоведущим жалом промышленной частоты; поз. 2 – с форсированным подогревом изолированного жала; поз. 3 и 4 – с токоведущим жалом высокой частоты. Далее мы разберем их особенности, достоинства, недостатки и способы реализации в домашних условиях.

50/60 Гц

Схема импульсного паяльника с жалом под током промышленной частоты наиболее проста, но это не единственное ее достоинство, и не главное. Потенциал на жале такого паяльника не превышает долей вольта, поэтому он безопасен для самых нежных микросхем. Пока не появились индукционные паяльники системы METCAL (см. далее), именно импульсниками промышленной частоты работала значительная часть монтажников на производстве электроники. Недостатки – громозкость, значительный вес и, как следствие, плохая эргономика: на смене длинее 4 час. работники уставали и начинали ошибаться. Но в любительском обиходе импульсных паяльников промышленной частоты до сих пор много: Зубр, Сигма (Sigma), Светозар и др.

Устройство импульсного паяльника на 50/60 Гц показано на поз. 1 и 2 рис. Видимо, ради экономии на издержках производства изготовители чаще всего применяют в них трансформаторы на сердечниках (магнитопроводах) типа П (поз 2), но это далеко не оптимальный вариант: чтобы паяльник паял как ЭПЦН-25, мощность трансформатора нужна 60-65 Вт. Вследствие большого поля рассеяния трансформатор на П-сердечнике в режиме КЗ сильно греется, а время разогрева жала доходит до 2-4 с.

Если П-сердечник заменить на ШЛ от 40 Вт с вторичной обмоткой из медной шины (поз. 3 и 4), то паяльник выдерживает часовую работу с интенсивностью 7-8 паек в минуту без недопустимого перегрева. Для работы в режиме периодических кратковременных КЗ число витков первичной обмотки увеличивают на 10-15% против расчетного. Данное исполнение выгодно и тем, что жало (медная проволока диаметром 1,2-2 мм) можно крепить непосредственно к выводам вторичной обмотки (поз. 5). Поскольку ее напряжение доли вольта, это еще увеличивает экономичность паяльника и удлиняет время его работы до перегрева.

С форсированным подогревом

Схема паяльника с форсированным подогревом особых пояснений не требует. В дежурном режиме нагреватель работает на четверти номинальной мощности, а при нажатии на пуск в него выбрасывается накопленная в батарее конденсаторов энергия. Отключая/подключая к батарее емкости, можно довольно грубо, но в допустимых пределах дозировать количество выделяемого жалом тепла. Достоинство – полное отсутствие наведенного потенциала на жале, если оно заземлено. Недостаток – на имеющихся в широкой продаже конденсаторах схема реализуема лишь для резисторных мини-паяльников, см. далее. Применяется в основном для эпизодических работ на не насыщенных компонентами платах гибридной сборки, smd + обычный печатный монтаж в сквозные пистоны.

На высокой частоте

Импульсные паяльники на повышенной или высокой частоте (десятки или сотни кГц) весьма экономичны: тепловая мощность на жале почти равна паспортной электрической инвертора (см. ниже). Также они компактны и легки, а их инверторы пригодны для питания резисторных мини-паяльников постоянного нагрева с изолированным жалом, см. далее. Нагрев жала до рабочей температуры – за доли с. В качестве регулятора мощности без доработок применим любой тиристорный регулятор напряжения 220 В. Могут быть запитаны постоянным напряжением 220 В.

Примечание: на мощность свыше ок. 50 Вт ВЧ импульсный паяльник делать не стоит. Хотя, напр. компьютерные ИПБ бывают мощностью до 350 Вт и более, но жало на такую мощность сделать практически невозможно – или не прогреется до рабочей температуры, или само расплавится.

Серьезный недостаток – на рабочих частотах сказывается влияние собственной индуктивности жала и вторичной обмотки. Из-за этого на жале на время более 1 мс может возникать наведенный потенциал свыше 50 В, что опасно для компонент КМОП (КМДП, CMOS). Также существенный недостаток – оператор облучается потоком мощности электромагнитного поля (ЭМП). Работать импульсным ВЧ паяльником мощностью 25-50 Вт можно не более часа в день, а до 25 Вт – не более 4-х час, но не более 1,5 час кряду.

Самый простой способ схемной реализации инвертора импульсного ВЧ паяльника на 25-30 Вт для обычных спаечных работ – на основе сетевого адаптера галогеновой лампы на 12 вольт, см. поз. 3 рис. со схемами. Трансформатор можно намотать на сердечнике из 2-х сложенных вместе колец К24х12х6 из феррита с магнитной проницаемостью μ не ниже 2000, или на Ш-образном магнитопроводе из такого же феррита сечением не менее 0,7 кв. см. Обмотка 1 – 250-260 витков эмалированного провода диаметром 0,35-0,5 мм, обмотки 2 и 3 – по 5-6 витков такого же провода. Обмотка 4 – 2 витка в параллель провода диаметром от 2 мм (на кольце) или оплетки от телевизионного коаксиального кабеля (поз. 3а), также запараллеленных.

Примечание: если паяльник более чем на 15 Вт, то транзисторы MJE13003 лучше заменить на MJE130nn, где nn>03, и поставить из на радиаторы площадью от 20 кв. см.

Вариант инвертора для паяльника до 16 Вт может быть выполнен на базе импульсного пускового устройства (ИПУ) для ЛДС или начинки перегоревшей лампочки-экономки соотв. мощности (не бейте колбу, там пары ртути!) Доработку иллюстрирует поз. 4 на рис. со схемами. То, что выделено зеленым, может быть различно в ИПУ разных моделей, но нам оно все равно. Нам нужно удалить пусковые элементы лампы (выделено красным на поз. 4а) и замкнуть накоротко точки А-А. Получим схему поз. 4б. В ней параллельно фазосдвигающему дросселю L5 подключается трансформатор на одном таком же кольце, как в пред. случае или на Ш-образном феррите от 0,5 кв. см (поз. 4в). Первичная обмотка – 120 витков провода диаметром 0,4-0,7; вторичная – 2 витка провода D>2 мм. Жало (поз. 4г) из такого же провода. Готовое устройство компактно (поз. 4д) и может быть помещено в удобный корпус.

Мини и микро на резисторах

Паяльник с нагревательным элементом на основе металлопленочного резистора МЛТ конструктивно аналогичен паяльнику из проволочного резистора, но выполняется на мощность до 10-12 Вт. Резистор работает с перегрузкой по мощности в 6-12 раз, т.к., во-первых, теплоотвод через относительно толстое (но абсолютно более тонкое) жало больше. Во-вторых, резисторы МЛТ физически в разы меньше ПЭ и ПЭВ. Отношение их поверхности к объему соотв. увеличивается и теплоотдача в окружающую среду относительно растет. Поэтому паяльники на резисторах МЛТ делаются только в вариантах мини и микро: при попытке увеличить мощность маленький резистор сгорает. Хотя МЛТ для спецприменения выпускаются на мощность до 10 Вт, своими силами реально сделать только паяльник на МЛТ-2 для мелких дискретных компонент (россыпи) и небольших микросхем, см. напр. видео ниже:

Видео: микро-паяльник на резисторах

Примечание: цепочка резисторов МЛТ может быть также использована в качестве нагревателя автономного аккумуляторного паяльника для обычных спаечных работ, см. след. ролик:

Видео: аккумуляторный мини-паяльник

Гораздо интереснее сделать мини паяльник из резистора МЛТ-0,5 для smd. Керамическая трубочка – корпус МЛТ-0,5 – очень тонкая и почти не препятствует теплопередаче на жало, но не пропустит тепловой импульс в момент касания полигона, отчего частенько сгорают компоненты smd. Подобрав жало (что требует довольно значительного опыта), smd таким паяльником можно не спеша паять, непрерывно контролируя в микроскоп процесс.

Процесс изготовления такого паяльника показан на рис. Мощность – 6 Вт. Нагрев либо непрерывный от инвертора из описанных выше, либо (лучше) с форсироваанным подогревом постоянным током от ИП на 12 В.

Примечание: как сделать усовершенствованный вариант такого паяльника с более широким диапазоном применения, подробно описано здесь — oldoctober.com/ru/soldering_iron/

Индукционные

Индукционный паяльник на сегодняшний день вершина технических достижений в области пайки металлов эвтектическими припоями. В сущности, паяльник с индукционным нагревом это миниатюрная индукционная печь: ВЧ ЭМП катушки-индуктора поглощается металлом жала, которое при этом греется вихревыми токами Фуко. Изготовить своими руками индукционный паяльник не так уж сложно, если есть в распоряжении источник токов ВЧ, напр. компьютерный импульсный блок питания, см. напр. сюжет

Видео: индукционный паяльник


Однако качественно-экономические показатели индукционных паяльников для обычных спаечных работ невысоки, чего не скажешь об их вредном влиянии на здоровье. Фактически единственное их преимущество – прикипевшее к обойме в корпусе жало можно выдирать, на опасаясь порвать нагреватель.

Гораздо больший интерес представляют индукционные мини-паяльники системы METCAL. Их внедрение на производстве электроники позволило уменьшить процент брака из-за ошибок монтажников в 10000 раз (!) и удлинить рабочую смену до нормальной, причем работники расходились после нее бодрыми и дееспособными во всех прочих отношениях.

Устройство паяльника типа METCAL показано слева вверху на рис. Изюминка – в ферроникелевом покрытии жала. Паяльник питается ВЧ точно выдержанной частоты 470 кГц. Толщина покрытия выбрана такой, что на данной частоте вследствие поверхностного эффекта (скин-эффекта) токи Фуко сосредотачивались только в покрытии, которое сильно греется и передает тепло в жало. Самое жало оказывается заэкранированным от ЭМП и наведенные потенциалы на нем не возникают.

Когда покрытие прогреется до точки Кюри, выше которой по температуре ферромагнитные свойства покрытия исчезают, оно поглощает энергию ЭМП гораздо слабее, но ВЧ в медь все равно не пускает, т.к. электрическую проводимость сохраняет. Остыв ниже точки Кюри само по себе или вследствие оттока тепла на пайку, покрытие вновь начинает интенсивно поглощать ЭМП и подогревает жало. Таким образом, жало держит температуру, равную точке Кюри покрытия с точностью буквально до градуса. Тепловой гистерезис жала при этом ничтожен, т.к. определяется тепловой инерцией тонкого покрытия.

Во избежание вредного влияния на людей паяльники выпускаются с несменными жалами, наглухо закрепленными в картридже коаксиальной конструкции, по которому и подводится к катушке ВЧ. Картридж вставляется в ручку паяльника – держатель с коаксиальным разъемом. Картриджи выпускаются типов 500, 600 и 700, что соответствует точке Кюри покрытия в градусах Фаренгейта (260, 315 и 370 градусов Цельсия). Основной рабочий картридж – 600; 500-м паяют особо мелкие smd, а 700-м крупные smd и россыпь.

Примечание: чтобы перевести градусы Фаренгейта в Цельсия, нужно от фаренгейтов отнять 32, умножить остаток на 5 и поделить на 9. Если надо наоборот, к цельсиям добавляем 32, результат множим на 9 и делим на 5.

Все замечательно в паяльниках METCAL, кроме цены картриджа: за «(название фирмы) новый, хороший» — от $40. «Альтернативные» в полтора раза дешевле, но вырабатываются вдвое быстрее. Сделать самому жало METCAL нереально: покрытие наносится напылением в вакууме; гальваническое при температуре Кюри мгновенно отслаивается. Посаженная на медь тонкостенная трубка не обеспечит абсолютного теплового контакта, без чего METCAL превращается просто в плохой паяльник. Тем не менее, сделать самому почти полный аналог паяльника METCAL, причем со сменным жалом, хоть и трудно, но возможно.

Индукционный для smd

Устройство самодельного индукционного паяльника для микросхем и smd, по рабочим качествам аналогичного METCAL, показано справа на рис. Когда-то похожие паяльники применялись на спецпроизводстве, но METCAL их полностью вытеснили благодаря лучшей технологичности и большей рентабельности. Однако для себя такой паяльник сделать можно.

Его секрет – в соотношении плеч наружной части жала и выступающего из катушки внутрь хвостовика. Если оно такое, как показано на рис. (приблизительно), а хвостовик покрыт теплоизоляцией, то тепловой фокус жала не выйдет за пределы обмотки. Хвостовик будет, конечно, горячее кончика жала, но их температуры будут меняться синхронно (теоретически термогистерезис нулевой). Раз настроив автоматику с помощью дополнительной термопары, измеряющей температуру кончика жала, дальше можно паять спокойно.

Роль точки Кюри играет таймер. Сигналом от терморегулятора на подогрев он обнуляется, напр., открыванием ключа, шунтирующего накопительную емкость. Запускается таймер сигналом, свидетельствующим о фактическом начале работы инвертора: напряжение с дополнительной обмотки трансформатора из 1-2 витков выпрямляется и разблокирует таймер. Если паяльником долго не паяют, таймер спустя 7 с выключит инвертор, пока жало не остынет и терморегулятор не выдаст новый сигнал на подогрев. Суть здесь в том, что термогистерезис жала пропорционален отношению времен выключенного и включенного нагрева жала O/I, а средняя мощность на жале обратному I/O. До градуса такая система температуру жала не держит, но +/–25 Цельсия при рабочей жала 330 обеспечивает.

В заключение

Так какой же паяльник делать? Мощный из проволочного резистора однозначно стоит: расходов на него всего ничего, есть не просит, а выручить может основательно.

Стоит также сделать, чтобы был на хозяйстве, простой паяльник для smd из резистора МЛТ. Кремниевая электроника выдохлась, она в тупике. Квантовая уже на подходе, и вдали явственно замаячила графеновая. Напрямую с нами та и другая не сопрягаются, как компьютер через экран, мышку и клавиатуру или смартик/планшетка через экран и сенсоры. Поэтому кремниевое обрамление в устройствах будущего останется, но исключительно smd, а теперешняя россыпь покажется чем-то вроде радиоламп. И не думайте, что это фантастика: всего 30-40 лет тому назад ни один фантаст до смартфона не додумался. Хотя первые образцы мобильников тогда уже были. А утюг или пылесос «с мозгами» тогдашним мечтателям и в дурном сне в голову не пришли бы.

(1 оценок, среднее: 5,00 из 5)

Устройство паяльника позволяет осуществлять скрепление металлических компонентов при помощи использования припоя. Припой представляет собой металл или сплав, который имеет показатель температуры плавления ниже, нежели у металлов, соединяемых между собой при помощи припоя. Для проведения пайки используются сплавы, изготовленные на основе олова, помимо этого в состав сплава входят свинец, медь, никель и некоторые другие металлы. Разогреваемый до температуры плавления сплав заполняет зазоры между заготовками, а после застывания сплав скрепляет спаиваемые детали.

С помощью паяльника можно скреплять металлические детали.

Разновидности оборудования для пайки

Существует несколько различных видов инструмента для осуществления процесса пайки. Наиболее распространенными разновидностями приборов являются следующие:

  • инструменты, оснащенные нихромовым нагревателем;
  • инструмент с керамическим нагревателем;
  • приборы с индукционным нагревателем;
  • инструмент с импульсным нагревателем;
  • газовые инструменты;
  • устройства с аккумуляторным питанием;
  • термовоздушные и инфракрасные паяльные установки.

Паяльник с керамическим нагревателем имеет более быстрый нагрев.

Приборы с нагревателями, изготовленными из нихромовой проволоки, работают при пропускании переменного или постоянного тока. Этот тип паяльников, как правило, не имеет регуляторов нагрева. Исключение составляют небольшое количество моделей оснащаемых датчиками для контроля нагрева. В качестве температурного датчика применяется термопара.

Инструмент с керамическим нагревателем отличается тем, что нагрев осуществляется за счет подачи электропитания на контакты нагревателя, изготовленного из токопроводящей спецкерамики. Такие устройства являются более современными и обладают рядом преимуществ, основные среди которых — скорость нагрева рабочего элемента устройства и длительный срок эксплуатации. Помимо этого приспособления, имеющие керамический нагревательный элемент, оснащаются регуляторами температуры и мощности, которые имеют широкий спектр регулировки

Индукционные приспособления отличаются тем, что для разогрева инструмента применяется катушка индуктора. Наконечник устройства имеет ферромагнитное покрытие, в котором катушка создает магнитное поле с наведенным током. Нагрев наконечника осуществляется за счет действия наведенных в магнитном поле токов. При помощи изменения свойств ферромагнитного покрытия регулируется степень нагревания наконечника прибора.

Импульсные паяльники представляют собой категорию инструмента, разогрев жала которого происходит посредством воздействия на него короткого импульса тока, после нажатия кнопки пуск. Эти приборы отличаются особо быстрым нагревом наконечника инструмента.

Термовоздушные и инфракрасные станции для пайки являются специфическим оборудованием, которое применяется в работе только специалисты.

Устройство и принцип работы паяльника

Наиболее распространенными у населения типами паяльника являются приспособления, имеющие нихромовый или керамический нагреватель.

Эти приспособления работают от электрического тока бытовой сети с напряжением 220 В. Устройства могут иметь различную мощность в зависимости от области применения.

Устройство паяльника, изготовленного различными производителями, может иметь незначительные отличия. Основными элементами конструкции любого электрического приспособления для пайки, работа которого основана на использовании нагревательного элемента, являются:

  • стержень;
  • нагревательный элемент;
  • жало;
  • держатель;
  • электрический шнур для запитки от бытовой электросети.

Стержень, изготовленный из красной меди, нагревается при помощи нагревателя изготовленного из нихромовой проволоки определенного сечения или токопроводящей спецкерамики. Если в устройстве паяльника используется нихромовый нагреватель, то диаметр проволоки, из которой он изготовлен, зависит от мощности прибора. Нагрев стержня осуществляется до температуры плавления припоя. В изготовлении стержня нагревательного элемента применяется медь благодаря ее высокой теплопроводности. Нагревательный элемент передает тепло жалу инструмента.

Стержневой конец паяльника является рабочей частью инструмента, как правило, конец стержня имеет клиновидную форму. По этой причине этот конец стержня получил название жало.

Стержень паяльника закрепляется в металлической трубке. Для обеспечения его изоляции от нагревательного элемента вставляемый конец обматывается в изолирующий материал. Таким материалом, используемым в устройстве паяльника, может быть стеклоткань или слюда. Нихромовая нить наматывается поверх токоизолирующего материала.

Держатель паяльника имеет в своей конструкции канал, по которому проходит сетевой шнур, подающий напряжение на нагревательный инструмент. Держатель паяльника изготавливаться может из дерева или термостойкой пластмассы.

Наиболее распространенные поломки приспособления для пайки

Перед тем как начинать ремонт паяльника определяется вид неисправности прибора.

Наиболее распространенной неисправностью встречающейся при использовании инструмента, оснащенного нихромовым или керамическим нагревательным элементом, является отсутствие нагрева медного стержня прибора. Причин возникновения такой неисправности может быть несколько. Отсутствие нагрева медного стержня может быть обусловлено:

  • выходом из строя электрической вилки прибора;
  • выходом из строя сетевого кабеля, обеспечивающего подачу электроэнергии к устройству;
  • нарушением контакта между сетевым кабелем прибора и его нагревательным элементом;
  • выходом из строя нагревательного элемента, обеспечивающего нагрев медного стержня паяльника.

Для того чтобы починить устройство для пайки потребуется наличие под рукой обычного бытового ампервольметра, который позволит определить вид неисправности, возникшей в устройстве паяльника.

При выявлении поломки вилки сетевого шнура придется произвести ее замену. Чаще всего производители оснащают приборы, предназначенные для проведения пайки, вилками электрическими цельнолитыми пластмассовыми, которые не подлежат ремонту, так как являются неразборными. Для замены такой вилки следует ее обрезать от сетевого шнура и на ее месте установить новую разборную конструкцию.

Для выявления выхода из строя сетевого шнура следует его целостность при помощи ампервольтметра, В случае нарушения целостности токоведущего элемента шнура, такой сетевой шнур подлежит замене.

Если работа прибора связана с нарушением контакта между нагревательным элементом и сетевым шнуром, то следует разобрать паяльник и восстановить его работоспособность путем восстановления электроконтакта между этими конструктивными элементами устройства.

В случае выхода из строя нагревательного элемента прибора, он подлежит замене. Неисправность нагревательного элемента можно выявить двумя способами: при помощи использования ампервольтметра и опытным путем при исключении всех остальных типов поломок устройства.

Выбор типа паяльника для работ по пайке изделий

Выбор типа инструмента зависит полностью от его мощностных и температурных характеристик и определяется условиями эксплуатации инструмента. Помимо этого на выбор типа инструмента оказывают влияние личные пристрастия человека, который планирует работать этим инструментом. Если планируется использование прибора в условиях отсутствия электроэнергии, то следует приобретать автономные модели инструмента. Такими моделями являются приборы, работающие от аккумуляторов или газовые. Термовоздушные и инфракрасные паяльные станции следует приобретать, если планируется выполнение работ по пайке электронных плат.

Приобретение импульсного паяльника обосновано в тех случаях, когда требуется сэкономить время и нет желания ожидать пока обычных паяльник с нагревательным элементом разогреется до рабочей температуры.

Мощность приобретаемого инструмента следует подбирать в зависимости от выполняемых работ. Так, например, для выполнения работы связанной с пайкой компонентов электронных плат лучше всего подойдет инструмент имеющий мощность около 25 Вт. Более мощным инструментом следует пользоваться при проведении более объемных жестяных работ, связанных с процессом пайки.

Электрический паяльник – это ручной инструмент, предназначенный для скрепления между собой деталей посредством мягких припоев , путем разогрева припоя до жидкого состояния и заполнения ним зазора между спаиваемыми деталями.

Как видите на чертеже электрическая схема паяльника очень простая, и состоит всего из трех элементов: вилки, гибкого электропровода и нихромовой спирали.


Как видно из схемы, в паяльнике отсутствует возможность регулировки температуры нагрева жала. И даже, если мощность паяльника выбрана правильно, то все равно не факт, что температура жала будет требуемой для пайки, так как длина жала со временем уменьшается за счет постоянной его заправки, припои тоже имеют разные температуры плавления. Поэтому для поддержания оптимальной температуры жала паяльника приходится подключать его через тиристорные регуляторы мощности с ручной регулировкой и автоматическим поддержанием заданной температуры жала паяльника.

Устройство паяльника

Паяльник представляет собой стержень из красной меди, который нагревается спиралью из нихрома до температуры плавления припоя. Стержень паяльника делается из меди благодаря высокой ее теплопроводности. Ведь при пайке нужно быстро передать жалу паяльника от нагревательного элемента тепло. Конец стержня имеет клиновидную форму, является рабочей частью паяльника и называется жалом. Стержень вставляется в стальную трубку, обернутую слюдой или стеклотканью. На слюду намотана нихромовая проволока, которая служит нагревательным элементом.

Поверх нихрома намотан слой слюды или асбеста, служащий для снижения потерь тепла и электрической изоляции спирали из нихрома от металлического корпуса паяльника.


Концы нихромовой спирали соединены с медными проводниками электрического шнура с вилкой на конце. Для обеспечения надежности этого соединения концы нихромовой спирали согнуты и сложены вдвое, что снижает нагрев в месте соединения с медным проводом. В дополнение соединение обжато металлической пластинкой, лучше всего обжим делать из алюминиевой пластины, которая имеет высокую теплопроводность и будет эффективнее отводить тепло от места соединения. Для электрической изоляции на место соединения надевают трубки из термостойкого изоляционного материала, стеклоткани или слюды.


Медный стержень и нихромовая спираль закрывается металлическим корпусом, состоящим из двух половинок или сплошной трубки, как на фотографии. Корпус паяльника на трубке фиксируется накидными колечками. На трубку, для защиты руки человека от ожога, насаживается ручка из плохо провидящего тепло материала, дерева или термостойкой пластмассы.


При вставлении вилки паяльника в розетку электрический ток поступает на нихромовый нагревательный элемент, который нагревается и передает тепло медному стержню. Паяльник готов к пайке.

Маломощные транзисторы, диоды, резисторы, конденсаторы, микросхемы и тонкие провода паяют паяльником мощностью 12 Вт. Паяльники 40 и 60 Вт служат для пайки мощных и крупногабаритных радиодеталей, толстых проводов и небольших деталей. Для пайки крупных деталей, например, теплообменников газовой колонки, потребуется уже паяльник мощностью сто и более Вт.

Напряжение питания паяльников

Электрические паяльники выпускаются рассчитанные на напряжение питающей сети 12, 24, 36, 42 и 220 В, и этому есть свои причины. Главной, является безопасность человека, второй – напряжение сети в месте выполнена паяльных работ. В производстве, где все оборудование заземлено и имеется высокая влажность, разрешено использовать паяльники напряжением не более 36 В, при этом корпус паяльника должен быть обязательно заземлен. Бортовая сеть у мотоцикла имеет напряжение постоянного тока 6 В, легкового автомобиля – 12 В, грузового – 24 В. В авиации используют сеть частотой 400 Гц и напряжением 27 В.

Есть и конструктивные ограничения, например, паяльник мощностью 12 Вт сложно сделать на питающее напряжение 220 В, так как спираль потребуется мотать из очень тонкого провода и поэтому намотать много слоев, паяльник получится большим, не удобным для мелкой работы. Так как обмотка паяльника намотана из нихромовой проволоки, то питать его можно как переменным, так и постоянным напряжением. Главное чтобы напряжение питания соответствовало напряжению, на которое рассчитан паяльник.

Мощность нагрева паяльников

Мощностью электрические паяльники бывают 12, 20, 40, 60, 100 Вт и больше. И это тоже не случайно. Для того, чтобы припой при пайке хорошо растекался по поверхностям спаиваемый деталей, их нужно прогреть до температуры чуть большей, чем температура плавления припоя. При контакте с деталью тепло передается от жала к детали и температура жала падает. Если диаметр жала паяльника не достаточный или мощность нагревательного элемента мала, то отдав тепло, жало не сможет нагреться до заданной температуры, и паять будет невозможно. В лучшем случае получится рыхлая и не прочная пайка.

Более мощным паяльником можно паять маленькие детали, но возникает проблема недоступности к месту пайки. Как, например, запаять в печатную плату микросхему с шагом ножек 1,25 мм жалом паяльника размером в 5 мм? Правда есть выход, на такое жало навивают несколько витков медного провода диаметром 1мм и концом уже этого провода паяют. Но громоздкость паяльника делают работу практически не выполнимой. Есть и еще одно ограничение. При большой мощности, паяльник быстро прогреет элемент, а многие радиодетали не допускают нагрева выше 70˚С и по этому, допустимое время их пайки составляет не более 3 секунд. Это диоды, транзисторы, микросхемы.

Ремонт паяльника своими руками

Паяльник перестает нагреваться по одной из двух причин. Это в результате перетирания сетевого шнура или перегорания нагревательной спирали. Чаще всего перетирается шнур.

Проверка исправности сетевого шнура и спирали паяльника

При пайке сетевой шнур паяльника постоянно изгибается, особенно сильно в месте выхода из него и вилки. Обычно в этих местах, особенно если сетевой шнур жесткий, он и перетирается. Сначала проявляться такая неисправность недостаточным нагревом паяльника или периодическим его охлаждением. В конечном итоге, паяльник перестает нагреваться.

Поэтому перед ремонтом паяльника нужно проверить наличие питающего напряжения в розетке. Если напряжение в розетке есть, то проверить сетевой шнур. Иногда неисправность шнура можно определить, плавно перегибая его в месте выхода из вилки и паяльника. Если паяльник при этом стал чуть теплее, значит точно неисправен шнур.

Проверить исправность шнура можно подключив к штырям вилки щупы мультиметра, включенного в режим измерения сопротивления . Если при изгибании шнура показания будут изменяться, то шнур перетерся.

Если обнаружилось что, обрыв шнура находится в месте выхода из вилки, то для ремонта паяльника достаточно будет отрезать часть шнура вместе с вилкой и установить на шнур разборную .

В случае, если шнур перетерся в месте выхода из ручки паяльника или мультиметр, подключенный к штырям вилки, при изгибании шнура не показывает сопротивление, то придётся разбирать паяльник. Для получения доступа к месту присоединения спирали к проводам шнура достаточно будет снять только ручку. Далее последовательно прикоснуться щупами мультиметра к контактам и штырям вилки. Если сопротивление равно нулю, то в обрыве спираль или плохой контакт ее с проводами шнура.

Расчет и ремонт нагревательной обмотки паяльника

При ремонте или при самостоятельном изготовлении электрического паяльника или любого другого нагревательного прибора приходится мотать нагревательную обмотку из нихромовой проволоки. Исходными данными для расчета и выбора проволоки является сопротивление обмотки паяльника или нагревательного прибора, которое определяется исходя из его мощности и напряжения питания. Рассчитать, какое должно быть сопротивление обмотки паяльника или нагревательного прибора можно с помощью таблицы.

Зная напряжение питания и измеряв сопротивление любого нагревательного электроприбора, например паяльника, электрочайника , электрического обогревателя или электрического утюга , можно узнать потребляемую этим бытовым электроприбором мощность. Например, сопротивление электрочайника мощностью 1,5 кВт будет равно 32,2 Ом.

Таблица для определения сопротивления нихромовой спирали в зависимости от мощности и питающего напряжения электрических приборов, Ом
Потребляемая мощность
паяльником, Вт
Напряжение питания паяльника, В
12 24 36 127 220
12 12 48,0 108 1344 4033
24 6,0 24,0 54 672 2016
36 4,0 16,0 36 448 1344
42 3,4 13,7 31 384 1152
60 2,4 9,6 22 269 806
75 1.9 7.7 17 215 645
100 1,4 5,7 13 161 484
150 0,96 3,84 8,6 107 332
200 0,72 2,88 6,5 80,6 242
300 0,48 1,92 4,3 53,8 161
400 0,36 1,44 3,2 40,3 121
500 0,29 1,15 2,6 32,3 96,8
700 0,21 0,83 1,85 23,0 69,1
900 0,16 0,64 1,44 17,9 53,8
1000 0,14 0,57 1,30 16,1 48,4
1500 0,10 0,38 0,86 10,8 32,3
2000 0,07 0,29 0,65 8,06 24,2
2500 0,06 0,23 0,52 6,45 19,4
3000 0,05 0,19 0,43 5,38 16,1

Рассмотрим на примере как пользоваться таблицей. Допустим, требуется перемотать паяльник мощностью 60 Вт рассчитанный на напряжение питания 220 В. По самой левой колонке таблицы выбираете 60 Вт. По верхней горизонтальной строке выбираете 220 В. В результате расчета получается, что сопротивление обмотки паяльника, не зависимо от материала обмотки, должно быть равно 806 Ом.

Если Вам понадобилось сделать из паяльника мощностью 60 Вт, рассчитанного на напряжение 220 В, паяльник, для питания от сети 36 В, то сопротивление новой обмотки должно будет уже равно 22 Ом. Вы можете самостоятельно рассчитать сопротивление обмотки любого электронагревательного прибора с помощью онлайн калькулятора.

После определения требуемой величины сопротивления обмотки паяльника из ниже приведенной таблицы выбирается подходящий, исходя из геометрических размеров обмотки, диаметр нихромовой проволоки. Нихромовая проволока представляет собой хромоникелевый сплав, который выдерживает температуру нагрева до 1000˚С и маркируется Х20Н80. Это означает, что в сплаве содержится 20% хрома и 80% никеля.

Для намотки спирали паяльника имеющей сопротивление 806 Ом из примера выше, понадобится 5,75 метров нихромовой проволоки диаметром 0,1 мм (нужно поделить 806 на 140), или 25,4 м проволоки диаметром 0,2 мм, и так далее.

Замечу, что при нагреве на каждых на 100° сопротивление нихрома увеличивается на 2%. Поэтому сопротивление спирали 806 Ом из выше приведенного примера при нагреве до 320˚С увеличится до 854 Ом, что практически не повлияет на работу паяльника.

При намотке спирали паяльника витки укладываются вплотную друг к другу. При нагревании докрасна поверхность нихромовой проволоки окисляется и образует изолирующую поверхность. Если вся длина проволоки не вмещается на гильзе в один слой, то намотанный слой покрывается слюдой и мотается второй.

Для электрической и тепловой изоляции обмотки нагревательного элемента лучшими материалами является слюда, стекловолоконная ткань и асбест. Асбест обладает интересным свойством, его можно размочить водой и он делается мягким, позволяет придавать ему любую форму, а после высыхания обладает достаточной механической прочностью. При изолировании обмотки паяльника мокрым асбестом надо учесть, что мокрый асбест хорошо проводит эклектический ток и включать паяльник в электросеть можно будет только после полного высыхания асбеста.

Электрическим паяльником является ручной нагревательный прибор для фиксирования деталей из металла с помощью припоя – сплава, разогретого до жидкого состояния и имеющего температуру плавления ниже, чем у скрепляемых заготовок.

Конструкция

Эксплуатация электропаяльников предусматривает знание их конструкций, чтобы в любой неожиданный момент быстро выявить повреждение и отремонтировать прибор. Он состоит из:

  • медного стержня, обернутого в изолирующий материал и помещенного в стальную трубку;
  • нагревателя;
  • жала для непосредственного соединения металлических частей припоем;
  • ручки-держателя;
  • шнура с вилкой.

Стержень из меди является эффективным проводником тепла от нагревателя (нихромовой спирали) к жалу. Спираль накручена на стальную трубку, которая обернута слюдой или стеклотканью. Далее нихромовая обмотка закрывается изолятором (лучше всего асбестом), что предотвращает от теплопотерь и короткого замыкания.

Для уменьшения нагрева в зоне скрепления с проводниками электрошнура концы спирали согнуты пополам, и место контакта дополнено обжимающей алюминиевой пластиной. Электроизоляция обеспечена надетыми в месте скрутки изоляционными трубками.

Стержень и нагреватель размещают в корпусе паяльника, на который насаживают деревянную или термопластиковую ручку с внутренним каналом для сетевого шнура.

Функционирование

Принцип работы паяльного инструмента базируется на преобразовании электрической энергии в тепловую, которая через нагрев спирали и стержня раскаляет жало. Температура в зоне пайки достигает 400-4500С. Получившаяся вязко-жидкая смесь проникает в полости и неровности между деталями. После остывания металлы будут надежно соединены.

Дополнительная информация. В электросхеме обычно присутствует преобразователь переменного сетевого тока в постоянный.

Мощность

Рабочая мощность паяльника выбирается от 12 до 3000 Вт и определяет его технические возможности. Пайка мелких деталей выполняется прибором на 12 Вт. Это условие необходимо выполнять, так как мощному паяльнику из-за размеров жала будут недоступны места контактов крошечных радиоэлементов. Кроме того, большая мощность прибора вызывает недопустимый перегрев деталей схемы.

Для мощных радиодеталей, толстых проводов и небольших элементов требуются паяльники 40 и 60 Вт. Если выполняются работы на крупном оборудовании, то инструмент для пайки подбирается на 100 Вт и выше. При недостаточной мощности устройства пайка будет непрочной и с большим количеством пустот.

Напряжение

Для соблюдения техники безопасности паяльник подбирается по сетевому напряжению от 12 до 220 В (всего 5 значений). Так, работы в легковом транспорте можно проводить паяльным инструментом на 12 В, грузовом – 24, воздушном – 27, во влажном помещении с обязательным заземлением электрооборудования – 36 В.

Инструмент на 12 В непросто переделать на 220 В – придется наматывать тонкую спираль большим количеством слоев, создающих определенные неудобства в работе с мелкими деталями.

Обратите внимание! При соответствии мощности сети и паяльника можно работать от переменного и постоянного напряжения. Такая возможность обусловлена нихромовым материалом нагревателя.

В основном напряжение в паяльных приборах составляет 220 В. Чтобы в помещениях высокой влажности или запыленности не допустить поражение током, используют напряжение инструментов не более 42 В.

Виды

Самые популярные виды паяльников можно классифицировать по двум категориям: особенностям нагрева и типам конструкции.

По принципу нагрева выделяют паяльные приборы:

  • нихромовые;
  • керамические;
  • индукционные;
  • импульсные.

Нихромовые

Наиболее распространенное устройство паяльника – со спиральным нагревателем из нихрома, через который может проходить постоянный сетевой ток или переменный от сети и трансформатора. Такой инструмент – доступный по цене, ударопрочный. Подходит для нечастого использования.

Керамические

В паяльнике этого типа нагревателем является стержень из керамики, по которому проходит тепловая энергия от контактов под напряжением. Из достоинств отмечены: долгий срок службы при правильной эксплуатации, достаточно быстрое нагревание, наличие системы управления температурой и мощностью, компактность.

Недостатками можно назвать: хрупкость керамического стержня, использование только родного жала, высокую стоимость, риск приобретения нихромовой подделки.

Индукционные

Катушка индуктора как главная рабочая деталь паяльника создает магнитное поле и разогревает сердечник. Тепло передается наконечнику, температура которого поддерживается, благодаря ферромагнитному покрытию.

Для каждого металла и детали требуется свой нагрев, поэтому жало нужно подбирать индивидуально.

Импульсные

В схеме импульсного паяльника присутствуют: частотный преобразователь, трансформатор высокой частоты и жало. Электрический импульс возникает с ростом частоты сетевого напряжения, которое через кратчайшее время снижается до необходимого значения.

Жало присоединяется с помощью зажимов (токосъемников) к вторичной трансформаторной обмотке. Благодаря этому, при нажатии и удержании пусковой кнопки конечная часть инструмента мгновенно разогревается.

Паяльники данного вида устроены для непродолжительной пайки деталей различных размеров.

По конструкционным различиям паяльные приборы делятся на:

  • стержневые – ручка-держатель переходит в прямой стержень с жалом;
  • пистолетного типа – рукоятка и металлическая часть перпендикулярны друг другу;
  • паяльные станции – сложные устройства со встроенным электронным блоком регулировки, по технологии эксплуатации делятся на инфракрасные, термовоздушные, цифровые.

Существуют модели паяльников для детского технического моделирования – маломощные с деревянной ручкой. Компактные USB-устройства работают от автомобильного прикуривателя, а молотковые паяльники оснащены толстым жалом для крупных деталей. Аккумуляторные и газовые инструменты являются автономными приборами и работают от аккумулятора и газового баллончика, соответственно.

Инструменты для пайки могут иметь жала различной конфигурации (клиновидные, конусообразные, с фаской, игольчатые), изготовленные из меди или дополнительно с никелевым покрытием. Ручка изготавливается из материала с малой теплопроводностью: дерева, эбонита, текстолита.

Обратите внимание! Перед работой необходимо ознакомиться с правилами эксплуатации и ремонта паяльника.

Условия эксплуатации

Ремонт паяльника вряд ли потребуется, если соблюдать необходимые правила эксплуатации:

  • обеспечить на рабочем месте технику безопасности, согласно инструкции изделия;
  • учитывать величину сетевого напряжения;
  • в помещениях высокой влажности использовать устройство на 36 В (не более), предварительно его заземлив;
  • нагреватель и шнур в процессе работы должны находиться без влияния механических нагрузок;
  • не задевать шнур раскаленным наконечником;
  • не перегревать спираль паяльника;
  • выбирать режим разогрева регулятором мощности.

Важно! Правильный подбор параметров мощности не дает гарантию качества пайки.

Причины повреждений

Наиболее часто встречаются следующие причины выхода из строя паяльного инструмента:

  • повреждение вилки, шнура;
  • сбой в работе сети;
  • нарушение рабочих контактов;
  • поломка нагревателя.

Как отремонтировать

Чтобы внезапное повреждение инструмента не причинило неудобств, каждый специалист или радиолюбитель должен уверенно владеть паяльником и уметь его починить, тем более что это несложно. Необходимо наличие обычного ампервольтметра, который диагностирует вид неисправности.

Замена нагревателя на новый

В случае потери работоспособности нагревательного элемента нужно сделать следующее:

  • определить сопротивление обмотки по мощности прибора и напряжению сети;
  • подобрать диаметр нихромовой проволоки по сопротивлению на 1 метр;
  • намотать спираль, укладывая витки без зазоров, между рядами помещают слой слюды;
  • с целью удержания тепла и недопущения короткого замыкания обмотку покрывают стеклотканью, вместо которой можно использовать слюду или асбест; последний имеет преимущество создания необходимой формы и приобретения прочности после высыхания.

Обратите внимание! Наложив асбестовый изоляционный слой, нужно дождаться его высыхания и только тогда включить прибор в сеть.

Замена нагревателя на резистор

Вместо элемента нагрева можно с успехом воспользоваться резистором ПЭВ-10. Для ремонта паяльника своими руками потребуются пассатижи, хорошо поточенный нож, асбестовая нить. Чтобы заменить нагреватель, необходимо:

  • разобрать инструмент для пайки;
  • удалить отработавший нагреватель;
  • поместить резистор на освободившееся место;
  • счистить с электрошнура 1,5 см изоляционного покрытия, подвести провода питания к резистору через канал держателя; следить, чтобы уложенные провода не прикасались к корпусу; выводы заизолировать нитью асбестовой;
  • собрать инструмент и убедиться в его работоспособности.

Если поврежден сетевой шнур, то его следует заменить. Вышедшая из строя вилка электрошнура также подлежит замене. При этом отрезают сломанную вилку (обычно целиковую) и вместо нее устанавливают разборную.

Легко устраняется нарушенный контакт нагревателя с сетевым шнуром. Для этого нужно разобрать паяльник и восстановить соединение контактов.

При бережной работе с паяльником он долго не будет требовать ремонта. Если все-таки повреждение случилось, устранить его довольно просто: нужно знать схему устройства (она элементарная), основные правила электротехники и безопасности.

Видео

error: