Теплоемкость кирпича и воды. Удельная теплоемкость производимого кирпича

Физические величины имеют высокую значимость при выборе материала для строительства здания.

Рассмотрим основные показатели, используемые в строительстве, например, чтобы разобраться, что такое удельная теплоемкость кирпича, необходимо выяснить, что представляет собой данная физическая величина.

  • Теплоемкость . По сути, удельная теплоёмкость определяется количеством тепла, требуемого для нагрева одного килограмма вещества на один градус Цельсия (на один Кельвин).
  • Теплопроводность .Не менее важным физическим показателем кирпичного сооружения является способность передачи тепла при разных температурах снаружи и внутри здания, называемая коэффициентом теплопроводности. Этот параметр выражает, какое количество тепла, теряется за 1 метр толщины стены при различии температуры на 1 градус между наружной и внутренней областью.
  • Теплопередача . Коэффициент теплопередачи кирпичной стены будет во многом зависеть от того, какой вид материала для кирпичной кладки вы выберете. Чтобы определить данный коэффициент для многослойной стены, требуется знать этот параметр для каждого слоя в отдельности. Затем складываются все величины, так как суммарный коэффициент термосопротивления является суммой сопротивлений всех слоев, входящих в стену.

Обратите внимание!
Полнотелые кирпичи обладают довольно высоким коэффициентом теплопроводности и поэтому гораздо более экономично применение пустотелого вида.
Это происходит из-за того, что воздух в пустотах обладает более низкой теплопроводностью, а значит, стены сооружения будут значительно тоньше.

  • Сопротивление теплопередаче . Сопротивление теплопередаче кирпичной стены определяется как отношение разности температур на краях строительной конструкции к количеству тепла проходящего через него. Данный параметр используется для отражения свойств материалов и выражается отношением плотности материала к его теплопроводности.
  • Теплотехническая однородность . Коэффициент теплотехнической однородности кирпичной стены это параметр равный обратному отношению потока тепла через стену к количеству тепла, проходящего через условное ограждающее сооружение равное по площади стене.

Обратите внимание!
Инструкция о том, как рассчитать данный параметр, довольно сложна, поэтому этим лучше заниматься компаниям, имеющим опыт и соответствующие приборы для определения тех или иных показателей.


По сути, коэффициент теплотехнической однородности для кирпичной кладки выражает, сколько и какую интенсивность имеют «мостики холода» в данной ограждающей конструкции. В большинстве случаев данная величина колеблется в пределах 0,6-0,99, причём за единицу берется полностью однородная стена, не имеющая теплопроводных изъянов.

Виды кирпича

Для того чтобы ответить на вопрос: «как построить теплый дом из кирпича?», нужно выяснить какой лучше всего использовать его вид. Так как современный рынок предлагает огромный выбор данного строительного материала. Рассмотрим наиболее распространенные виды.

Силикатный

Наиболее высокую популярность и широкое распространение в строительстве на территории России имеют силикатные кирпичи. Данный вид изготавливается путем смешения извести и песка. Высокую распространённость этот материал получил благодаря широкой области применения в быту, а также из-за того, что цена на него довольно не высока.

Однако если обратиться к физическим величинам этого изделия, то тут не все так гладко.

Рассмотрим двойной силикатный кирпич М 150. Марка М 150 говорит о высокой прочности, так что он даже приближается к природному камню. Размеры составляют 250х120х138 мм.

Теплопроводность данного типа в среднем составляет 0,7 Вт/(м о С). Это достаточно низкий показатель, по сравнению с другими материалами. Поэтому теплые стены из кирпича такого типа скорей всего не получатся.


Немаловажным достоинством такого кирпича по сравнению с керамическим, являются звукоизоляционные свойства, которые очень благоприятно сказываются на строительстве стен ограждающих квартиры или разделяющих комнаты.

Керамический

Второе место по популярности строительных кирпичей обоснованно отдано керамическим. Для их производства различные смеси глин подвергают обжигу.

Данный вид делится на два типа:

  1. Строительный,
  2. Облицовочный.

Строительный кирпич используется для возведения фундаментов, стен домов, печей и т.д., а облицовочный для отделки зданий и помещений. Такой материал больше подходит для строительства своими руками, так как он значительно легче силикатного.

Теплопроводность керамического блока определяется коэффициентом теплопроводности и численно равна:

  • Полнотелый – 0,6 Вт/м* о С;
  • Пустотелый кирпич — 0,5 Вт/м* о С;
  • Щелевой – 0,38 Вт/м* о С.

Средняя теплоемкость кирпича составляет около 0,92 кДж.

Теплая керамика

Теплый кирпич — относительно новый строительный материал. В принципе, он является усовершенствованием обычного керамического блока.

Данный вид изделия значительно больше обычного, его размеры могут быть в 14 раз больше стандартных. Но это не очень сильно сказывается на общей массе конструкции.

Теплоизоляционные свойства практически в 2 раза лучше, по сравнению с керамическим кирпичом. Коэффициент теплопроводности приблизительно равен 0,15 Вт/м* о С.


Блок теплой керамики имеет много мелких пустот в виде вертикальных каналов. А как говорилось выше, чем больше воздуха в материале, тем выше теплоизоляционные свойства данного строй-материала. Теплопотери могут возникать в основном на внутренних перегородках или же в швах кладки.

Резюме

Надеемся, наша статья поможет вам разобраться в большом количестве физических параметров кирпича и выбрать для себя наиболее подходящий вариант по всем показателям! А видео в этой статье предоставит дополнительную информацию по этой теме, смотрите.

klademkirpich.ru

Керамический

Исходя из технологии производства, кирпич классифицируется на керамическую и силикатную группы. При этом оба вида имеют значительные отличия по плотности материала, удельной теплоемкости и коэффициенту теплопроводности. Сырьем для изготовления керамического кирпича, еще его называют красным, выступает глина, в которую добавляют ряд компонентов. Сформированные сырые заготовки подвергаются обжигу в специальных печах. Показатель удельной теплоемкости может колебаться в пределах 0,7-0,9 кДж/(кг·K). Что касается средней плотности, то она обычно находится на уровне 1400 кг/м3.


Среди сильных сторон керамического кирпича можно выделить:

1. Гладкость поверхность. Это повышает его внешнюю эстетичность и удобство укладки.
2. Стойкость к морозу и влаге. В обычных условиях стены не нуждаются в дополнительной влаго- и термоизоляции.
3. Способность переносить высокие температуры. Это позволяет использовать керамический кирпич для возведения печей, мангалов, жаропрочных перегородок.
4. Плотность 700-2100 кг/м3. На эту характеристику непосредственно влияет наличие внутренних пор. По мере увеличения пористости материала уменьшается его плотность, и возрастают теплоизоляционные характеристики.

Силикатный

Что касается силикатного кирпича, то он бывает полнотелым, пустотелым и поризованным. Исходя из размеров, различают одинарные, полуторные и двойные кирпичи. В среднем силикатный кирпич обладает плотностью 1600 кг/м3. Особенно ценятся шумопоглощающие характеристики силикатной кладки: даже если речь идет о стене небольшой толщины, уровень ее звукоизоляции будет на порядок выше, чем в случае применения других типов кладочного материала.

Облицовочный

Отдельно стоит сказать об облицовочном кирпиче, который с одинаковым успехом противостоит и воде, и повышению температуры. Показатель удельной теплоемкости этого материала находится на уровне 0,88 кДж/(кг·K), при плотности до 2700 кг/м3. В продаже облицовочные кирпичи представлены в большом многообразии оттенков. Они подходят как для облицовки, так и для укладки.

Огнеупорный

Представлен динасовыми, карборундовыми, магнезитовыми и шамотными кирпичами. Масса одного кирпича довольно большая, по причине значительной плотности (2700 кг/м3). Самый низкий показатель теплоемкости при нагревании у карборундового кирпича 0,779 кДж/(кг·K) для температуры +1000 градусов. Скорость нагревания печи, уложенной из этого кирпича, значительно превышает нагрев шамотной кладки, однако охлаждение наступает быстрее.

Из огнеупорного кирпича обустраиваются печи, предусматривающие нагревание до +1500 градусов. На удельную теплоемкость данного материала большое влияние оказывает температура нагрева. К примеру, тот же шамотный кирпич при +100 градусах обладает теплоемкостью 0,83 кДж/(кг·K). Однако, если его нагреть до +1500 градусов, это спровоцирует рост теплоемкости до 1,25 кДж/(кг·K).

Зависимость от температуры использования

На технические показатели кирпича большое влияние оказывает температурный режим:

  • Трепельный . При температуре от -20 до + 20 плотность меняется в пределах 700-1300 кг/м3. Показатель теплоемкости при этом находится на стабильном уровне 0,712 кДж/(кг·K).
  • Силикатный . Аналогичный температурный режим -20 — +20 градусов и плотность от 1000 до 2200 кг/м3 предусматривает возможность разной удельной теплоемкости 0,754-0,837 кДж/(кг·K).
  • Саманный . При идентичности температуры с предыдущим типом, демонстрирует стабильную теплоемкость 0,753 кДж/(кг·K).
  • Красный . Может применятся при температуре 0-100 градусов. Его плотность может колебаться от 1600-2070 кг/м3, а теплоемкость – от 0,849 до 0,872 кДж/(кг·K).
  • Желтый . Температурные колебания от -20 до +20 градусов и стабильная плотность 1817 кг/м3 дает такую же стабильную теплоемкость 0,728 кДж/(кг·K).
  • Строительный . При температуре +20 градусов и плотности 800-1500 кг/м3 теплоемкость находится на уровне 0,8 кДж/(кг·K).
  • Облицовочный . Тот же температурный режим +20, при плотности материла в 1800 кг/м3 определяет теплоемкость 0,88 кДж/(кг·K).

  • Динасовый . Эксплуатация в режиме повышенной температуры от +20 до +1500 и плотности 1500-1900 кг/м3 подразумевает последовательное возрастание теплоемкости от 0,842 до 1,243 кДж/(кг·K).
  • Карборундовый . По мере нагревания от +20 до +100 градусов материал плотностью 1000-1300 кг/м3 постепенно увеличивает свою теплоемкость от 0,7 до 0,841 кДж/(кг·K). Однако, если нагревание карборундового кирпича продолжить далее, то его теплоемкость начинает уменьшаться. При температуре +1000 градусов она будет равняться 0,779 кДж/(кг·K).
  • Магнезитовый . Материал плотностью 2700 кг/м3 при повышении температуры от +100 до +1500 градусов постепенно увеличивает свою теплоемкость 0,93-1,239 кДж/(кг·K).
  • Хромитовый . Нагревание изделия плотностью 3050 кг/м3 от +100 до +1000 градусов провоцирует постепенное возрастание его теплоемкости от 0,712 до 0,912 кДж/(кг·K).
  • Шамотный . Обладает плотностью 1850 кг/м3. При нагревании от +100 до +1500 градусов происходит увеличение теплоемкости материала с 0,833 до 1,251 кДж/(кг·K).

Подбирайте кирпичи правильно, в зависимости от поставленных задач на стройке.

kvartirnyj-remont.com

Что это такое?

Физическая характеристика теплоемкости присуща любому веществу. Она обозначает количество теплоты, которое поглощает физическое тело при нагревании на 1 градус Цельсия или Кельвина. Ошибочно отождествлять общее понятие с удельным, поскольку последнее подразумевает температуру, необходимую для нагревания одного килограмма вещества. Точно определить ее число представляется возможным только в лабораторных условиях. Показатель необходим для определения теплоустойчивости стен здания и в том случае, когда строительные работы проводятся при минусовых температурах. Для строительства частных и многоэтажных жилых домов и помещений используются материалы с высокими показателями теплопроводности, поскольку они аккумулируют тепло и поддерживают температуру в помещении.

Преимущество зданий из кирпича - позволяют сэкономить на оплате отопления.

Вернуться к оглавлению

От чего зависит теплоемкость кирпичей?

На коэффициент теплоемкости в первую очередь влияет температура вещества и агрегатное состояние, поскольку теплоемкость у одного и того же вещества в жидком и твердом состоянии отличается в пользу жидкого. Кроме этого, важны объемы материала и плотность его структуры. Чем больше в нем пустот, тем меньше он способен сохранять тепло внутри себя.

Вернуться к оглавлению

Виды кирпича и их показатели

Керамический материал используется печном деле.

Выпускается больше 10 разновидностей, различающихся технологией изготовления. Но чаще используются силикатный, керамический, облицовочный, огнеупорный и теплый. Стандартный керамический кирпич изготавливается из красной глины с примесями и обжигается. Его показатель тепла равен 700-900 Дж/ (кг град). Он считается довольно стойким к высоким и низким температурам. Иногда используется для выкладки печного отопления. Пористость и плотность его варьируется и влияет на коэффициент теплоемкости. Силикатный кирпич состоит из смеси песка, глины и добавок. Он бывает полно- и пустотелым, разных размеров и, следовательно, удельная теплоемкость его равна значениям от 754 до 837 Дж/ (кг град). Преимущество силикатной кирпичной кладки - хорошая звукоизоляция даже при выкладывании стены в один слой.

Облицовочный кирпич, используемый для фасадов зданий обладает довольно высокой плотностью и теплоемкостью в пределах 880 Дж/ (кг град). Огнеупорный кирпич, идеально подходит для кладки печи, потому что способен выдерживать температуру до 1500 градусов Цельсия. К этому подвиду принадлежат шамотный, карборундовый, магнезитовый и другие. И коэффициент теплоемкости (Дж/кг) отличается:

  • карборундовый - 700-850;
  • шамотный - 1000-1300.

Теплый кирпич - новинка на строительном рынке, который является модернизированным керамическим блоком, размеры и теплоизоляционные характеристики его намного превышают стандартный. Структура с большим количеством пустот помогает аккумулировать тепло и нагревать помещение. Потери тепла возможны только в швах кладки или перегородках.

etokirpichi.ru

Определение и формула теплоемкости

Каждое вещество в той или иной степени способно поглощать, запасать и удерживать тепловую энергию. Для описания этого процесса введено понятие теплоемкости, которая является свойством материала поглощать тепловую энергию при нагревании окружающего воздуха.

Чтобы нагреть какой-либо материал массой m от температуры t нач до температуры t кон, нужно будет потратить определенное количество тепловой энергии Q, которое будет пропорциональным массе и разнице температур ΔТ (t кон -t нач). Поэтому формула теплоемкости будет выглядеть следующим образом: Q = c*m*ΔТ, где с — коэффициент теплоемкости (удельное значение). Его можно рассчитать по формуле: с = Q/(m* ΔТ) (ккал/(кг* °C)).

Условно приняв, что масса вещества равна 1 кг, а ΔТ = 1°C, можно получить, что с = Q (ккал). Это означает, что удельная теплоемкость равна количеству тепловой энергии, которая расходуется на нагревание материала массой 1 кг на 1°C.

Использование теплоемкости на практике

Строительные материалы с высокой теплоемкостью используют для возведения теплоустойчивых конструкций. Это очень важно для частных домов, в которых люди проживают постоянно. Дело в том, что такие конструкции позволяют запасать (аккумулировать) тепло, благодаря чему в доме поддерживается комфортная температура достаточно долгое время. Сначала отопительный прибор нагревает воздух и стены, после чего уже сами стены прогревают воздух. Это позволяет сэкономить денежные средства на отоплении и сделать проживание более уютным. Для дома, в котором люди проживают периодически (например, по выходным), большая теплоемкость стройматериала будет иметь обратный эффект: такое здание будет достаточно сложно быстро натопить.

Значения теплоемкости строительных материалов приведены в СНиП II-3-79. Ниже приведена таблица основных строительных материалов и значения их удельной теплоемкости.

Таблица 1

Говоря о теплоемкости, следует отметить, что отопительные печи рекомендуется строить из кирпича, так как значение его теплоемкости достаточно высоко. Это позволяет использовать печь как своеобразный аккумулятор тепла. Теплоаккумуляторы в отопительных системах (особенно в системах водяного отопления) с каждым годом применяются все чаще. Такие устройства удобны тем, что их достаточно 1 раз хорошо нагреть интенсивной топкой твердотопливного котла, после чего они будут обогревать ваш дом на протяжении целого дня и даже больше. Это позволит существенно сэкономить ваш бюджет.

Какими же должны быть стены частного дома, чтобы соответствовать строительным нормам? Ответ на этот вопрос имеет несколько нюансов. Чтобы с ними разобраться, будет приведен пример теплоемкости 2-х наиболее популярных строительных материалов: бетона и дерева. Теплоемкость бетона имеет значение 0,84 кДж/(кг*°C), а дерева — 2,3 кДж/(кг*°C).

На первый взгляд можно решить, что дерево — более теплоемкий материал, нежели бетон. Это действительно так, ведь древесина содержит практически в 3 раза больше тепловой энергии, нежели бетон. Для нагрева 1 кг дерева нужно потратить 2,3 кДж тепловой энергии, но при остывании оно также отдаст в пространство 2,3 кДж. При этом 1 кг бетонной конструкции способен аккумулировать и, соответственно, отдать только 0,84 кДж.

Но не стоит спешить с выводами. Например, нужно узнать, какую теплоемкость будет иметь 1 м 2 бетонной и деревянной стены толщиной 30 см. Для этого сначала нужно посчитать вес таких конструкций. 1 м 2 данной бетонной стены будет весить: 2300 кг/м 3 *0,3 м 3 = 690 кг. 1 м 2 деревянной стены будет весить: 500 кг/м 3 *0,3 м 3 = 150 кг.

Из полученного результата можно сделать вывод, что 1 м 3 древесины будет практически в 2 раза меньше аккумулировать тепло, чем бетон. Промежуточным материалом по теплоемкости между бетоном и деревом является кирпичная кладка, в единице объема которой при тех же условиях будет содержаться 9199 кДж тепловой энергии. При этом газобетон, как строительный материал, будет содержать только 3326 кДж, что будет значительно меньше дерева. Однако на практике толщина деревянной конструкции может быть 15-20 см, когда газобетон можно уложить в несколько рядов, значительно увеличивая удельную теплоемкость стены.

Использование различных материалов в строительстве

Дерево

Для комфортного проживания в доме очень важно, чтобы материал обладал высокой теплоемкостью и низкой теплопроводностью.

В этом отношении древесина является оптимальным вариантом для домов не только постоянного, но и временного проживания. Деревянное здание, не отапливаемое длительное время, будет хорошо воспринимать изменение температуры воздуха. Поэтому обогрев такого здания будет происходить быстро и качественно.

В основном в строительстве используют хвойные породы: сосну, ель, кедр, пихту. По соотношению цены и качества наилучшим вариантом является сосна. Что бы вы ни выбрали для конструирования деревянного дома, нужно учитывать следующее правило: чем толще будут стены, тем лучше. Однако здесь также нужно учитывать ваши финансовые возможности, так как с увеличением толщины бруса значительно возрастет его стоимость.

Кирпич

Данный стройматериал всегда был символом стабильности и прочности. Кирпич имеет хорошую прочность и сопротивляемость негативным воздействиям внешней среды. Однако если принимать в расчет тот факт, что кирпичные стены в основном конструируются толщиной 51 и 64 см, то для создания хорошей теплоизоляции их дополнительно нужно покрывать слоем теплоизоляционного материала. Кирпичные дома отлично подходят для постоянного проживания. Нагревшись, такие конструкции способны долгое время отдавать в пространство накопившееся в них тепло.

Выбирая материал для строительства дома, следует учитывать не только его теплопроводность и теплоемкость, но и то, как часто в таком доме будут проживать люди. Правильный выбор позволит поддерживать уют и комфорт в вашем доме на протяжении всего года.


ostroymaterialah.ru

Изделия из кирпича — характеристики

Клинкерный кирпич обладает самым высоким коэффициентом теплопроводимости, благодаря чему его применение очень узкоспециализированное – для кладки стен материал с такими свойствами использовать было бы нецелесообразно и затратно в плане дальнейшего утепления здания — заявленная теплопроводимость этого материала (λ) находится в диапазоне 04-09 Вт/(м·К). Поэтому клинкерный кирпич чаще всего идет для дорожных покрытий и укладки прочного пола в производственных сооружениях.

У силикатных изделий теплопередача прямо пропорциональна массе изделия. То есть, у двойного кирпича из силиката марки M 150 теплопотери составляют λ = 0,7-0,8, а у щелевого силикатного изделия коэффициент передачи тепла будет равняться λ = 0,4, то есть — в два раза лучше. Но стены из силикатного кирпича рекомендуется дополнительно утеплять, к тому же прочность этого стройматериала оставляет желать лучшего.

Керамический кирпич производится в разных вариантах форм и характеристик:

  1. Полнотелые изделия с коэффициентом теплопроводности λ = 0,5-0,9;
  2. Пустотелые изделия — λ принимается равным 0,57;
  3. Рядовой огнеупорный материал: коэффициент теплопроводности шамотного кирпича равен λ = 06-08 Вт/(мК);
  4. Щелевой с коэффициентом λ = 0,4;
  5. Керамический кирпич с повышенными теплоизоляционными характеристиками и λ = 0,11 очень хрупкий, что значительно сужает ареал его применения.

Из всех разновидностей керамического кирпича можно возводить стены дома, но у каждого – свои теплотехнические параметры, исходя из которых, производится расчет будущего наружного утепления стен.

Параметр Марка – стандартный показатель
ШАК ША ШБ ШВ ШУС ПБ ПВ
Огнеупорность 1730°C 1690°C 1650°C 1630°C 1580°C 1670°C 1580°C
Пористость 23% 24% 24% 30% 24%
Предельная прочность 23 Н/мм 2 20 Н/мм 2 22 Н/мм 2 12 Н/мм 2 20 Н/мм 2 15 Н/мм 2
Процент добавок
Оксид алюминия Al 2 O 2 33% 30% 28% 28% 28%
Оксид алюминия Al 2 O 3 14-28% 14-28%
Диоксид кремния SiO 2 65-85% 65-85%

Показатели теплопроводности изделий из керамики — самые низкие среди перечисленных выше вариантов.

Поризованный кирпич как материал с характеристиками теплопроводности является самым лучшим, как и теплая кирпичная керамика. Поризованное изделие делается так, что кроме щелей в теле, материал имеет особую структуру, уменьшающую собственный вес кирпича, что и повышает его теплонепроницаемость.


Любой кирпич теплопроводность которого может достигать показателей 0,8-0,9, имеет свойство накапливать в теле изделия влагу, что особенно негативно проявляется в морозы – превращение воды в лед может вызвать разрушение структуры кирпича, да и постоянный конденсат в стене – это причина появления плесени, препятствие для прохождения воздуха сквозь стены и уменьшение теплопроводности стен в целом.

Чтобы не допустить или максимально уменьшить накопление влаги в стенах, кирпичная кладка делается с воздушными зазорами. Как правильно обеспечить постоянную воздушную прослойку:

  1. Начиная с первого ряда кирпича, между изделиями оставляют воздушные зазоры до 10 мм толщиной, не заполняемые раствором. Шаг таких зазоров — 1 метр;
  2. Между кирпичом и материалом теплоизолятора по всей высоте стены оставляют воздушный зазор толщиной 25-30 мм – по типу вентилируемого фасада. По этим воздушным каналам будут проходить постоянные воздушные потоки, которые не дадут стене потерять свои теплоизоляционные свойства, и обеспечат постоянную температуру в доме при условии работающего зимой отопления.

Существенного уменьшения коэффициента теплопроводимости кладки из кирпича можно добиться, не понеся при этом больших расходов, что важно для индивидуального строительства. Качество жилья при реализации вышеперечисленных методов не пострадает, а это – самое главное.

Если в строительстве дома использовать огнеупорный шамотный кирпич, то можно заметно повысить и пожарную безопасность жилья, опять же без существенных затрат, кроме ценовой разницы в марках кирпича. Коэффициент теплопроводности у огнеупорного кирпича немного выше, чем у клинкерного, но безопасность тоже имеет большое значение при эксплуатации дома.


Уровень звукоизоляции стен равен из керамического кирпича ≈ 50 Дб, что близко к стандартным требованиям СНиП – 54 Дб. Такой уровень звукоизоляции может обеспечить кирпичная стена, выложенная в два кирпича – это 50 см толщины. Все остальные размеры нуждаются в дополнительной шумоизоляции, реализованной в самых разных вариантах. Например, железобетонные стены панельного стандартной толщины 140 мм имеют степень шумоизоляции 50 дБ. Повысить свойства звукоизоляции дома можно, увеличив толщину кирпичных стен, но выйдет это дороже, чем при прокладке дополнительного слоя шумоизоляции.

jsnip.ru

Удельная теплоемкость материалов

Теплоемкость – это физическая величина, описывающая способность того или иного материала накапливать в себе температуру от нагретой окружающей среды. Количественно удельная теплоемкость равна количеству энергии, измеряемой в Дж, необходимой для того, чтобы нагреть тело массой 1 кг на 1 градус.
Ниже представлена таблица удельной теплоемкости наиболее распространенных в строительстве материалов.

  • вид и объем нагреваемого материала (V);
  • показатель удельной теплоемкости этого материала (Суд);
  • удельный вес (mуд);
  • начальную и конечную температуры материала.

Теплоемкость строительных материалов

Теплоемкость материалов, таблица по которой приведена выше, зависит от плотности и коэффициента теплопроводности материала.

А коэффициент теплопроводности, в свою очередь, зависит от крупности и замкнутости пор. Мелкопористый материал, имеющий замкнутую систему пор, обладает большей теплоизоляцией и, соответственно, меньшей теплопроводностью, нежели крупнопористый.

Это очень легко проследить на примере наиболее распространенных в строительстве материалов. На рисунке, представленном ниже, показано каким образом влияет коэффициент теплопроводности и толщина материала на теплозащитные качества наружных ограждений.


Из рисунка видно, что строительные материалы с меньшей плотностью обладают меньшим коэффициентом теплопроводности.
Однако так бывает не всегда. Например, существуют волокнистые виды теплоизоляции, для которых действует противоположная закономерность: чем меньше плотность материала, тем выше будет коэффициент теплопроводности.

Поэтому нельзя доверять исключительно показателю относительной плотности материала, а стоит учитывать и другие его характеристики.

Сравнительная характеристика теплоемкости основных строительных материалов

Для того, чтобы сравнить теплоемкость наиболее популярных строительных материалов, таких дерево, кирпич и бетон, необходимо рассчитать величину теплоемкости для каждого из них.

В первую очередь нужно определиться с удельной массой дерева, кирпича и бетона. Известно, что 1 м3 дерева весит 500 кг, кирпича – 1700 кг, а бетона – 2300 кг. Если мы берем стенку, толщина которой составляет 35 см, то путем нехитрых расчетов получим, что удельная масса 1 кв.м дерева составит 175 кг, кирпича – 595 кг, а бетона – 805 кг.
Далее выберем значение температуры, при которой будет происходить накопление тепловой энергии в стенах. Например, это будет происходить в жаркий летний день с температурой воздуха 270С. Для выбранных условий рассчитываем теплоемкость выбранных материалов:

  1. Стена из дерева: С=СудхmудхΔТ; Сдер=2,3х175х27=10867,5 (кДж);
  2. Стена из бетона: С=СудхmудхΔТ; Сбет=0,84х805х27= 18257,4 (кДж);
  3. Стена из кирпича: С=СудхmудхΔТ; Скирп=0,88х595х27= 14137,2 (кДж).

Из произведенных расчетов видно, что при одинаковой толщине стены наибольшим показателем теплоемкости обладает бетон, а наименьшим – дерево. О чем это говорит? Это говорит о том, что в жаркий летний день максимальное количество тепла будет накапливаться в доме, выполненном из бетона, а наименьшее – из дерева.

Этим объясняет тот факт, что в деревянном доме в жаркую погоду прохладно, а в холодную погоду тепло. Кирпич и бетон легко накапливают в себе достаточно большое количество тепла из окружающей среды, но так же легко и расстаются с ним.

Создание оптимального микроклимата и расход тепловой энергии на отопление частного дома в холодное время года во многом зависит от теплоизоляционных свойств строительных материалов, из которых возведена данная постройка. Одной из таких характеристик является теплоемкость. Это значение необходимо учитывать при выборе стройматериалов для конструирования частного дома. Поэтому далее будет рассмотрена теплоемкость некоторых строительных материалов.

Определение и формула теплоемкости

Каждое вещество в той или иной степени способно поглощать, запасать и удерживать тепловую энергию. Для описания этого процесса введено понятие теплоемкости, которая является свойством материала поглощать тепловую энергию при нагревании окружающего воздуха.

Чтобы нагреть какой-либо материал массой m от температуры t нач до температуры t кон, нужно будет потратить определенное количество тепловой энергии Q, которое будет пропорциональным массе и разнице температур ΔТ (t кон -t нач). Поэтому формула теплоемкости будет выглядеть следующим образом: Q = c*m*ΔТ, где с – коэффициент теплоемкости (удельное значение). Его можно рассчитать по формуле: с = Q/(m* ΔТ) (ккал/(кг* °C)).

Условно приняв, что масса вещества равна 1 кг, а ΔТ = 1°C, можно получить, что с = Q (ккал). Это означает, что удельная теплоемкость равна количеству тепловой энергии, которая расходуется на нагревание материала массой 1 кг на 1°C.

Вернуться к оглавлению

Использование теплоемкости на практике

Строительные материалы с высокой теплоемкостью используют для возведения теплоустойчивых конструкций. Это очень важно для частных домов, в которых люди проживают постоянно. Дело в том, что такие конструкции позволяют запасать (аккумулировать) тепло, благодаря чему в доме поддерживается комфортная температура достаточно долгое время. Сначала отопительный прибор нагревает воздух и стены, после чего уже сами стены прогревают воздух. Это позволяет сэкономить денежные средства на отоплении и сделать проживание более уютным. Для дома, в котором люди проживают периодически (например, по выходным), большая теплоемкость стройматериала будет иметь обратный эффект: такое здание будет достаточно сложно быстро натопить.

Значения теплоемкости строительных материалов приведены в СНиП II-3-79. Ниже приведена таблица основных строительных материалов и значения их удельной теплоемкости.

Таблица 1

Кирпич обладает высокой теплоемкостью, поэтому идеально подходит для строительства домов и возведенияия печей.

Говоря о теплоемкости, следует отметить, что отопительные печи рекомендуется строить из кирпича, так как значение его теплоемкости достаточно высоко. Это позволяет использовать печь как своеобразный аккумулятор тепла. Теплоаккумуляторы в отопительных системах (особенно в системах водяного отопления) с каждым годом применяются все чаще. Такие устройства удобны тем, что их достаточно 1 раз хорошо нагреть интенсивной топкой твердотопливного котла, после чего они будут обогревать ваш дом на протяжении целого дня и даже больше. Это позволит существенно сэкономить ваш бюджет.

Вернуться к оглавлению

Теплоемкость строительных материалов

Какими же должны быть стены частного дома, чтобы соответствовать строительным нормам? Ответ на этот вопрос имеет несколько нюансов. Чтобы с ними разобраться, будет приведен пример теплоемкости 2-х наиболее популярных строительных материалов: бетона и дерева. имеет значение 0,84 кДж/(кг*°C), а дерева – 2,3 кДж/(кг*°C).

На первый взгляд можно решить, что дерево – более теплоемкий материал, нежели бетон. Это действительно так, ведь древесина содержит практически в 3 раза больше тепловой энергии, нежели бетон. Для нагрева 1 кг дерева нужно потратить 2,3 кДж тепловой энергии, но при остывании оно также отдаст в пространство 2,3 кДж. При этом 1 кг бетонной конструкции способен аккумулировать и, соответственно, отдать только 0,84 кДж.

Но не стоит спешить с выводами. Например, нужно узнать, какую теплоемкость будет иметь 1 м 2 бетонной и деревянной стены толщиной 30 см. Для этого сначала нужно посчитать вес таких конструкций. 1 м 2 данной бетонной стены будет весить: 2300 кг/м 3 *0,3 м 3 = 690 кг. 1 м 2 деревянной стены будет весить: 500 кг/м 3 *0,3 м 3 = 150 кг.

  • для бетонной стены: 0,84*690*22 = 12751 кДж;
  • для деревянной конструкции: 2,3*150*22 = 7590 кДж.

Из полученного результата можно сделать вывод, что 1 м 3 древесины будет практически в 2 раза меньше аккумулировать тепло, чем бетон. Промежуточным материалом по теплоемкости между бетоном и деревом является кирпичная кладка, в единице объема которой при тех же условиях будет содержаться 9199 кДж тепловой энергии. При этом газобетон, как строительный материал, будет содержать только 3326 кДж, что будет значительно меньше дерева. Однако на практике толщина деревянной конструкции может быть 15-20 см, когда газобетон можно уложить в несколько рядов, значительно увеличивая удельную теплоемкость стены.

Вокруг вопроса применения шамотного и керамического кирпича в печном деле ходит очень много разных споров, слухов, домыслов и легенд. Например, часто встречается мнение, что шамотный кирпич радиоактивный, что его использование вредно для здоровья.
Издавна принято, что печь кладется из керамического кирпича, а топка футеруется шамотным. Сейчас же можно встретить печи, камины, барбекю полностью сделанные из шамотного кирпича, да что уж таить - сам использую именно шамотный кирпич в работе.
Давайте попробуем все-таки разобраться, что здесь к чему, сравнить эти 2 вида кирпича и определить их области применения.

Для начала несколько теоретических моментов.

Теплопроводность - способность материала передавать через свою толщу тепловой поток, возникающий вследствие разности температур на противоположных поверхностях. Теплопроводность характеризуется количеством теплоты (Дж), проходящей в течение 1 ч через образец материала толщиной 1 м, площадью 1 м2, при разности температур на противоположных плоскопараллельных поверхностях в 1 К.
Теплоемкость - способность материала при нагревании поглощать теплоту. Теплоемкость определяется отношением количества теплоты, сообщаемого телу, к соответствующему изменению температуры
Пористость - степень заполнения объема материала порами, измеряется в %
Плотность кирпича определяется массой кирпича на единицу его объема
Морозостойкость - способность материала выдерживать попеременное замораживание и оттаивание в водонасыщенном состоянии без признаков разрушения


А теперь давайте попробуем порассуждать о возможности применения шамотного кирпича.

1. Шамотный кирпич будет быстрее прогреваться и стенки кирпича будут более горячими, но при этом остывает он по времени почти столько же,сколько и керамический. В подтверждение этому опыты Евгения Колчина . Это очень удобно, например, в облицовках каминных топок.
2. Сам по себе шамотный кирпич имеет правильную геометрическую форму где любая из 6 граней может быть лицевой(точнее 5 - ложок с клеймом не подойдет) - с этим преимуществом не может поспорить керамический кирпич(там их всего 3). Данный факт позволяет работать почти без брака.
Так же наличие шамотных блоков (ШБ 94, ШБ 96) в некоторых моментах упрощают работу и увеличивают возможность использования шамота (полки, декоративные элементы)

3. Давайте обратимся к Европейскому опыту. Дополнительные теплонакопительные элементы(включая дополнительные дымообороты) для Brunner, Jotul, Schmid, Olsberg делают из шамота. Немецкая компания Wolfshoeher Tonwerke выпускает шамотные элементы для дымооборотов и теплонакопительных печей. Мало кто обращает внимание, но даже есть специальный класс - печные топки: их можно подключать только через систему дымооборотов.

4. Конечно, коэффициент расширения у шамотного и керамического кирпича разный, потому перевязывать их настоятельно не рекомендуется. Это еще раз подтвердил опыт Евгения Колчина.
5. Очень часто бытует мнение, что шамотный кирпич при нагревании выделяет вредные вещества или вообще радиоактивен. Последнее еще в теории(и только в теории!) как-то возможно, так как все зависит от места добычи глины, но вот в первое верится с трудом. Скорее всего, причина возникновения слуха о выделении вредных веществ в следующем. Шамотный кирпич - один из видов огнеупорных материалов(подгруппы алюмосиликатных огнеупоров: полукислые, шамотные и высокоглиноземистые; а есть еще динасовые, муллитовые и др. огнеупоры), а их очень много, изготавливаются они разным способом. Возможно, что при нагревании некоторых из них и выделение вредных веществ, но это не относится к шамотному кирпичу, так как он предназначен для бытового использования.
6. Еще одним недостатком шамотного кирпича можно назвать его меньшую, по сравнению с керамическим кирпичом, морозостойкость. Многи скажут, что для барбекю он не подойдет. Я не так давно работаю печником, но то, что было сделано на улице мной 3-5 лет назад бес признаков разрушения. Да и всегда можно защитить шамотный кирпич лаками или тем же жидким стеклом

Выбор кирпича как строительного материала для возведения стен любых помещений, печей или каминов осуществляют на основании его свойств, связанных со способностью проводить, удерживать тепло или холод, выносить воздействие высоких или низких температур. Самые важные теплотехнические характеристики: коэффициент теплопроводности, теплоемкость и морозостойкость.

Под этим названием прежде понимали лишь элементы стандартного размера (250х120х65) из обожженной глины. Сейчас производят и продают строительные изделия, изготовленные из любых пригодных компонентов, имеющие форму правильного параллелепипеда и размеры, схожие с габаритами классического керамического варианта.

Основные разновидности:

  • керамический рядовой (строительный) - классический камень красного цвета из обожженной глины;
  • керамический лицевой - отличается лучшими внешними качествами, повышенной устойчивостью к атмосферным воздействиям, обычно имеет внутри полости;
  • силикатный полнотелый - светло-серого цвета из прессованной песчано-известняковой смеси, уступает керамическому по всем показателям (в том числе теплотехническим), кроме прочности;
  • силикатный пустотный - отличается наличием полостей, повышающих способность стен сохранять тепло;
  • гиперпрессованый - из цемента с пигментами, придающими оттенки натурального материала, заполнителями смеси являются крошка известняка, мрамора, гранулы доменного шлака;
  • шамотный - предназначен для кладки печей, каминов, дымоходов;
  • клинкерный - отличается от обычного тем, что при его производстве используют особые сорта глины и более высокие температуры обжига;
  • теплая керамика (поризованный камень) - ее характеристики намного превосходят теплопроводность красного кирпича, это достигается за счет наличия в глиняной массе пор, заполненных воздухом, и особой конструкции элемента, имеющего большое количества пустот внутри.

Коэффициент теплопроводности

Теплопроводность вещества - количественная характеристика его способности проводить энергию (тепло). Для ее сравнения у разных строительных материалов используют коэффициент теплопроводности - количество теплоты, проходящей через образец единичных длины и площади за единицу времени при единичной разнице температур. Измеряется в Ватт/метр*Кельвин (Вт/м*К).

При выборе кирпича для возведения стен на показатель теплопроводности обращают внимание, так как от него зависит минимально допустимая толщина конструкции. Чем меньше значение, тем лучше стена удерживает тепло и тем тоньше она может быть, экономнее расход. Этот же параметр учитывают, подбирая вид утеплителя, размер его слоя и технологию.

Теплопроводность зависит от таких факторов:

  • материал: лучшие показатели - у теплой поризованной керамики, худшие - у гиперпрессованного или силикатного кирпича;
  • плотность - чем она выше, тем хуже удерживается тепло;
  • наличие пустот в изделиях - полости внутри щелевого стенового камня после выполнения монтажа заполняет воздух, за счет этого лучше сохраняются тепло или прохлада в помещении.

По коэффициенту теплопроводности в сухом состоянии различают следующие виды кладок:

  • высокоэффективные - до 0,20;
  • повышенной эффективности - от 0,21 до 0,24;
  • эффективные - от 0,25 до 0,36;
  • условно-эффективные - от 0,37 до 0,46;
  • обыкновенные - более 0,46.

При выполнении расчетов, выборе лицевого и строительного кирпича и утеплителя учитывают, что способность стены проводить тепло зависит не только от свойств материала, но и характеризуется коэффициентом теплопроводности раствора и толщиной швов.

Теплоемкость

Это количество теплоты (энергии), которое необходимо подвести к телу, чтобы повысить его температуру на 1 Кельвин. Единица измерения этого показателя - Джоуль на Кельвин (Дж/К). Удельная теплоемкость - ее отношение к массе вещества, единица измерения - Джоуль/кг*Кельвин (Дж/кг*К). У кирпича ее значение - от 700 до 1250 Дж/кг*К. Более точные цифры зависят от материала, из которого изготовлен конкретный вид.

Параметр влияет на расход энергии, требуемой для отопления дома: чем ниже значение, тем быстрее прогревается помещение и тем меньше средств уйдет на оплату. Он особенно важен, если проживание в доме непостоянное, то есть периодически требуется прогревать стены. Лучший вариант - силикат, но точные расчеты рекомендуется поручить специалисту. Необходимо учитывать не только теплоемкость стены, но и ее толщину, теплоемкость кладочного раствора, ширину швов, особенности расположения помещения и коэффициент теплоотдачи.

Морозостойкость

Выражается в количестве циклов замораживания-оттаивания, которое элемент выдерживает без существенных ухудшений свойств. Значение имеет не нижний уровень температуры, а именно частота замораживания влаги в порах. Вода, превратившись в лед, расширяется, что способствует разрушению камня.

Обычно морозостойкость обозначают индексом, который содержит большую латинскую букву F и цифры. Например: маркировка F50 указывает на то, что этот материал начинает терять прочность не ранее, чем через 50 циклов замораживания-оттаивания. Возможные марки кирпича по морозостойкости (ГОСТ 530-2012): F25; F35; F50; F100; F200; F300. Ориентируясь на обозначенную цифру, нужно понимать, что количество циклов не совпадает с количеством сезонов.

В некоторых регионах в течение одной зимы может многократно происходить резкая смена температур. Для несущих стен рекомендуют использовать минимум F35, для облицовки - от F75. Варианты с более низкими показателями пригодны только для регионов с мягким климатом.

Подбирая подходящий материал для проведения того или иного вида строительных работ, особое внимание следует обращать на его технические характеристики. Это касается и удельной теплоемкости кирпича, от которой во многом зависит потребность дома в последующей термоизоляции и дополнительной отделке стен.

Характеристики кирпича, которые влияют на его применение:

  • Удельная теплоемкость. Величина, определяющая количество тепловой энергии, необходимой для нагревания 1 кг на 1 градус.
  • Теплопроводность. Очень важная характеристика для кирпичных изделий, позволяющая определить количество передаваемого тепла со стороны комнаты на улицу.
  • На уровень теплопередачи кирпичной стены прямым образом влияют характеристики использованного для ее возведения материала. В тех случаях, когда речь идет о многослойной кладке, потребуется учитывать коэффициент теплопроводности каждого слоя в отдельности.

Керамический

Полезная информация:

Исходя из технологии производства, кирпич классифицируется на керамическую и силикатную группы. При этом оба вида имеют значительные материала, удельной теплоемкости и коэффициенту теплопроводности. Сырьем для изготовления керамического кирпича, еще его называют красным, выступает глина, в которую добавляют ряд компонентов. Сформированные сырые заготовки подвергаются обжигу в специальных печах. Показатель удельной теплоемкости может колебаться в пределах 0,7-0,9 кДж/(кг·K). Что касается средней плотности, то она обычно находится на уровне 1400 кг/м3.

Среди сильных сторон керамического кирпича можно выделить:

1. Гладкость поверхность. Это повышает его внешнюю эстетичность и удобство укладки.
2. Стойкость к морозу и влаге. В обычных условиях стены не нуждаются в дополнительной влаго- и термоизоляции.
3. Способность переносить высокие температуры. Это позволяет использовать керамический кирпич для возведения печей, мангалов, жаропрочных перегородок.
4. Плотность 700-2100 кг/м3. На эту характеристику непосредственно влияет наличие внутренних пор. По мере увеличения пористости материала уменьшается его плотность, и возрастают теплоизоляционные характеристики.

Силикатный

Что касается силикатного кирпича, то он бывает полнотелым, пустотелым и поризованным. Исходя из размеров, различают одинарные, полуторные и двойные кирпичи. В среднем силикатный кирпич обладает плотностью 1600 кг/м3. Особенно ценятся шумопоглощающие характеристики силикатной кладки: даже если речь идет о стене небольшой толщины, уровень ее звукоизоляции будет на порядок выше, чем в случае применения других типов кладочного материала.

Облицовочный

Отдельно стоит сказать об облицовочном кирпиче, который с одинаковым успехом противостоит и воде, и повышению температуры. Показатель удельной теплоемкости этого материала находится на уровне 0,88 кДж/(кг·K), при плотности до 2700 кг/м3. В продаже облицовочные кирпичи представлены в большом многообразии оттенков. Они подходят как для облицовки, так и для укладки.

Огнеупорный

Представлен динасовыми, карборундовыми, магнезитовыми и шамотными кирпичами. Масса одного кирпича довольно большая, по причине значительной плотности (2700 кг/м3). Самый низкий показатель теплоемкости при нагревании у карборундового кирпича 0,779 кДж/(кг·K) для температуры +1000 градусов. Скорость нагревания печи, уложенной из этого кирпича, значительно превышает нагрев шамотной кладки, однако охлаждение наступает быстрее.

Из огнеупорного кирпича обустраиваются печи, предусматривающие нагревание до +1500 градусов. На удельную теплоемкость данного материала большое влияние оказывает температура нагрева. К примеру, тот же шамотный кирпич при +100 градусах обладает теплоемкостью 0,83 кДж/(кг·K). Однако, если его нагреть до +1500 градусов, это спровоцирует рост теплоемкости до 1,25 кДж/(кг·K).

Зависимость от температуры использования

На технические показатели кирпича большое влияние оказывает температурный режим:

  • Трепельный . При температуре от -20 до + 20 плотность меняется в пределах 700-1300 кг/м3. Показатель теплоемкости при этом находится на стабильном уровне 0,712 кДж/(кг·K).
  • Силикатный . Аналогичный температурный режим -20 — +20 градусов и плотность от 1000 до 2200 кг/м3 предусматривает возможность разной удельной теплоемкости 0,754-0,837 кДж/(кг·K).
  • Саманный . При идентичности температуры с предыдущим типом, демонстрирует стабильную теплоемкость 0,753 кДж/(кг·K).
  • Красный . Может применятся при температуре 0-100 градусов. Его плотность может колебаться от 1600-2070 кг/м3, а теплоемкость – от 0,849 до 0,872 кДж/(кг·K).
  • Желтый . Температурные колебания от -20 до +20 градусов и стабильная плотность 1817 кг/м3 дает такую же стабильную теплоемкость 0,728 кДж/(кг·K).
  • Строительный . При температуре +20 градусов и плотности 800-1500 кг/м3 теплоемкость находится на уровне 0,8 кДж/(кг·K).
  • Облицовочный . Тот же температурный режим +20, при плотности материла в 1800 кг/м3 определяет теплоемкость 0,88 кДж/(кг·K).
  • Динасовый . Эксплуатация в режиме повышенной температуры от +20 до +1500 и плотности 1500-1900 кг/м3 подразумевает последовательное возрастание теплоемкости от 0,842 до 1,243 кДж/(кг·K).
  • Карборундовый . По мере нагревания от +20 до +100 градусов материал плотностью 1000-1300 кг/м3 постепенно увеличивает свою теплоемкость от 0,7 до 0,841 кДж/(кг·K). Однако, если нагревание карборундового кирпича продолжить далее, то его теплоемкость начинает уменьшаться. При температуре +1000 градусов она будет равняться 0,779 кДж/(кг·K).
  • Магнезитовый . Материал плотностью 2700 кг/м3 при повышении температуры от +100 до +1500 градусов постепенно увеличивает свою теплоемкость 0,93-1,239 кДж/(кг·K).
  • Хромитовый . Нагревание изделия плотностью 3050 кг/м3 от +100 до +1000 градусов провоцирует постепенное возрастание его теплоемкости от 0,712 до 0,912 кДж/(кг·K).
  • Шамотный . Обладает плотностью 1850 кг/м3. При нагревании от +100 до +1500 градусов происходит увеличение теплоемкости материала с 0,833 до 1,251 кДж/(кг·K).

Подбирайте кирпичи правильно, в зависимости от поставленных задач на стройке.

error: