Общая характеристика. История открытия

Титан. Химический элемент, символ Ti (лат. Titanium, открыт в 1795 году и назван в честь героя греческого эпоса Титана ) . Имеет порядковый номер 22, атомный вес 47, 90, плотность 4, 5 г/см 3 , температуру плавления 1668 ° С, температуру кипения 3300 ° С.

Титан входит в состав более чем 70 минералов и является одним из самых распространённых элементов - содержание его в земной коре составляет примерно 0, 6%. По внешнему виду титан похож на сталь. Чистый металл пластичен и легко поддаётся механической обработке давлением.

Титан существует в двух модификациях: до 882°С в виде модификации α с гексагональной плотно упакованной кристаллической решёткой, а выше 882°С устойчивостью является модификация β с объёмноцентрированной кубической решёткой.

Титан сочетает большую прочность с малой плотностью и высокой коррозионной стойкостью. Благодаря этому во многих случаях он обладает значительными преимуществами перед такими основными конструкционными материалами, как сталь и алюминий . Ряд титановых сплавов по прочности в два раза превосходит сталь при значительно меньшей плотности и лучшей коррозионной стойкости. Однако из-за низкой теплопроводности затрудняется его применение для конструкций и деталей, работающих в условиях больших температурных перепадов, и при работе на термическую усталость. К недостаткам титана как конструкционного материала следует отнести также относительно низкий модуль нормальной упругости.

Механические свойства сильно зависят от чистоты металла и предшествующей механической и термической обработки. Титан высокой чистоты обладает хорошими пластическими свойствами.

Характерное свойство титана - способность активно поглощать газы - кислород, азот и водород. Эти газы до известных пределов растворяются в титане. Уже небольшие примеси кислорода и азота снижают пластические свойства титана. Незначительная примесь водорода (0, 01-0, 005%) заметно повышает хрупкость титана.

На воздухе при обычной температуре титан устойчив. При нагревании до 400-550 ° С металл покрывается оксидно-нитридной плёнкой, которая прочно удерживается на металле и защищает его от дальнейшего окисления. При более высоких температурах возрастает скорость окисления и растворения кислорода в титане.

С азотом титан взаимодействует при температурах выше 600 ° С с образованием плёнки нитрида (TiN) и твёрдых растворов азота в титане. Нитрид титана имеет высокую твёрдость и плавится при 2950 ° С.

Титан поглощает водород с образованием твёрдых растворов и гибридов (TiH и TiH 2 ) . В отличие от кислорода и азота, почти весь поглощённый водород можно удалить из титана нагреванием его в вакууме при 1000-1200 ° С.

Углерод и углеродсодержащие газы (CO, CH 4 ) реагируют с титаном при высокой температуре (более 1000 ° С) с образованием твёрдого и тугоплавкого карбида титана TiC (точка плавления 3140 ° С ). Примесь углерода заметно влияет на механические свойства титана.

Фтор, хлор, бром и йод взаимодействуют с титаном при сравнительно низких температурах (100-200 ° С). При этом образуются легколетучие галогениды титана.

Механические свойства титана в значительно большей степени, чем у других металлов, зависят от скорости приложения нагрузки. Поэтому механические испытания титана следует проводить при более строго регламентированных и фиксированных условиях, чем испытания других конструкционных материалов.

Ударная вязкость титана существенно возрастает при отжиге в интервале 200-300 ° С, заметного изменения других свойств не наблюдается. Наибольшее повышение пластичности титана достигается после закалки с температур, превышающих температуру полиморфного превращения, и последующего отпуска.

Чистый титан не относится к жаропрочным материалам, так как прочность его резко уменьшается с повышением температуры.

Важной особенностью титана является его способность образовывать твёрдые растворы с атмосферными газами и водородом. При нагревании титана на воздухе на его поверхности, кроме обычной окалины, образуется слой, состоящий из твёрдого раствора на основе α - Ti (альфитированный слой), стабилизированного кислородом, толщина которого зависит от температуры и продолжительности нагрева. Этот слой имеет более высокую температуру превращения, чем основной слой металла, и его образование на поверхности деталей или полуфабрикатов может вызвать хрупкое разрушение.

Титан и сплавы на основе титана характеризуются высокой коррозионной стойкостью в атмосфере воздуха, в естественной холодной и горячей пресной воде, в морской воде (на пластинке из титана за 10 лет пребывания в морской воде не появилось и следа ржавчины), а также в растворах щелочей, неорганических солей, органических кислот и соединений даже при кипячении. По коррозионной стойкости титан подобен хромоникелевой нержавеющей стали. Он не подвергается коррозии в морской воде, находясь в контакте с нержавеющей сталью и медно-никелевыми сплавами. Высокая коррозионная стойкость титана объясняется образованием на его поверхности плотной однородной плёнки, которая защищает металл от дальнейшего взаимодействия с окружающей средой. Так, в разбавленной серной кислоте (до 5%) при комнатной температуре титан стоек. Скорость коррозии с повышением концентрации кислоты растёт, достигая максимума при 40%, затем снижается до минимума при 60%, достигает второго максимума при 80% и далее вновь понижается.

В разбавленной соляной кислоте (5-10%) при комнатной температуре титан достаточно стоек. При повышении концентрации кислоты и температуры скорость коррозии титана быстро увеличивается. Коррозию титана в соляной кислоте можно сильно уменьшить добавкой небольших количеств окислителей (HNO 3 , KMnO 4 , K 2 CrO 4 , соли меди, железа). Титан хорошо растворяется в плавиковой кислоте. В растворах щелочей (концентрации до 20%) на холоду и при нагревании титан стоек.

Как конструкционный материал титан наибольшее применение находит в авиации, ракетной технике, при сооружении морских судов, в приборостроении и машиностроении. Титан и его сплавы сохраняют высокие прочностные характеристики при высоких температурах и поэтому с успехом могут применяться для изготовления деталей, подвергающихся высокотемпературному нагреву. Так, из его сплавов изготовляют наружные части самолётов (мотогондолы, элероны, рули поворота) и многие другие узлы и детали - от двигателя до болтов и гаек. Например, если в одном из двигателей заменить стальные болты на титановые, то масса двигателя снизится почти на 100 кг.

Оксид титана используется для приготовления титановых белил. Такими белилами можно окрасить в несколько раз большую поверхность, чем тем же количеством свинцовых или цинковых белил. К тому же титановые белила не ядовиты. Титан широко применяют в металлургии, в том числе в качестве легирующего элемента в нержавеющих и жаростойких сталях. Добавки титана в сплавы алюминия, никеля и меди повышают их прочность. Он является составной частью твёрдых сплавов для режущих инструментов, также успехом пользуются хирургические инструменты из сплавов титана. Двуокись титана используют для обмазки сварочных электродов. Четырёххлористый титан (тетрахлорид) применяют в военном деле для создания дымовых завес, а в мирное время для окуривания растений во время весенних заморозков.

В электротехнике и радиотехнике используют порошкообразный титан в качестве поглотителя газов - при нагревании до 500°С титан энергично поглощает газы и тем самым обеспечивает в замкнутом объёме высокий вакуум.

Титан в ряде случаев является незаменимым материалом в химической промышленности и в судостроении. Из него изготовляют детали, предназначенные для перекачки агрессивных жидкостей, теплообменники, работающие в коррозионно активных средах, подвесные приспособления, используемые при анодировании различных деталей. Титан инертен в электролитах и других жидкостях, применяемых в гальваностегии, и поэтому пригоден для изготовления различных деталей гальванических ванн. Его широко используют при изготовлении гидрометаллургической аппаратуры для никелево-кобальтовых заводов, так как он обладает высокой стойкостью против коррозии и эрозии в контакте с никелевыми и кобальтовыми шламами при высоких температурах и давлениях.

Титан наиболее стоек в окислительных средах. В восстановительных средах титан корродирует довольно быстро вследствие разрушения защитной окисной плёнки.

Технический титан и его сплавы поддаются всем известным методам обработки давлением. Они могут прокатываться в холодном и горячем состояниях, штамповаться, обжиматься, поддаваться глубокой вытяжке, развальцовываться. Из титана и его сплавов получают стержни, прутки, полосы, различные профили проката, бесшовные трубы, проволоку и фольгу.

Сопротивление деформации у титана выше, чем у конструкционных сталей или медных и алюминиевых сплавов. Титан и его сплавы обрабатываются давлением примерно так же, как и нержавеющие стали аустенитового класса. Наиболее часто титан подвергают ковке при 800-1000°С. Чтобы предохранить титан от загрязнения газами, нагрев и обработку его давлением производят в возможно короткое время. Ввиду того, что при температурах >500°С водород диффундирует в титан и его сплавы с огромными скоростями, нагрев ведут в окислительной атмосфере.

Титан и его сплавы имеют пониженную обрабатываемость резанием подобно нержавеющим сталям аустенитного класса. При всех видах резания наиболее успешные результаты достигаются при небольших скоростях и большой глубине резания, а также при использовании режущего инструмента из быстрорежущих сталей или твёрдых сплавов. Из-за высокой химической активности титана при высоких температурах сварку его ведут в атмосфере инертных газов (гелия, аргона). При этом защищать от взаимодействия с атмосферой и газами необходимо не только расплавленный металл шва, но все сильно нагретые части свариваемых изделий.

Некоторые технологические трудности возникают при производстве из титана и его сплавов отливок.

Титановые сплавы. Основные характеристики

Важнейшими преимуществами титановых сплавов перед другими конструкционными материалами являются их высокие удельная прочность и жаропрочность в сочетании с высокой коррозионной стойкостью. Кроме того, титан и его сплавы хорошо свариваются, парамагнитны и обладают некоторыми другими свойствами, имеющими важное значение в ряде отраслей техники. Перечисленные качества титановых сплавов открывают большие перспективы их применения в тех областях машиностроения, где требуются высокая удельная прочность и жаропрочность в сочетании с высокой коррозионной стойкостью. Это относится, в первую очередь, к таким отраслям техники как авиастроение, ракетостроение, судостроение, химическое, пищевое и транспортное машиностроение.

Касаясь некоторых специфических свойств титана, можно отметить, что он представляет большой интерес как конструкционный материал для космических кораблей.

Классификация

Титановые сплавы целесообразно разделить на три большие группы:

Конструкционные и высокопрочные титановые сплавы представляют собой - твердые растворы, что позволяет им обеспечивать оптимальное соотношение характеристик прочности и пластичности.

Жаропрочные титановые сплавы представляют собой - твердые растворы с большим или меньшим количеством химического соединения (или начальной стадии его образования), что обеспечивает им повышенную жаропрочность при минимальном снижении пластичности.

Титановые сплавы на основе химического соединения - представляют интерес как жаропрочный материал с низкой плотностью, способный конкурировать с жаропрочными никелиевыми сплавами в определенном температурном интервале.

В настоящее время титан - один из важнейших конструкционных металлических материалов. Для этого титану в течение 200 лет пришлось пройти путь от признания его непригодным в конструкционных целях до всеобщего поклонения как перед одним из самых перспективных и вечных металлов.

ВТ1-00 и ВТ1-0

Технический титан. Металлургическая промышленность поставляет полуфабрикаты технического титана двух марок ВТ1 - 00 и ВТ1 - 0 отличающихся содержанием примесей (кислорода, азота, углерода, железа, кремния и др.). Это материалы малой прочности, причем титан ВТ1 - 00, содержащий меньше примесей, отличается меньшей прочностью и большей пластичностью. Основное достоинство технического титана - высокая технологическая пластичность, что позволяет получать из него даже фольгу.

Прочностные свойства титана могут быть повышены нагартовкой но при этом сильно снижаются пластические свойства. Снижение характеристик пластичности выражено сильнее, чем повышение характеристик прочности, так что нагартовка не самый лучший способ улучшения комплекса свойств титана. К недостаткам титана следует отнести высокую склонность к водородной хрупкости, в связи с чем содержание водорода не должно превышать 0,008 % в титане ВТ1 - 00 и 0,01 % в ВТ1 - 0.

Сплав ВТ5 (ВТ5Л)

Сплав ВТ5 (ВТ5Л) легирован только алюминием. Алюминий относится к числу наиболее распространенных легирующих элементов в титановых сплавах. Это обусловлено следующими преимуществами алюминия перед остальными легирующими компонентами:

а) алюминий широко распространен в природе, доступен и сравнительно дешев;

б) плотность алюминия значительно меньше плотности титана, и поэтому введение алюминия повышает их удельную прочность;

в) с увеличением содержания алюминия повышается жаропрочность и сопротивление ползучести сплавов титана;

г) алюминий повышает модули упругости;

д) с увеличением содержания алюминия в сплавах уменьшается их склонность к водородной хрупкости. Сплав ВТ5 отличается от технического титана большей прочностью и жаропрочностью. Вместе с тем алюминий значительно уменьшает технологическую пластичность титана. Сплав ВТ5 деформируется в горячем состоянии: куется, прокатывается, штампуется. Из него изготовляют прутки, профили, поковки, штамповки. Тем не менее, его предпочитают применять не в деформированном состоянии, а в виде фасонного литья (в этом случае ему присваивают марку ВТ5Л). Сплав предназначен для изготовления деталей систем управления, внутреннего набора фюзеляжа, сварных деталей и узлов, длительно работающих (10 000 ч) при температурах до 400 °С.

Сплав ВТ5-1

Сплав ВТ5-1 относится к системе Ti-Al-Sn. Олово улучшает технологические свойства сплавов титана с алюминием, замедляет их окисление, повышает сопротивление ползучести. Этот сплав, по прочностным характеристикам относится к материалам средней прочности, мало чувствителен к надрезу, имеет удовлетворительный предел выносливости, сохраняет значительную жаропрочность до 450 °С. Сплав ВТ5-1 более технологичен, чем ВТ5, и из него изготавливают все виды полуфабрикатов, получаемых обработкой давлением, в том числе: листы, плиты, поковки, штамповки, профили, трубы и проволоку. Сплав сваривается всеми видами сварки, причем сварные соединения и основной металл почти равнопрочны. Сплав термически не упрочняется. При применении этого сплава для работы при криогенных температурах содержание примесей должно быть сведено к минимуму, так как они вызывают хладноломкость, состав сплава с пониженным содержанием примесей обозначают ВТ5-1кт. За рубежом сплав Ti-5A1-2,5Sn аналогично применяют в двух вариантах: для обычного назначения и для работы при криогенных температурах. Во втором случае также ограничивают содержание примесей и обозначают сплав как Ti-5AI-2,5Sn ELI.

Сплав ПТ-7М

Сплав ПТ-7М относится к малолегированным, малопрочным и высокопластичным сплавам системы Ti-Al-Zr. Он довольно легко деформируется не только при повышенных, но и комнатной температуре, что обусловлено небольшим содержанием в нем алюминия. Сплав производится в основном в форме горячепрессованных, горячекатаных и холоднодеформированных труб. Высокая пластичность сплава позволяет получать из него особо тонкостенные трубы. Сплав ПТ-7М применяют в основном для изготовления различного рода трубопроводов, работающих при комнатной и повышенных температурах в агрессивных средах.

Сплав ОТ4-0

Сплав ОТ4-0 малой прочности и высокой технологичности. Марганец повышает технологичность при горячей обработке давлением. Сплав псевдо- α -класса с небольшим количеством β-фазы. Термически не упрочняется. Основными полуфабрикатами являются: листы, ленты, полосы, прутки, поковки, штамповки. Хорошо деформируется в горячем и холодном состояниях, допускает штамповку при комнатной температуре; хорошо сваривается всеми видами сварки. Используется в деталях для изготовления которых требуется высокая технологичность при холодной штамповке.

Сплав ОТ4-1

Сплав ОТ4-1 относится к числу наиболее технологичных титановых сплавов; является малопрочным, малолегированным псевдо а-сплавом системы Ti-Al-Mn. Он хорошо деформируется в горячем и холодном состояниях и предназначен в основном для изготовления листов, лент и полос. Из них получают также плиты, поковки, прутки, трубы и профили. Листовая штамповка деталей простой формы может производиться в холодном состоянии; при штамповке деталей сложной формы необходим подогрев до 500°С. Сплав хорошо сваривается всеми видами сварки, причем прочность и пластичность сварного соединения практически одинаковы с основным металлом. Сплав ОТ4-1 предназначен для изготовления деталей, работающих до температуры 350 °С в течение не более 2000 ч и до 300 °С - не более 30 000 ч и изготавливаемых с применением сварки, штамповки и гибки. В отожженном состоянии сплав ОТ4-1 применяется для изготовления деталей типа обшивок крыла, закрылков, внутреннего набора крыла. Полный отжиг проводится при 640-690°С (листовые полуфабрикаты и детали из них) и при 740-790°С (прутки, поковки, штамповки и т.п. и детали из них); неполный отжиг - при 520-560°С. Недостатки этого сплава: сравнительно невысокая прочность; очень большая склонность к водородной хрупкости (содержание водорода не должно превышать 0,005%).

Псевдо α -сплав ОТ4

Псевдо α -сплав ОТ4 относится к той же системе Ti-A1-Мп, что и ОТ4-1, но отличается от него большим содержанием алюминия. В связи с этим он прочнее сплава ОТ4-1. Этот сплав средней прочности. Вместе с тем сплав ОТ4 менее пластичен и технологичен, чем сплав ОТ4-1. Сплав хорошо деформируется в горячем и ограниченно холодном состояниях. Его поставляют в виде листов, плит, профилей, труб, прутков. Основные операции листовой штамповки (вытяжка, гибка, отбортовка) осуществляются в холодном состоянии. При штамповке сложных по конфигурации деталей требуется подогрев. Сплав ОТ4 хорошо сваривается аргонодуговой, контактной (точечной, роликовой, стыковой) и электронно-лучевой сваркой. Сплав обладает хорошей термической стабильностью и предназначен для изготовления деталей, работающих при температурах до 350°С в течение 2000 ч и до 300°С - 30 000 ч. Сплав термически не упрочняется, единственный вид термической обработки, которому он подвергается, это полный или неполный (для снятия остаточных напряжений) отжиг. Полный отжиг проводят при 660-710°С (листовые полуфабрикаты и детали из них) и при 740-790°С (прутки, поковки, штамповки и т.п. и детали из них); неполный отжиг - при 545-585 °С.

Сплав ВТ18 (ВТ18У)

Сплав ВТ18 (ВТ18У) системы Ti-Al-Zr-Mo-Nb-Si относится к высокопрочным псевдо α -сплавам. Большое содержание алюминия и циркония обеспечивает высокое сопротивление ползучести и высокую длительную прочность до температур 550 - 600°С. Это один из наиболее жаропрочных титановых сплавов. Пластические свойства и технологичность при обработке давлением у сплава ВТ18 ниже, чем у сплавов типа ОТ4. Поэтому он предназначен в основном для производства прутков, поковок и штамповок.
Оптимальное сочетание свойств сплава обеспечивает отжиг при температурах 900 - 950 °С, выдержка 1 - 4 ч, охлаждение на воздухе. Помимо этого применяют двойной отжиг: при 900 - 980 °С 1 - 4 ч + при 550 - 680 °С 2 - 8 ч, что позволяет получить более высокое сопротивление разрыву сплава при 600 °С (770 МПа вместо 670 МПа). Сплав ВТ 18 рекомендуется для деталей, работающих длительно (до 500 ч) при 550 - 600 °С и кратковременно (детали разового действия) - до 800 °С.

Псевдо α -сплав ВТ18У

Псевдо a-сплав ВТ18У отличается от ВТ18 более низким содержанием алюминия и циркония, а также дополнительным легированием оловом. В связи с этим он несколько технологичнее ВТ18. Поэтому из него получают не только прутки, поковки и штамповки, но и листы, хотя и с большим трудом. Термическая обработка полуфабрикатов из сплава ВТ18У производится по режимам, принятым для сплава ВТ18. По жаропрочным свойствам сплав ВТ18У не уступает сплаву ВТ 18 и рекомендуется для тех же условий эксплуатации, что и сплав ВТ 18.

Псевдо α -сплав ВТ20

Псевдо α -сплав ВТ20 принадлежит к системе Ti-Al-Zr-Mo-V. Довольно высокое содержание алюминия обеспечивает значительную прочность и жаропрочность этого сплава. Его пластичность и технологичность при обработке давлением ниже, чем у сплавов типа ОТ4. Тем не менее он хорошо деформируется в горячем состоянии и поставляется в виде поковок и штамповок толщиной до 250 мм, профилей, прутков, плит и листа. В листовом варианте этот сплав по жаропрочным характеристикам уступает только сплаву ВТ18У. Из этого сплава изготовляют сварные кольца из горячекатаных и прессованных профилей, а также цельнокатаные кольца. Сплав хорошо сваривается всеми видами сварки, применяемыми для титановых сплавов. Механические свойства сварного соединения не уступают свойствам основного металла. Сплав ВТ20 может свариваться с титановыми сплавами ВТЗ-1, ОТ4, ОТ4-1, ВТ5-1, ВТ6, ВТ14, ВТ5Л, ВТ21Л. Этот сплав поставляется также в виде фасонного литья под маркой ВТ20Л.

Единственным видом термической обработки сплава ВТ20 является отжиг. Полный отжиг проводят при температурах 700-800 °С для снятия наклепа от предшествующих операций обработки давлением. Неполный отжиг листов и прутков для снятия остаточных напряжений проводят при 600-650 °С. Сварные соединения отжигают при

650-750 °С. Сплав ВТ20 применяют для изготовления обшивок крыла, деталей и сварных узлов, длительно работающих при температурах от -70 до 450 °С (6000 ч) - 500 °С (3000 ч).

Сплавы типа ВТ6

Сплавы типа ВТ6 (Ti-6A1-4V) (a + b)-класса относятся к числу наиболее распространенных за рубежом титановых сплавов. Сплав Ti-6А1-4V используется для изготовления крупногабаритных сварных и сборных конструкций летательных аппаратов, для изготовления баллонов, работающих под внутренним давлением в широком интервале температур от 196 до 450 °С, и целого ряда других конструктивных элементов. По данным зарубежной печати, около 50 % используемого в авиакосмической промышленности титана приходится на сплав Ti-6A1-4V, аналогом которого являются отечественные сплавы типа ВТ6.

Такое широкое распространение этого сплава объясняется удачным его легированием. Алюминий в сплавах системы Ti-Al-V повышает прочностные и жаропрочные свойства, а ванадий относится к числу тех немногих легирующих элементов в титане, которые повышают не только прочностные свойства, но и пластичность.

Наряду с высокой удельной прочностью сплавы этого типа обладают меньшей чувствительностью к водороду по сравнению со сплавами ОТ4 и ОТ4-1, низкой склонностью к солевой коррозии и хорошей технологичностью.

Сплавы хорошо деформируются в горячем состоянии. Из сплавов типа ВТ6 получают прутки, трубы, профили, поковки, штамповки, плиты, листы. Они свариваются всеми традиционными видами сварки, в том числе и диффузионной. При сварке ЭЛС прочность сварного шва практически равна прочности основного материала, что выгодно отличает этот сплав от ВТ22. Сплавы типа ВТ6 применяют в отожженном и термически упрочненном состояниях. Отжиг листов, тонкостенных труб, профилей и деталей из них обычно проводят при 750-800 °С с последующим охлаждением на воздухе или вместе с печью. Отжиг прутков, поковок, штамповок и других крупногабаритных полуфабрикатов и деталей из них проводят при 750-800 "С. Охлаждение вместе с печью крупных полуфабрикатов предотвращает их коробление, а для мелких деталей позволяет избежать.частичной закалки. Однако в последнее время было доказано, что целесообразно повысить температуру отжига до 900-950 °С, что приведет к повышению вязкости разрушения и ударной вязкости при сохранении высоких пластических свойств из-за формирования смешанной структуры с большой долей пластинчатой составляющей. Двойной отжиг также позволяет повысить вязкость разрушения и сопротивление коррозионному

Сплав ВТ14

Сплав ВТ14 относится к высокопрочным термически упрочняемым титановым (α + β )-сплавам мартенситного типа системы Ti-A1-Мо-V. Этот сплав хорошо деформируется в горячем состоянии и из него получают прутки, трубы, профили, листы, плиты, поковки, штамповки. Листовую штамповку сплава в отожженном или закаленном состоянии с небольшими деформациями можно проводить в холодном состоянии, но основные операции штамповки удается успешно провести лишь при повышенных температурах.

Сплав удовлетворительно сваривается всеми видами сварки, применяемыми для титана. Для восстановления пластичности сварного соединения после сварки необходимо проводить отжиг. Сплав применяют в отожженном и термически упрочненном состояниях. Отжиг листов, прутков, поковок, штамповок и деталей из них осуществляют при температурах 740-810 °С. Термическое упрочнение состоит из закалки с температуры 870-910 °С и старения при 480- 560 °С в течение 8 - 16 ч. Сплав рекомендован для изготовления штампосварных конструкций, длительно работающих при температурах до 400 °С.

Сплав ВТ16

Сплав ВТ16 относится к высокопрочным (α + β )-сплавам той же системы Ti-A1-Мо-V, что и ВТ 14, но отличается от последнего меньшим содержанием алюминия и большим содержанием Р-стабилизаторов. В связи с этим сплав ВТ 16 по сравнению со сплавом ВТ 14 содержит больше β -фазы в отожженном состоянии (10 % - в ВТ14, 25-30 % - в ВТ16). Благодаря высокому содержанию β -фазы сплав ВТ 16 отличается высокой технологичностью. Он хорошо деформируется не только в горячем, но и в холодном состоянии, что обусловлено не только (α + β )-структурой, но и невысоким содержанием алюминия. Хотя,из сплава ВТ 16 можно изготавливать почти все виды полуфабрикатов, основная часть продукций из него - проволока и прутки диаметром от 4 до 20 мм, полученные прокаткой или волочением. Это связано с тем, что сплав ВТ 16 предназначен в основном для изготовления деталей крепления: болтов, винтов, заклепок и т.д. Состав этого сплава подбирался специально к условиям работы этих деталей.

К структуре прутков, предназначенных для изготовления деталей крепления, предъявляются довольно строгие требования: она должна быть мелкозернистая и однородная. Помимо этого, предъявляются повышенные требования к геометрическим размерам прутков и качеству их поверхности. Состав сплава ВТ 16 определяет также хорошую его свариваемость и высокую пластичность сварного соединения непосредственно после сварки. Сплав ВТ16 применяют в отожженном и термически упрочненном состояниях. Листы, тонкостенные трубы, профили и детали из них отжигают при температурах 680-790 °С, а прутки, толстостенные трубы и профили при 770-790 °С. Для термического упрочнения сплав закаливают с 780-830 °С и затем подвергают старению при 560-580 °С в течение 4-10 ч. Сплав в закаленном и состаренном состоянии с временным сопротивлением разрыву, 1200 МПа мало чувствителен к концентраторам напряжений: надрезу, перекосу и т.п. Сплав ВТ 16 может применяться для изготовления деталей крепления и других элементов самолетных конструкций длительной работы при температурах до 350 °С.

Сплав ВТЗ-1

Сплав ВТЗ-1 системы Ti-Al-Mo-Cr-Fe-Si относится к высокопрочным (α + β ) - сплавам мартенситного класса. Алюминий в сплаве ВТЗ-1 упрочняет а- и b-фазы и уменьшает плотность сплава. Эвтектоидообразующие β -стабилизаторы хром, железо и кремний упрочняют α - и β -фазы и повышают прочностные и жаропрочные свойства при умеренных температурах. Молибден не только увеличивает прочностные и жаропрочные свойства сплава, но и затрудняет эвтектоидный распад b-фазы, повышая термическую стабильность.

Сплав хорошо деформируется в горячем состоянии; из него получают катаные, прессованные и кованые прутки, катаные и прессованные профили, различные поковки и штамповки, полосы, плиты, раскатные кольца, в опытном порядке - трубы. Сплав удовлетворительно сваривается всеми видами сварки, применяемыми для титана. После сварки необходимо проводить отжиг для восстановления пластичности сварного соединения.

Изделия из сплава ВТЗ-1 обычно применяют после изотермического отжига, который состоит из нагрева при температурах 870- 920 °С и изотермической выдержки при 630-680 °С в течение 2-5 ч с последующим охлаждением на воздухе. После такого отжига сплав приобретает стабильную (а + b)-структуру, которая обеспечивает наиболее высокую термическую стабильность и максимальную пластичность. После одинарного отжига при температурах 800-850 °С сплав имеет большую прочность, чем после изотермического, но меньшие пластичность и термическую стабильность. Прочностные свойства сплава можно несколько повысить закалкой при 840-900 °С с последующим старением при 500-620 °С в течение 1-4 ч. Однако упрочняющая термическая обработка применяется редко, так как приводит к снижению термической стабильности сплава.

Сплав ВТЗ-1 используется при изготовлении деталей двигателей, работающих длительное время (до 6000 ч и более) при температурах до 400 °С; деталей типа арматуры, ушковых болтов; деталей системы управления. В последнее время наметилась тенденция к замене сплава ВТЗ-1 сплавом ВТ6, по-видимому, в основном в связи с тем, что сплав Ti-6A1-4V успешно используется многие годы в зарубежной практике для изготовления самых ответственных конструкций. Дополнительным легированием удается повысить прочностные свойства сплава Ti-6A1-4V при сохранении удовлетворительной пластичности, мо механические свойства сварных соединений при этом значительно ухудшаются, так что при свариваемости, в частности, электронно-лучевой сваркой, сплавы типа ВТ6 не имеют себе равных, кроме, может быть, сплава ВТ20.

Сплав ВТ22

Сплав ВТ22 (α + β )-класса относится к сильнолегированным высокопрочным сплавам системы Ti-Al-Mo-V-Fe-Cr. По содержанию b-стабилизирующих элементов сплав 1ГГ22 близок ко второй критической концентрации (К* ~ 1,0). Структура и свойства сплава ВТ22 сильно зависят от колебания химического состава в пределах, установленных техническими условиями. В зависимости от содержания легирующих элементов его структура после закалки из β -области может быть представлена или одной β -фазой, или β -фазой и мартенситом. Таким образом, по структуре в закаленном состоянии - это сплав переходного класса.

Сплав обладает хорошей технологической пластичностью при горячей обработке давлением. Из него получают прутки, профили, трубы, поковки, штамповки, плиты. Сплав удовлетворительно сваривается сваркой плавлением, аргонодуговой сваркой, сваркой под флюсом, роликовой и точечной сваркой. После сварки необходимо проводить отжиг для повышения комплекса механических свойств сварного соединения.

Сплав ВТ22 применяют в отожженном и термически упрочненном состояниях. Структура отожженного сплава ВТ22 представлена примерно равными количествами а- и b-фаз, и поэтому он относится к самым прочным титановым сплавам в отожженном состоянии. Его прочностные свойства в отожженном состоянии такие же, как у сплавов ВТ6, ВТЗ-1, ВТ 14 после закалки и старения. Это открывает новые возможности использования титановых сплавов в крупногабаритных изделиях, когда упрочняющая термическая обработка затруднена. Из сплава ВТ22 могут быть изготовлены поковки и штамповки массой в несколько тонн.

Для обеспечения наилучшего сочетания прочностных и пластических характеристик сплав ВТ22 подвергают отжигу по довольно сложному режиму: нагрев при 820-850 °С в течение 1-3 ч, охлаждение с печью до 740-760 °С, выдержка 1-3 ч, далее охлаждение на воздухе и последующий нагрев до 500-650 °С в течение 2-4 ч. .Дополнительное упрочнение сплава ВТ22 может быть достигнуто закалкой с температур 720-780 °С и старением при 480-600 °С в течение 4-10 ч. Временные сопротивление разрыву закаленного сплава составляет 1000-1100 МПа при удлинении 10-15 %, а состаренного - 1300-1600 МПа при удлинении 5-10 %. Сплав предназначен для получения высоконагруженных деталей и конструкций, длительно работающих до температур 350-400 °С. Из него изготавливают силовые детали фюзеляжа, крыла, штамповки, детали системы управления, крепежные детали типа ушковых болтов.

Сплав ВТ9

Сплав ВТ9 обеспечивает более высокие прочностные и жаропрочные свойства по сравнению со сплавом ВТ6 за счет высокого содержания алюминия и легированием кремния. Предназначен для работы при 400 - 500 °С. Двойной отжиг обеспечивает оптимальное сочетание механических свойств; содержание β - фазы после отжига примерно 10%. Сплав термически упрочняется путем закалки и старения. Основными вида полуфабриката являются прутки, поковки, штамповки и плиты. Удовлетворительно деформируется в горячем состоянии. Технологические свойства при обработке давлением хуже, чем у сплава ВТ6. Сварка не рекомендуется. В основном применяется в деталях ГТД (дисках, лопатках) и других деталях компрессора.

Сплав ВТ8

Сплав ВТ8 обеспечивает более высокие прочностные и жаропрочные свойства по сравнению со сплавом ВТ6 за счет высокого содержания алюминия и легированием кремния. Максимальная рабочая температура 480 0С. Сплавы ВТ8-1 и ВТ8-1М превосходят сплавы ВТ3-1 и ВТ9 по термической стабильности, пластичности, технологичности и характеристикам трещиностойкости. Двойной и изотермический отжиги обеспечивают оптимальное сочетание свойств; содержание β - фазы в отожженном сплаве примерно 10%. Сплав термически упрочняется. Основными вида полуфабриката являются прутки, поковки, штамповки и плиты. Удовлетворительно деформируется в горячем состоянии. Технологические свойства при обработке давлением хуже, чем у сплава ВТ6. Сварка не рекомендуется. В основном применяется в деталях ГТД (дисках, лопатках компрессора низкого давления, деталях крепления вентилятора).

Сплав ВТ35

Сплав ВТ35 высоколегированный псевдо - β - сплав с β - фазой, легко сохраняющейся при охлаждении; сплав ВТ35Л сохраняет b фазу в процессе естественного охлаждения. Обладает большой прокаливаемостыо. В закаленном состоянии сплав обладает высокой пластичностью и способен к холодной деформации. Старение приводит к существенному упрочнению (σ b > 1200МПа; δ = 6%) при высокой вязкости разрушения. Применяется для изготовления листов, фольги, фасонных отливок. Удовлетворительно обрабатывается давлением в горячем состоянии; после закалки способен к холодной деформации. В основном используется в сотовых

Титан (Titanium), Ti,- химический элемент IV группы периодической системы
элементов Д. И. Мен­делеева. Порядковый номер 22, атомный вес 47,90. Состоит
из 5 устойчивых изотопов; получены также искус­ственно радиоактивные изотопы.

В 1791 году английский химик У. Грегор нашёл в песке из местечка Менакан
(Англия, Корнуолл) новую «зем­лю», названную им менакановой. В 1795 году
немецкий химик М. Клаирот открыл в минерале рутиле неизвестную еще землю, металл которой он назвал Титан [в греч. мифологии титаны - дети Урана (Неба) и Геи (Земли)]. В 1797 году Клапрот доказал тождество этой земли с открытой У. Грегором. Чистый титан выде­лен в 1910 году американским химиком Хантером посредством восстановления четырёххлористого титана натрием в железной бомбе.

Нахождение в природе

Титан относится к числу наиболее распространённых в природе элементов, его
содержание в земной коре составляет 0,6% (весовых). Встречается главным образом
в ви­де двуокиси TiO2 или её соединений - титанатов. Известно свыше
60 минералов, в состав которых входит титан Он содержится также в поч­ве, в
животных и растительных организмах. Ильме­нит FeTiO3 и
рутил TiO2 служат основным сырьём для получения титана. В
качестве источника титана приобретают значение шлаки от плавки
титано-магнетитов и ильменита.

Физические и химические свойства

Титан существует в двух состояниях: аморфный - темносерый порошок, плотность 3,392-3,395г/см3, и кристаллический, плотность 4,5 г/см
3. Для кристаллического титана известны две модификации с точкой
перехода при 885° (ниже 885° устойчивая гексагональная фор­ма, выше -
кубическая); t°пл. ок. 1680°; t кип. выше 3000°. Титан активно поглощает газы (водород, кислород, азот), которые делают его очень
хрупким. Технический металл поддаётся горячей обработ­ке давлением. Совершенно чистый металл может быть прокатан на холоду. На воздухе при обыкновенной температуре титан не изменяется, при накаливании образует смесь окиси Ti2 O3 и нитрида TiN. В токе кислорода при красном калении окисляется до двуокиси TiO2. При высоких температурах реаги­рует с углеродом,
кремнием, фосфором, серой и др. Устойчив к морской воде, азотной кислоте,
влажному хлору, органическим кислотам и сильным щелочам. Рас­творяется в
серной, соляной и плавиковой кислотах, лучше всего - в смеси HF и HNO3
. Добавление к кислотам окислителя предохраняет металл от кор­розии при
комнатной температуре. В соединениях проявляет валентность 2, 3 и 4. Наиболее устойчивы и имеют наибольшее практическое значение соединения Ti(IV). Наименее устойчивы производные Ti(II). Соединения Ti(III) устойчивы в растворе и являются сильными восстановителями. С кислородом титан даёт амфотерную двуокись титана, закись Ti0 и окись Ti2O3, имеющие
основной характер, а также некоторые промежуточные окислы и перекись TiO3
. Галогениды четырёхвалентного титана, за исключением TiCl4 -
кристаллические тела, легкоплавкие и летучие в водном растворе гидрализованы, склонны к образованию комплексных соединений, из которых в технологии и аналитической практике имеет значение фтортитанат калия K2TiF6. Важное значение имеют карбид TiC и нитрид TiN- металлоподобные вещества, отличающиеся большой твёрдостью (карбид титан тверже карборунда), туго­плавкостью (TiC, t°пл. 3140°; TiN, t°пл. 3200°) и хо­рошей
электропроводностью.

Получение

Соединения титана получили применение в промышлен­ности в начале 20 в.
Организация производства титана относится к 1946 (в 1948 выплавлено 10 m, 72OO т в 1954 и ок. 20000 т в 1955). Способ получония основан на
восстановлении четырёххлористого титана металлическим магнием в атмосфере
аргона или гелия. Компактный металл получается переплавкой в дуговых печах.
Компактный металл высокой чистоты образуется при термической диссоциации
тетраиодида титана. Большое значение приобрело восстановление TiCI4
натрием вместо магния.

Титан – один из загадочных, малоизученных макроэлементов в науке и жизни человека. Хотя его не зря называют «космическим» элементом, т.к. он активно применяется в передовых отраслях науки, техники, медицины и во многом другом – это элемент будущего.

Этот металл серебристо-серого цвета (см. фото), не растворим в воде. Он у него небольшая химическая плотность, поэтому ему характерна легкость. В то же время он очень прочен и легко поддается обработке из-за своей плавкости и пластичности. Элемент химически инертен благодаря наличию на поверхности защитной пленки. Титан не горюч, но его пыль взрывоопасна.

Открытие этого химического элемента принадлежит большому любителю минералов англичанину Уильяму Мак-Грегору. Но своим названием титан обязан все же химику – Мартину Генриху Клапроту, который обнаружил его независимо от Мак-Грегора.

Предположения о причинах, по которым этот металл назвали «титаном» романтичны. По одной версии, название связано с древнегреческими богами Титанами, родителями которых являлись бог Уран и богиня Гея, а вот согласно второй, оно происходит от имени королевы фей – Титании.

Как бы там ни было, этот макроэлемент девятый по нахождению в природе. Он входит в состав тканей представителей флоры и фауны. Много его в морской воде (до 7%), а вот в почве его содержится всего 0,57%. Наиболее богат запасами титана Китай, за ним идет Россия.

Действие титана

Действие макроэлемента на организм обусловлено его физико-химическими свойствами. Его частицы очень малы, они могут проникать в клеточную структуру и влиять на ее работу. Считается, что из-за своей инертности макроэлемент не взаимодействует химически с раздражителями, и поэтому не токсичен. Однако он вступает в связь с клетками тканей, органов, крови, лимфы посредством физического действия, что приводит к их механическому повреждению. Так, элемент может своим действием привести к повреждению одно- и двухцепочной ДНК, повредить хромосомы, что может привести к риску развития рака и сбоя в генетическом коде.

Выяснилось, что частицы макроэлемента не способны пройти через кожу. Поэтому попадают они внутрь человека только с едой, водой и воздухом.

Титан лучше усваивается через желудочно-кишечный тракт (1-3%), а вот через дыхательные пути всасывается только около 1%, однако содержание его в организме сконцентрировано как в легких (30%). С чем это связано? Проанализировав все вышеуказанные цифры, можно прийти к нескольким выводам. Во-первых, титан вообще плохо усваивается организмом. Во-вторых, через ЖКТ идет выведение титана через кал (0,52 мг) и мочу (0,33 мг), а вот в легких такой механизм слабый или вовсе отсутствует, так как с возрастом у человека концентрация титана в этом органе возрастает практически в 100 раз. Чем же обусловлена такая большая концентрация при таком слабом всасывании? Скорее всего, это связано с постоянной атакой на наш организм пыли, в которой всегда присутствует титановая составляющая. Кроме того в данном лучае нужно учитывать нашу экологию и наличие промышленных мощностей вблизи населенных пунктов.

По сравнению с легкими, в остальных органах, таких как селезенка, надпочечники, щитовидная железа, содержание макроэлемента на протяжении всей жизни остается неизменным. Также присутствие элемента наблюдается в лимфе, плаценте, головном мозге, женском грудном молоке, костях, ногтях, волосах, хрусталике глаза, тканях эпителия.

Находясь в костях, титан участвует в их срастании после переломов. Также положительное действие наблюдается в восстановительных процессах, происходящих в поврежденных подвижных соединениях костей при артритах и артрозах. Этот металл является сильным антиоксидантом. Ослабляя действие свободных радикалов на клетки кожи и крови, он защищает весь организм от преждевременного старения и изнашивания.

Концентрируясь в отделах мозга, отвечающих за зрение и слух, положительно влияет на их функционирование. Нахождение металла в надпочечниках и щитовидной железе подразумевает его участие в вырабатывании гормонов, участвующих в обмене веществ. Он также задействован в выработке гемоглобина, выработке эритроцитов. Снижая в крови содержание холестерина и мочевины, следит за ее нормальным составом.

Негативное действие титана на организм связано с тем, что он является тяжелым металлом . Попадая в организм, он не расщепляется и не разлагается, а оседает в органах и тканях человека, отравляя его и вмешиваясь в процессы жизнедеятельности. Он не подвержен коррозии и устойчив к действию щелочей и кислот, поэтому желудочный сок не способен на него воздействовать.

Соединения титана имеют способность не пропускать коротковолновое ультрафиолетовое излучение и не всасываются через кожу, поэтому их можно использовать для защиты кожи от ультрафиолета.

Доказано, что курение увеличивает поступление металла в легкие из воздуха во много раз. Это ли не повод бросить эту вредную привычку!

Суточная норма - какова потребность в химическом элементе?

Суточная норма макроэлемента обусловлена тем, что в теле человека содержится примерно 20 мг титана, из них 2,4 мг – в легких. Каждый день с пищей организм приобретает 0,85 мг вещества, с водой – 0,002 мг, а с воздухом – 0,0007 мг. Суточная норма для титана очень условна, так как последствия его влияния на органы до конца не изучено. Приблизительно она равняется около 300-600 мкг в сутки. Нет никаких клинических данных о последствиях превышения этой нормы – все на стадии опытных исследований.

Недостаток титана

Состояния, при которых бы наблюдался недостаток металла, не выявлены, поэтому ученые пришли к выводу, что их в природе не существует. Но его дефицит наблюдается при большинстве тяжелых заболеваний, что может ухудшить состояние больного. Этот недостаток можно убрать титаносодержащими препаратами.

Влияние избытка титана на организм

Избыток макроэлемента единоразового поступления титана в организм не выявлен. Если, предположим, человек проглотил титановый штифт, то, по всей видимости, об отравлении говорить не приходится. Скорее всего, из-за своей инертности элемент не вступит в контакт, а выведется естественным путем.

Большую опасность вызывает систематическое увеличение концентрации макроэлемента в органах дыхания. Это приводит к повреждению дыхательной и лимфатической систем. Также есть непосредственная связь между степенью протекания силикоза и содержанием элемента в органах дыхания. Чем больше его содержание, тем тяжелее протекает болезнь.

Избыток тяжелого металла наблюдается у людей, работающих на химических и металлургических предприятиях. Наиболее опасен хлорид титана – за 3 рабочих года начинается проявление тяжелых хронических заболеваний.

Такие заболевания лечат специальными препаратами и витаминами.

Каковы источники?

Элемент попадает в организм человека в основном с пищей и водой. Больше всего его в бобовых (горох, фасоль, чечевица, бобы) и в злаковых (рожь, ячмень, гречка, овес). Выявлено его присутствие в молочных и мясных блюдах, а также в яйцах. В растениях сконцентрировано больше этого элемента, чем в животных. Особенно высоко его содержание в водоросли – кустистой кладофоре.

Во всех продуктах питания, где присутствует пищевой краситель Е171, содержится диоксид этого металла. Его применяют в изготовлении соусов и приправ. Вред этой добавки находится под вопросом, так как оксид титана практически не растворим в воде и желудочном соке.

Показания к применению

Показания к применению элемента, несмотря на то, что этот космический элемент еще мало изучен, есть, он активно применяется во всех сферах медицины. Из-за своей прочности, коррозионной стойкости и биологической инертности, он широко применяется в сферах протезирования для изготовления имплантантов. Его применяют в стоматологии, нейрохирургии, ортопедии. Благодаря долговечности из него изготавливают хирургические инструменты.

Диоксид этого вещества используют в лечении болезней кожи, таких как хейлит, герпес, угревая сыпь, воспаление слизистой рта. Им удаляют гемангиому лица.

Никелид металла задействован в устранении местно-распространенного рака гортани. Его используют для эндопротезирования гортани и трахеи. Также он применяется для лечения инфицированных ран в сочетании с растворами антибиотиков.

Аквакомплекс глицеросольвата макроэлемента способствует заживлению язвенных ран.

Для ученых по всему миру открыто много возможностей для изучения элемента будущего, так как его физико-химические свойства высоки и могут принести безграничную пользу для человечества.

Титан в виде оксида (IV) был открыт английским любителем-минералогом У. Грегором в 1791 году в магнитных железистых песках местечка Менакан (Англия); в 1795 году немецкий химик М. Г. Клапрот установил, что минерал рутил представляет собой природный оксид этого же металла, названного им "титаном" [в греческой мифологии титаны - дети Урана (Неба) и Геи (Земли)]. Выделить Титан в чистом виде долго не удавалось; лишь в 1910 году американский ученый М. А. Хантер получил металлический Титан нагреванием его хлорида с натрием в герметичной стальной бомбе; полученный им металл был пластичен только при повышенных температурах и хрупок при комнатной из-за высокого содержания примесей. Возможность изучать свойства чистого Титана появилась только в 1925, когда нидерландские ученые А. Ван-Аркел и И. де Бур методом термической диссоциации иодида титана получили металл высокой чистоты, пластичный при низких температурах.

Распространение Титана в природе. Титан - один из распространенных элементов, среднее содержание его в земной коре (кларк) составляет 0,57% по массе (среди конструкционных металлов по распространенности занимает 4-е место, уступая железу, алюминию и магнию). Больше всего Титана в основных породах так называемых "базальтовой оболочки" (0,9%), меньше в породах "гранитной оболочки" (0,23%) и еще меньше в ультраосновных породах (0,03%) и др. К горным породам, обогащенным Титаном, относятся пегматиты основных пород, щелочные породы, сиениты и связанные с ними пегматиты и другие. Известно 67 минералов Титан, в основном магматического происхождения; важнейшие - рутил и ильменит.

В биосфере Титан в основном рассеян. В морской воде его содержится 10 -7 %; Титан - слабый мигрант.

Физические свойства Титана. Титан существует в виде двух аллотропических модификаций: ниже температуры 882,5 °С устойчива α-форма с гексагональной плотноупакованной решеткой (а = 2,951Å, с = 4,679Å), a выше этой температуры - β-форма с кубической объемноцентрированной решеткой а = 3,269Å. Примеси и легирующие добавки могут существенно изменять температуру α/β превращения.

Плотность α-формы при 20°С 4,505 г/см 3 , a при 870°С 4,35 г/см 3 ; β-формы при 900°С 4,32 г/см 3 ; атомный радиус Ti 1,46 Å, ионные радиусы Ti + 0,94 А, Ti 2+ 0,78 Å, Ti 3+ 0,69 Å, Ti 4+ 0,64 Å; Т пл 1668 °С, Т кип 3227 °С; теплопроводность в интервале 20-25°С 22,065 вт/(м·К) ; температурный коэффициент линейного расширения при 20°С 8,5·10 -6 , в интервале 20-700°С 9,7·10 -6 ; теплоемкость 0,523 кдж/(кг·К) ; удельное электросопротивление 42,1·10 -6 ом·см при 20 °С; температурный коэффициент электросопротивления 0,0035 при 20 °С; обладает сверхпроводимостью ниже 0,38 К. Титан парамагнитен, удельная магнитная восприимчивость 3,2·10 -6 при 20 °С. Предел прочности 256 Мн/м 2 (25,6 кгс/мм 2), относительное удлинение 72% , твердость по Бринеллю менее 1000 Мн/м 2 (100 кгс/мм 2). Модуль нормальной упругости 108 000 Мн/м 2 (10 800 кгс/мм 2). Металл высокой степени чистоты ковок при обычной температуре.

Применяемый в промышленности технический Титан содержит примеси кислорода, азота, железа, кремния и углерода, повышающие его прочность, снижающие пластичность и влияющие на температуру полиморфного превращения, которое происходит в интервале 865-920 °С. Для технического Титана марок ВТ1-00 и ВТ1-0 плотность около 4,32 г/см 3 , предел прочности 300-550 Мн/м 2 (30-55кгс/мм 2), относительное удлинение не ниже 25%, твердость по Бринеллю 1150-1650 Мн/м 2 (115-165 кгс/мм 2). Конфигурация внешней электронной оболочки атома Ti 3d 2 4s 2 .

Химические свойства Титана. Чистый Титан - химически активный переходный элемент, в соединениях имеет степени окисления +4, реже +3 и +2. При обычной температуре и вплоть до 500-550 °С коррозионно устойчив, что объясняется наличием на его поверхности тонкой, но прочной оксидной пленки.

С кислородом воздуха заметно взаимодействует при температуре выше 600 °С с образованием ТiO 2 . Тонкая титановая стружка при недостаточной смазке может загораться в процессе механической обработки. При достаточной концентрации кислорода в окружающей среде и повреждении окисной пленки путем удара или трения возможно загорание металла при комнатной температуре и в сравнительно крупных кусках.

Оксидная пленка не защищает Титан в жидком состоянии от дальнейшего взаимодействия с кислородом (в отличие, например, от алюминия), и поэтому его плавка и сварка должны проводиться в вакууме, в атмосфере нейтрального газа или под флюсом. Титан обладает способностью поглощать атмосферные газы и водород, образуя хрупкие сплавы, непригодные для практическое использования; при наличии активированной поверхности поглощение водорода происходит уже при комнатной температуре с небольшой скоростью, которая значительно возрастает при 400 °С и выше. Растворимость водорода в Титане является обратимой, и этот газ можно удалить почти полностью отжигом в вакууме. С азотом Титан реагирует при температуре выше 700 °С, причем получаются нитриды типа TiN; в виде тонкого порошка или проволоки Титан может гореть в атмосфере азота. Скорость диффузии азота и кислорода в Титане значительно ниже, чем водорода. Получаемый в результате взаимодействия с этими газами слой отличается повышенными твердостью и хрупкостью и должен удаляться с поверхности титановых изделий путем травления или механической обработки. Титан энергично взаимодействует с сухими галогенами, по отношению к влажным галогенам устойчив, так как влага играет роль ингибитора.

Металл устойчив в азотной кислоте всех концентраций (за исключением красной дымящейся, вызывающей коррозионное растрескивание Титана, причем реакция иногда идет со взрывом), в слабых растворах серной кислоты (до 5% по массе). Соляная, плавиковая, концентрированная серная, а также горячие органических кислоты: щавелевая, муравьиная и трихлоруксусная реагируют с Титаном.

Титан коррозионно устойчив в атмосферном воздухе, морской воде и морской атмосфере, во влажном хлоре, хлорной воде, горячих и холодных растворах хлоридов, в различных технологических растворах и реагентах, применяемых в химической, нефтяной, бумагоделательной и других отраслях промышленности, а также в гидрометаллургии. Титан образует с С, В, Se, Si металлоподобные соединения, отличающиеся тугоплавкостью и высокой твердостью. Карбид TiC (t пл 3140 °С) получают нагреванием смеси TiO 2 с сажей при 1900-2000 °С в атмосфере водорода; нитрид TiN (t пл 2950 °С) - нагреванием порошка Титан в азоте при температуре выше 700 °С. Известны силициды TiSi 2 , TiSi и бориды TiB, Ti 2 B 5 , TiB 2 . При температуpax 400-600 °C Титан поглощает водород с образованием твердых растворов и гидридов (TiH, TiH 2). При сплавлении TiO 2 со щелочами образуются соли титановых кислот мета- и ортотитанаты (например, Na 2 TiO 3 и Na 4 TiO 4), а также полититанаты (например, Na 2 Ti 2 O 5 и Na 2 Ti 3 O 7). К титанатам относятся важнейшие минералы Титана, например, ильменит FeTiO 3 , перовскит CaTiO 3 . Все титанаты малорастворимы в воде. Оксид Титана (IV), титановые кислоты (осадки), а также титанаты растворяются в серной кислоте с образованием растворов, содержащих титанилсульфат TiOSO 4 . При разбавлении и нагревании растворов в результате гидролиза осаждается Н 2 ТiO 3 , из которой получают оксид Титана (IV). При добавлении перекиси водорода в кислые растворы, содержащие соединения Ti (IV), образуются перекисные (надтитановые) кислоты состава Н 4 ТiO 5 и H 4 TiO 8 и соответствующие им соли; эти соединения окрашены в желтый или оранжево-красный цвет (в зависимости от концентрации Титана), что используется для аналитического определения Титана.

Получение Титана. Наиболее распространенным методом получения металлического Титана является магниетермический метод, то есть восстановление тетрахлорида Титана металлическим магнием (реже - натрием):

TiCl 4 + 2Mg = Ti + 2MgCl 2 .

В обоих случаях исходным сырьем служат оксидные руды Титана - рутил, ильменит и другие. В случае руд типа ильменитов Титан в форме шлака отделяется от железа путем плавки в электропечах. Шлак (так же, как рутил) подвергают хлорированию в присутствии углерода с образованием тетрахлорида Титана, который после очистки поступает в восстановительный реактор с нейтральной атмосферой.

Титан по этому процессу получается в губчатом виде и после измельчения переплавляется в вакуумных дуговых печах на слитки с введением легирующих добавок, если требуется получить сплав. Магниетермический метод позволяет создать крупное промышленное производство Титана с замкнутым технологическим циклом, так как образующийся при восстановлении побочный продукт - хлорид магния направляется на электролиз для получения магния и хлора.

В ряде случаев для производства изделий из Титана и его сплавов выгодно применять методы порошковой металлургии. Для получения особо тонких порошков (например, для радиоэлектроники) можно использовать восстановление оксида Титана (IV) гидридом кальция.

Применение Титана. Основные преимущества Титана перед другими конструкционными металлами: сочетание легкости, прочности и коррозионной стойкости. Титановые сплавы по абсолютной, а тем более по удельной прочности (т. е. прочности, отнесенной к плотности) превосходят большинство сплавов на основе других металлов (например, железа или никеля) при температурах от -250 до 550 °С, а по коррозионности они сравнимы со сплавами благородных металлов. Однако как самостоятельный конструкционный материал Титан стал применяться только в 50-е годы 20 века в связи с большими техническими трудностями его извлечения из руд и переработки (именно поэтому Титан условно относили к редким металлам). Основная часть Титана расходуется на нужды авиационной и ракетной техники и морского судостроения. Сплавы Титана с железом, известные под названием "ферротитан" (20-50% Титана), в металлургии качественных сталей и специальных сплавов служат легирующей добавкой и раскислителем.

Технический Титан идет на изготовление емкостей, химические реакторов, трубопроводов, арматуры, насосов и других изделий, работающих в агрессивных средах, например, в химическом машиностроении. В гидрометаллургии цветных металлов применяется аппаратура из Титана. Он служит для покрытия изделий из стали. Использование Титана дает во многих случаях большой технико-экономический эффект не только благодаря повышению срока службы оборудования, но и возможности интенсификации процессов (как, например, в гидрометаллургии никеля). Биологическая безвредность Титана делает его превосходным материалом для изготовления оборудования для пищевой промышленности и в восстановительной хирургии. В условиях глубокого холода прочность Титана повышается при сохранении хорошей пластичности, что позволяет применять его как конструкционный материал для криогенной техники. Титан хорошо поддается полировке, цветному анодированию и других методам отделки поверхности и поэтому идет на изготовление различных художественных изделий, в т. ч. и монументальной скульптуры. Примером может служить памятник в Москве, сооруженный в честь запуска первого искусственного спутника Земли. Из соединений Титана практическое значение имеют оксиды, галогениды, а также силициды, используемые в технике высоких температур; бориды и их сплавы, применяемые в качестве замедлителей в ядерных энергетических установках благодаря их тугоплавкости и большому сечению захвата нейтронов. Карбид Титана, обладающий высокой твердостью, входит в состав инструментальных твердых сплавов, используемых для изготовления режущих инструментов и в качестве абразивного материала.

Оксид титана (IV) и титанат бария служат основой титановой керамики, а титанат бария - важнейший сегнетоэлектрик.

Титан в организме. Титан постоянно присутствует в тканях растений и животных. В наземных растениях его концентрация - около 10 -4 % , в морских - от 1,2·10 -3 до 8·10 -2 %, в тканях наземных животных - менее 2·10 -4 %, морских - от 2·10 -4 до 2·10 -2 %. Накапливается у позвоночных животных преимущественно в роговых образованиях, селезенке, надпочечниках, щитовидной железе, плаценте; плохо всасывается из желудочно-кишечного тракта. У человека суточное поступление Титана с продуктами питания и водой составляет 0,85 мг; выводится с мочой и калом (0,33 и 0,52 мг соответственно).

error: