Когда возникла физика? Основные разделы физики.

Введение к теме проекта

Физика — это наука о природе, изучающая наиболее общие свойства окружающего нас мира. Она изучает материю (вещество и поля) и наиболее простые и вместе с тем наиболее общие формы её движения, а также фундаментальные взаимодействия природы, управляющие движением материи.

Главная цель науки - выявить и объяснить законы природы, которыми определяются все физические явления, для использования их в целях практической деятельности человека.
Мир познаваем, и процесс познания бесконечен. Изучение окружающего нас мира показало, что материя находится в постоянном движении. Под движением материи понимают любое изменение, явление. Следовательно, окружающий нас мир - это вечно движущаяся и развивающаяся материя.

Физика изучает наиболее общие формы движения материи и их взаимные превращения. Некоторые закономерности являются общими для всех материальных систем, например, сохранение энергии, — их называют физическими законами.

Тепловые явления в природе и технике


Оглянемся вокруг себя, и станет понятно, что физические явления окружают нас с детства, что мы многие физические знания о мире приобретаем наряду с обычным житейским опытом.

Физику иногда называют «фундаментальной наукой», поскольку другие естественные науки (биология, геология, химия и др.) описывают только некоторый класс материальных систем, подчиняющихся законам физики.

Например, химия изучает атомы, образованные из них вещества и превращения одного вещества в другое. Химические же свойства вещества однозначно определяются физическими свойствами атомов и молекул, описываемыми в таких разделах физики, как термодинамика, электромагнетизм и квантовая физика.

Электрические явления в живой природе и техн ике

Магнитные явления на Зе мле


Развитие науки идёт по следующему пути. В основе лежит наблюдение за явлениями природы, затем проведение экспериментов, создание гипотез, справедливость которых подтверждается опытами. Если гипотеза экспериментально обоснована, то на её основе создаётся теория, объясняющая данное явление не только с качественной, но и с количественной стороны.

Физика тесно связана с математикой: математика предоставляет аппарат, с помощью которого физические законы могут быть точно сформулированы.

Физические теории почти всегда формулируются в виде математических выражений, причём используются более сложные разделы математики, чем обычно в других науках. И наоборот, развитие многих областей математики стимулировалось потребностями физических теорий.

Определение 1

Физика – это область естествознания, это наука о простейших и наиболее общих природных законах, о материи, ее движении и структуре. В основе всего естествознания лежат законы физики.

Впервые термин «физика» фигурирует в учениях Аристотеля, еще в $IV$ столетии до нашей эры. Изначально термин «философия» и термин «физика» были синонимами, поскольку в основе этих дисциплин было стремление объяснить законы Вселенной. Однако научная революция $XVI$ столетия привела к трансформации физики в отдельную дисциплину.

Предмет и значение физики в современном мире

Физика – это наука о естествознании, в общем смысле слова является частью природоведения. Предметом ее изучения является материя, в виде полей и вещества, а также общие формы ее движения. Также к предмету изучения физики можно отнести фундаментальные природные взаимодействия, которые управляют движением материи.

Общими для всех материальных систем являются некоторые закономерности, которые называются физическими законами. Часто физику называют фундаментальной наукой, поскольку иные естественные науки (биология, химия, геология) описывают только конкретные классы материальных систем, которые подчиняются физическим законам.

Предмет изучения химии – атомы, вещества, что состоят из них, а также превращение одних веществ в другие. Химические свойства любого вещества определяются физическими свойствами молекул и атомов, которые описываются в таких разделах физики, как электромагнетизм, термодинамика и квантовая физика.

Физика тесно связывается с математикой, поскольку она представляет механизм, при помощи которого физические законы могут формулироваться максимально точно. Все физические законы практически всегда формулируются в виде уравнений. Причем в данном случае используются наиболее сложные разделы математики, нежели в других науках. И наоборот, потребностями физической науки стимулировалось развитие большинства областей математики.

Значение физики в современном мире очень велико. Все, чем отличается нынешнее общество от общества прошлых столетий, возникло в результате применения физических открытий.

Исследования в сфере электромагнетизма привели к возникновению стационарных и мобильных телефонов. Благодаря открытиям термодинамики получилось создать автомобиль, а развитие электроники спровоцировало возникновение компьютерной техники. Фотоника дает возможность создать принципиально новые компьютеры и фотонную технику, которые стремительно замещают современную электронную технику и приспособления. А развитие газодинамики дало рождение самолетам и вертолетам.

Знание физических процессов, которые постоянно происходят в природе, углубляются и расширяются. Большая часть новых и современных открытий получает технико-экономическое применение, зачастую в промышленности.

Перед современными исследователями регулярно возникают новые задачи и загадки – всплывают явления, для объяснения которых необходимо разрабатывать новые физические теории. Несмотря на большой опыт приобретенных знаний, современная физика еще далека от того, чтобы объяснить все природные явления.

Общие научные основы методов физики разрабатываются в методологии науки и в теории познания.

Экспериментальная и теоретическая физика

В своей основе физика является экспериментальной наукой: все ее теории и законы опираются и основаны на опытных данных. Но, несмотря на это, именно новые теории – основная причина проведения новых экспериментов, в результате осуществления которых лежат новые открытия. Поэтому принято различать теоретическую и экспериментальную физику.

В основе экспериментальной физики лежит исследование явлений природы в тех условиях, которые были подготовлены заранее. В задачи данного вида физики входит обнаружение явлений, которые не были известны ранее, а также опровержение или подтверждение физических теорий. В физике большинство достижений были сделаны благодаря экспериментальному обнаружению физических явлений, которые не описываются существующими теориями.

Экспериментальное изучение фотографического эффекта стало одной из предпосылок создания квантовой механики.

Замечание 1

Хотя научным рождением квантовой механики считается появление гипотезы Планка, который выдвинул ее для разрешения ультрафиолетовой катастрофы, что была парадоксом классической теоретической физикой излучения.

Задачами теоретической физики являются формулировка общих природных законов, объяснение их на основе различных природных явлений, а также прогнозирование неизведанных до сих пор процессов. Достоверность физической теории можно проверить экспериментально: если его результаты совпадают с прогнозами теории, то она считается адекватной и точно описывающей конкретное явление. При изучении каждого явления или процесса одинаково важны и теоретическая, и экспериментальная физика.

Прикладная физика

Физика с самого своего рождения имела огромное прикладное значение, она развивалась вместе с механизмами, машинами, которые человечество использовало для своих нужд. Физика часто применяется в инженерных науках, большинство физиков были изобретателями. Механика, как раздел физики, была тесно связана с сопротивлением материалов и с теоретической механикой, как с главными инженерными науками.

Термодинамика связана с конструированием тепловых двигателей и теплотехникой. Электричество напрямую связано с электроникой и электротехникой, для развития и становления которой были важны исследования в сфере физики твердого тела. Благодаря достижениям ядерной физики возникла ядерная энергия. Данный список можно продолжать долго.

Также физика имеет широкие междисциплинарные связи. На границе химии, физики и инженерных наук возникает и быстро развивается такая отрасль, как материаловедение. Химией используются инструменты и методы, что приводит к становлению двух исследовательских направлений: химической физики и физической химии.

Широких оборотов набирает биофизика, которая является областью исследований на границе между физикой и биологией, в которой все биологические процессы рассматриваются из атомарной структуры органических веществ. Геофизика изучает геологические явления и их физическую природу. Медицина применяет такие методы, как ультразвуковое исследование и рентгеновское облучение. Ядерный магнитный резонанс используется для диагностики, лазеры – для лечения глазных заболеваний, а ядерное облучение – в онкологии.

Основные разделы физики

Макроскопическая физика подразделяется на:

  1. Механика: классическая механика, релятивистская механика, а также механика сплошных сред (акустика, гидродинамика, механика твердого тела).
  2. Термодинамика, которая включает в себя неравновесную термодинамику.
  3. Оптика: физическая оптика, кристаллооптика, молекулярная и нелинейная оптика.
  4. Электродинамика: сюда входит магнитогидродинамика, электрогидродинамика, а также электродинамика для сплошных сред.

Микроскопическая физика состоит из следующих разделов:

  1. Атомная физика.
  2. Статистическая физика: сюда входит статистическая механика, физическая кинетика, а также статистическая теория поля.
  3. Физика конденсированных сред: физика жидкостей и твердого тела, физика наноструктур а также физика молекул и атомов.
  4. Квантовая физика. В данный раздел входят такие подразделения: квантовая теория поля, квантовая механика, квантовая хромодинамика, квантовая электродинамика, а также теория струн.
  5. Ядерная физика.
  6. Физика высоких энергий.
  7. Физика элементарных частиц.

Существуют также разделы физики, которые находятся на стыке наук:

  1. Агрофизика.
  2. Акустооптика.
  3. Астрофизика.
  4. Биофизика.
  5. Гидрофизика.
  6. Вычислительная физика.
  7. Геофизика: сейсмология, петрофизика, геофизическая гидродинамика.
  8. Математическая физика.
  9. Космология.
  10. Материаловедение.
  11. Метрология.
  12. Медицинская физика.
  13. Радиофизика: статистическая и квантовая радиофизика.
  14. Теория колебаний.
  15. Техническая физика.
  16. Химическая физика.
  17. Физика плазмы и атмосферы.
  18. Физическая химия.

греч. ?? ?????? – наука о природе, от????? – природа) – комплекс науч. дисциплин, изучающих общие свойства структуры, взаимодействия и движения материи. В соответствии с этими задачами совр. Ф. весьма условно можно подразделить на три больших области – структурную Ф., физику взаимодействий (Ф. поля) и Ф. д в и ж е н и я (механику). Науки, образующие структурную Ф., довольно четко различаются по изучаемым объектам, к-рыми могут быть как элементы структуры вещества (элементарные частицы, атомы, молекулы), так и более сложные образования (плазма, кристаллы, жидкости, звезды). По мере открытия новых уровней структуры и состояний вещества объектная область структурной Ф. расширяется. Сейчас она охватывает все известные уровни строения вещества – от элементарных частиц до галактик. Ф. взаимодействий, основанная на представлении о поле как материальном носителе взаимодействия, делится на четыре отдела, соответственно четырем известным видам взаимодействий (сильное, электромагнитное, слабое, гравитационное). Ф. движения (механика) включает в себя классическую (ньютонову) механику, релятивистскую (эйнштейновскую) механику, нерелятивистскую квантовую механику и релятивистскую квантовую механику. Особое место в совр. системе физич. наук занимает с т а т и с т и ч. Ф., представляющая собой теорию поведения ансамблей – совокупностей большого количества частиц (см. Статистические и динамические закономерности). Будучи основана на определ. предположениях о структуре ансамблей и характере взаимодействия и движения частиц ансамбля, статистич. Ф. сочетает в себе черты всех трех осн. областей Ф. Ее методы применяются во всех разделах Ф. При решении конкретных физич. задач вопросы, связанные с выяснением структуры, взаимодействия и движения, тесно переплетаются. Так, Ф. атома, будучи разделом структурной Ф., необходимо включает в себя конкретные представления о характере движения и взаимодействия образующих атом частиц – ядра и электронов, т.е. может рассматриваться с т. зр. и Ф. взаимодействий и Ф. движения. Тем не менее приведенное подразделение комплекса физич. наук имеет определ. смысл, ибо выявляет те осн. категории, к-рые играли роль общих методологич. средств построения физич. картины мира на всех этапах истории Ф. Изложенная т. зр. на предмет Ф. не является единственной. Часто Ф. определяют как науку о таких формах материи ("первичных", "элементарных"), к-рые входят в состав любых материальных систем, о структуре этих форм, их взаимодействии и движении. В этом случае структуру самой Ф. определяют, исходя из многообразия исследуемых в ней форм материи и характерных для них видов движения (Ф. атома, Ф. твердого тела, Ф. тяготения, Ф. колебаний и т.д.), и специально выделяют такие ее разделы, к-рые охватывают вое многообразие явлений, происходящих при нек-рых определ. условиях, – Ф. низких температур, Ф. сверхвысоких давлений и т.п. (подробнее о др. подходах к определению предмета Ф. – см. И. В. Кузнецов, К вопросу об определении предмета совр. Ф., в кн.: Нек-рые философские вопросы естествознания, М.. 1957; С. И. Вавилов, Физика, Собр. соч., т. 3, М., 1956, с. 148–64; А. Ф. Иоффе, Физика, БСЭ, 2 изд., т. 45, М., 1956; Физика, в кн.: Физический энциклопедический словарь, т. 5, М., 1966). Обладая наиболее развитыми математическими и экспериментальными средствами исследования, Ф. занимает ведущее место среди естеств. наук. Ее представления, результаты и методы используются всеми без исключения естеств. науками. Это приводит к образованию многочисленных "стыковых" дисциплин (геофизика, физич. химия, химич. Ф., астрофизика, биофизика и т.п.). Сама же Ф. вырабатывает свои средства с помощью философии (методологич. средства), математики (матем. аппарат физич. теорий) и техники (экспериментальные средства), оказывая обратное влияние на развитие этих областей знания. Уже в глубокой древности возникли зачатки знаний, впоследствии вошедшие в состав Ф. и связанные с простейшими представлениями о длине, тяжести, движении, равновесии и т.п. В недрах греч. натурфилософии сформировались зародыши всех трех частей Ф., однако сначала на первом плане стояла Ф. движения, понимаемого в самом широком смысле – как изменение вообще. Взаимодействие отд. вещей трактовалось наивно-антропоцентрически (напр., мнение об одушевленности магнита у Фалеса). Подробное рассмотрение проблем, связанных с анализом движения как перемещения в пространстве, впервые было осуществлено в знаменитых апориях Зенона Элейского. В связи с обсуждением структуры первоначал зарождаются и конкурируют концепции непрерывной делимости до бесконечности (Анаксагор) и дискретности, существования неделимых элементов (атомисты). В этих концепциях закладывается понятийный базис будущей структурной?. В связи с задачами анализа простейшей формы движения (изменения по месту) возникают попытки уточнения понятий "движение", "покой", "находиться в...", "место", "время", "движение", "пустота". Результаты, полученные на этом пути, образуют основу понятийного аппарата будущей Ф. движения – механики. При сохранении антропоморфных тенденций у атомистов четко намечается понимание взаимодействия как непосредств. столкновения осн. первоначал – атомов. Полученные умозрит. путем достижения греч. натурфилософии вплоть до 16 в. служили единств. средствами построения картины мира в науке. Матем. средства (в основном геометрические) служили при этом лишь для описания наблюдений и иллюстрации словесных рассуждений. Эксперимент существовал лишь в виде отд. зачатков (эмпирики). Превращение Ф. в самостоят. науку обычно связывается с именем Галилея. Осн. задачей Ф. он считал эмпирич. установление количеств, связей между характеристиками явлений и выражение этих связей в матем. форме с целью дальнейшего исследования их матем. средствами, в роли к-рых выступали геометрич. чертежи и арифметич. учение о пропорциях. Использование этих средств регулировалось сформулированными им осн. принципами и законами (принцип относительности, принцип независимости действия сил, закон равноускоренного движения и др.). Достижения Галилея и его современников в области Ф. движения (Кеплер, Декарт, Гюйгенс) подготовили почву для работ Ньютона, приступившего к оформлению целостного предмета механики в систему понятий. Продолжая методологич. ориентацию на принципы, а не на скрытые причины (hypothesis non fingo), Ньютон сформулировал три закона (аксиомы) движения и вывел из них ряд следствий, трактовавшихся прежде как самостоят. законы. Ньютоновские "Математические начала натуральной философии" подвели итоги работы по установлению смысла и количеств. характеристик осн. понятий механики – "пространство", "время", "масса", "количество движения", "сила". Для решения задач, связанных с движением, Ньютон (вместе с Лейбницем) создал дифференциальное и интегральное исчисления, одно из самых мощных матем. средств Ф. Начиная с Ньютона и вплоть до конца 19 в. механика трактуется как общее учение о движении (понимаемом как перемещение в пространстве) и становится магистральной линией развития Ф. С ее помощью строится Ф. взаимодействий, где конкурируют концепции близкодействия и дальнодействия. Потребности концепции близкодействия вызвали к новой жизни антич. представления об эфире (Декарт). Успехи небесной механики, основанные на ньютоновском законе всемирного тяготения, способствовали победе концепции дальнодействия (согласно к-рой гравитац. взаимодействие между частицами вещества осуществляется мгновенно и непосредственно через пустоту с помощью дальнодействующих сил). По образцу теории тяготения строилась и Ф. взаимодействий в области электричества и магнетизма (Кулон). Успехи гидродинамики (Бернулли, Эйлер) способствовали внедрению в Ф. идей непрерывности на основе представлений о невесомых жидкостях (флюидах). Как флюиды трактовались электричество, магнетизм и теплота. Юнг и Френель развивали теорию света как волн в непрерывном эфире, также рассматривавшемся как флюид. Начиная с Дальтона, введшего понятие атомного веса, атомистика отделяется от философии, а химия обретает статус фундаментальной науки. Представления об атомах и молекулах, перенесенные из химии в Ф., постепенно вытеснили невесомые флюиды. Юнг (1816) дал первую количеств. оценку размеров молекулы. Усилиями Бернулли, Клаузиуса, Максвелла была построена (в опоре на статистич. представления) кинетич. теория газов, дальнейшее развитие к-рой Больцманом и Гиббсом позволило объяснить тепловые явления без помощи теплорода. С Фарадея начинается интенсивное развитие Ф. электричества и магнетизма на основе идеи близкодействия. Переход от электростатики к электродинамике (Фарадей, Эрстед, Ампер) позволил объединить электрические и магнитные явления. Фарадеевские представления о поле как особом состоянии эфира были оформлены Максвеллом в строгую матем. теорию, к-рая с единой т. зр. трактовала электрические, магнитные и оптич. явления. К концу 19 в. Ф. представляла собой развитый комплекс дисциплин, объединенных идеей сохранения и превращения энергии (см. Сохранения принципы). Мн. ученым Ф. казалась принципиально завершенной наукой. Филос. фоном ее было механистич. мировоззрение, представлявшее собой синтез атомизма с доктриной лапласовского детерминизма. Вероятностные представления статистич. Ф. трактовались как всецело обусловленные незнанием точных значений начальных импульсов и координат частиц, составляющих ансамбль. Электромагнитные явления многими еще не считались автономными – усилия большинства ученых были направлены на сведение их к механич. явлениям путем построения хитроумных моделей эфира. Внутр. противоречия, возникшие при теоретич. объяснении результатов нек-рых опытов в рамках классич. картины мира, привели к возникновению новых, неклассич. направлений релятивистской и квантовой Ф. Релятивистская Ф., возникшая из необходимости объяснить отрицат. результат опыта Майкельсона (спец. относительности теория) и факта равенства инертной и тяжелой массы (общая теория относительности), стала Ф. быстрых движений и сильных гравитац. полей. Квантовая теория, появившаяся в связи с парадоксами объяснения наблюдаемого распределения энергии в спектре излучения абсолютно черного тела (Планк, 1900) явлениями фотоэффекта (Эйнштейн, 1905) и противоречиями планетарной модели атома (Бор, 1913), стала общей теорией взаимодействия и движения микрообъектов. В связи с этим претерпела радикальные изменения вся физич. картина мира. В Ф. движения спец. теория относительности (Эйнштейн, 1905) сделала ненужным представление об эфире как абс. системе отсчета. Это дало возможность и в Ф. взаимодействий отказаться от эфира и приписать полю самостоят. существование. Сначала теоретически, а затем экспериментально и промышленно (ядерная энергетика) установленные связь массы и энергии (Е=mс2), а также зависимость массы движущегося тела от скорости его движения покончили с резким противопоставлением материи и движения, характерным для классич. Ф. Постулат о постоянстве скорости света во всех инерциальных системах отсчета и распространение принципа относительности на электромагнитные явления показали относительность количеств, определенности пространственных и врем. промежутков. Это привело к понятию единого четырехмерного пространственно-врем. континуума и ликвидировало разобщенность понятий пространства и времени, свойственную классич. механике. Общая теория относительности (Эйнштейн, 1916), интерпретировавшая поле тяготения как искривление пространства-времени, обусловленное наличием материи, перекинула еще один мост от материи и движения к взаимодействию. Создание в 20-х гг. 20 в. квантовой механики, основанной на представлении о дискретной природе действия (существование миним. кванта действия?) (Бор, Борн, Гейзенберг, де Бройль, Шредингер, Паули и др.), привело к дальнейшему изменению представлений о движении и взаимодействии, сделав невозможным применение понятия траектории к анализу движения микрообъектов. Релятивистская квантовая механика (Дирак, Паули, Гейзенберг, В. А. Фок, Дайсон, Р. Фейнман, Ю. Швингер и др.), наряду с пространств.-врем. перемещением элементарных частиц, сохраняющим их тождественность и регулируемым законами сохранения энергии и импульса, стала рассматривать их взаимопревращения (см. Микрочастицы). Все эти, как и др. законы сохранения, являются в совр. Ф. следствиями общих свойств симметрии пространства-времени и взаимодействий. В области структурной Ф. квантовые представления привели к тому, что концепция абсолютно элементарных, неделимых единиц структуры – атомов, уступила место представлениям об относительности понятий элементарности и сложности, о чем в свое время говорил еще Ленин. Релятивистская квантовая теория поля, объединив в едином понятии квантованного поля понятия частицы и поля, преодолела резкое противопоставление пространств. дискретности вещества (взаимодействующих частиц) и пространств. непрерывности поля (переносчика взаимодействия), характерное для классич. Ф. и сохранившееся в нерелятивистской квантовой механике. Изменились и др. связи структурной Ф. с Ф. взаимодействий. В классич. Ф. (включая релятивистскую) результаты взаимодействия целиком определялись пространств.-врем. структурой взаимодействующих объектов (координатами и скоростями – для частиц, напряженностью или потенциалом в каждой точке пространства и законом изменения их во времени – для полей). Знание характеристик элементов структуры позволяло определить состояние системы в целом. Т.о., Ф. взаимодействий была логически вторичной по отношению к структурной Ф. В современной квантовой Ф. дело обстоит наоборот – на первый план выдвинулась Ф. взаимодействий и ответ на вопрос о строении микрообъектов определяется результатами взаимодействия данной микрочастицы с другими. В связи с этим существенно изменились требования к способу задания состояния микрообъектов в теории. Во-первых, волновая функция относится к системе в целом. Во-вторых, энергетически-импульсные характеристики микрообъектов (потенциальные характеристики их взаимодействия) в квантовой механике являются логически равноправными и, что особенно важно, независимыми по отношению к их пространств.-врем. характеристикам. Наиболее отчетливо логич. первичность взаимодействия по сравнению с пространств.-врем. структурой проявляется в Ф. элементарных частиц. Если в Ф. атома и атомного ядра характеристикам взаимодействия еще могут быть сопоставлены пространств.-врем. модели взаимодействующих объектов (типа боровских орбит, распределения плотности заряда в атомах, различных моделей ядра), дающие нек-рую пространств.-врем. картину механизма взаимодействия, то в Ф. элементарных частиц это можно сделать в гораздо меньшей степени. Элементы структуры атома (ядро и электроны) и атомного ядра (протоны и нейтроны) еще могут считаться существующими "в недрах" исходных частиц до взаимодействия, к-рое приводит лишь к перераспределению этих элементов. Элементарные частицы до взаимодействия могут рассматриваться состоящими из двух элементарных частиц лишь весьма условно. Это находит свое выражение в понятии "виртуальности" элементов структуры элементарных частиц: виртуальные частицы как элементы структуры реальных элементарных частиц характеризуют лишь возможные результаты порождения новых реальных элементарных частиц при взаимодействии исходных реальных частиц. Еще более виртуальными являются т.н. квазичастицы в Ф. полупроводников и Ф. твердого тела, позволяющие трактовать возбуждение состояния макротел как результат существования, движения и взаимодействия квазичастиц. Как и многие другие модельные представления, квазичастицы служат для теоретич. объяснения макроскопически наблюдаемых явлений в твердых и жидких телах. Т.о., совр. теория структуры элементарных частиц приобретает существенно динамич. характер. По сути дела, современная квантовая Ф., вскрыв ограниченность пространств.-врем. описания микромира на языке классич. понятий координаты и скорости, дала более глубокое его описание на языке?-функции и ограничила свои задачи описанием и предсказанием всех возможных макроскопически наблюдаемых результатов взаимодействия. Эта черта совр. Ф., считающаяся мн. учеными временной, наиболее ярко проявляется в формализме s-матрицы, представляющем собой физич. воплощение кибернетич. идей "черного ящика". Совр. Ф. взаимодействий значительно расширила свою объектную область, включив в рассмотрение, наряду с гравитационными и электромагнитными, сильные (ядерные) и слабые (?-распадные) взаимодействия, проявляющиеся только в микромире. Факт наличия четырех существенно различных видов взаимодействий постоянно поддерживает зародившиеся еще в классич. Ф., но пока безуспешные стремления построить общую теорию поля. В статистич. Ф., куда также проникли квантовые идеи о движении и взаимодействии, оформляется в самостоят. ветвь статистич. Ф. процессов (физич. кинетика). Достижения Ф. в 20 в. значительно повлияли на конкретные представления о смысле таких филос. категорий, как материя, движение, пространство и время. К числу фундаментальных достижений совр. Ф., имеющих общефилос. значение, относится также установление принципа относительности свойств материальных объектов. Это связано с последоват. учетом в понятийном аппарате теории роли материального окружения объекта (в первую очередь измерит, прибора и системы отсчета) в деле определения этих свойств. Классич. Ф. считала свойства, обнаруживаемые при измерении, присущими объекту и только ему (принцип абсолютности свойств). Уже теория относительности вскрыла количеств. относительность таких свойств объектов, как длина, время жизни, масса, зависящих, как оказалось, не только от самого объекта, но и от системы отсчета. Отсюда следовало, что количеств, определенность свойств объекта должна быть отнесена не к нему "самому по себе", а к системе "объект+система отсчета", хотя носителем качеств. определенности свойств по-прежнему оставался сам объект. Квантовая теория пошла еще дальше в этом направлении, выдвинув идею дополнительности (см. Дополнительноcти принцип). Существование дополнит. свойств, не объяснимое с т. зр. принципа абсолютности свойств, получает естеств. объяснение с помощью принципа относительности свойств. С т. зр. последнего, термин "свойство объекта" следует рассматривать в плане "виртуальности" – как характеристику потенциальных возможностей объекта, к-рые реализуются только при наличии второго объекта, взаимодействующего с первым. С квантовой Ф. связано также гораздо более широкое понимание причинности, опирающееся на отказ от характерного для классич. Ф. предположения, что в основе статистич. закономерностей всегда лежат однозначно определенные динамич. закономерности. В концептуальных рамках релятивистской и квантовой теорий развитие Ф., для к-рого характерны все более последоват. отказ от применимости классич. представлений "в малом", все более абстрактная характеристика состояния, все меньшая наглядность, продолжается и в наст. время. Принципы и представления этих теорий служат фундаментом как для решения прикладных физико-технических и пром. задач (строительства ускорителей, реакторов, термоядерных установок и атомных электростанций), так и для формирования новых представлений о структуре, взаимодействии и движении при экстраполяции принципов на новые объектные области – в квантовой радиофизике, Ф. полупроводников, Ф. сверхпроводимости, Ф. плазмы, астрофизике и т.д. Задача синтеза релятивистских и квантовых принципов является одной из основных и до сих пор не решенных задач Ф. элементарных частиц, представляющей передний край современной теоретической и экспериментальной Ф. В области экспериментальной Ф. осн. проблемы состоят, с одной стороны, в осуществлении целенаправленных экспериментов по проверке гипотез о структуре, строении и взаимодействии элементарных частиц, выдвигаемых физиками-теоретиками. С др. стороны, ведется поиск технич. средств, к-рые позволили бы проверить справедливость квантовых и релятивистских принципов на новой объектной области, ранее не доступной экспериментальному изучению (эксперименты с частицами высоких энергий – встречные пучки, космич. лучи). В теоретич. Ф. осн. круг собственно физич. проблем связан с исследованием формальной структуры матем. аппарата, используемого в теории (попытки аксиоматизации теории поля, вопросы сходимости ряда в теории возмущений и т.п.). Осн. методами, используемыми в новейшей теоретич. Ф., являются теория поля, метод s-матрицы и теория групп. Они различаются как выбором матем. аппарата, так и предъявляемыми к нему требованиями. В теории поля, использующей для построения матем. моделей аппарат алгебры операторов в гильбертовом пространстве, упор делается на строгое матем. осмысливание теории, а не на детальное сравнение с опытом. В основе метода s-матрицы лежит матем. аппарат теории функций комплексного переменного. Оперирование матем. аппаратом производится без опоры на наглядные модельные представления, на основе аксиоматич. требований, предъявляемых к матем. характеристикам s-матрицы (аналитичность, унитарность и т.д.), связывающей состояния до и после взаимодействия. Этот метод в его совр. виде занимает промежуточное положение между случаем, когда создание строгой теории признается более важным (как в теории поля), нежели использование ограниченных и формальных методов (как в теории групп), и случаем, когда поиск ведется вне рамок к.-л. единой методич. концепции путем простого подбора тех или иных моделей с последующим отбрасыванием неудачных вариантов (как в ядерной Ф.). Методы теории групп, основанные на учете связи типа симметрии состояния физич. объектов с инвариантами групп преобразований, позволили построить ряд абстрактных теорий симметрии сильно взаимодействующих частиц (адронов) – теорию SU3-симметрии, SU6-симметрии и т.п. Эти теории не используют никаких модельных представлений и опираются только на отвлеченные свойства групп. Будучи основаны на глубоких матем. идеях, подобно теории поля, методы теории групп, в отличие от нее, покоятся на прочной экспериментальной основе. Однако, выделяя только те аспекты природы, к-рые удается понять в рамках абстрактной симметрии, эти методы не дают возможности осмыслить численные значения времени жизни частиц и характер их взаимодействий. Поэтому громадный объем экспериментальных фактов (в т.ч. все, относящиеся к легким частицам – лептонам) находится вне поля зрения этих методов. Все три упомянутых метода остаются слишком ограниченными, отрывочными и неопределенными и поэтому рассматриваются ведущими физиками как предварит. достижения на пути к более общей теории, способы построения к-рой пока не ясны. Методологич. проблемы новейшей Ф. так или иначе связаны с анализом роли матем. аппарата в построении физич. теорий. Это обусловлено существ, отличием характера использования математики в совр. Ф. В классич. Ф. теория обслуживала эксперимент, а матем. язык служил лишь рафинированным средством о п и с а н и я эмпирич. связей и о б ъ я с н е н и я их с помощью разного рода моделей (напр., как в случае отношения эмпирич. законов Бойля–Мариотта, Шарля и Гей-Люссака к распределению Максвелла, основанному на атомно-молекулярной модели строения вещества). Совр. Ф. отличается широким использованием математической гипотезы как метода исследования (хотя сам этот метод зародился уже в классич. Ф.), причем часто без опоры на модельные представления, руководствуясь почти исключительно матем. требованиями к характеру осн. уравнений. Это выдвигает теоретич. уровень исследования на первое место по сравнению с эмпирическим, за к-рым остаются только функции контроля – принципиальная проверка и количеств, уточнение результатов, полученных с помощью матем. гипотезы на теоретич. уровне. В случае успеха существование объектов или их характеристик, предположенное на теоретич. уровне, подтверждается эмпирически, что приводит к открытию новых частиц или эффектов. Именно таким путем были открыты в Ф. позитрон (первоначально предсказанный теоретически на основании интерпретации результатов решения уравнения Дирака), несохранение четности в слабых взаимодействиях (опыты By по проверке гипотезы Ли и Янга), ?–-мезон (на основании предсказания теории SU3-симметрии). Ряд объектов, возможность существования к-рых следует из нек-рых матем. гипотез, до сих пор экспериментально не обнаружены – гравитац. волны (их существование вытекает из интерпретации результатов определ. способа решения уравнений общей теории относительности), монополь Дирака (изолированный магнитный полюс, существующий согласно интерпретации одного из вариантов матем. оформления электродинамики), кварки (гипотетич. суперэлементарные частицы) и др. Методологич. тенденция, идущая от классич. Ф., предписывает искать для каждого матем. выражения, фигурирующего в теории, соответствующий ему фрагмент физич. реальности. Эта тенденция может быть названа онтологической, ибо в ней в качестве принципа интерпретации провозглашается своеобразный принцип параллелизма между матем. формой и физич. содержанием теории. Согласно этому принципу, матем. аппарат теории непосредственно отражает (изоморфно или гомоморфно) объекты, свойства и отношения реального мира как таковые, так что матем. символы являются знаками элементов реальности, а структура матем. выражений воспроизводит структуру реального мира физич. объектов и их взаимодействий. С этой методологич. тенденцией в совр. Ф. успешно конкурирует тенденция к эмпирич. интерпретации матем. аппарата физич. теории. Принцип такой интерпретации иногда называют "началом принципиальной наблюдаемости". При эмпирич. интерпретации матем. символы теории трактуются как обозначающие результаты реальных эмпирич. процедур, причем физич. смыслом обладают далеко не все из символов. Нек-рые из них, служащие промежуточным средством для вычислений, не получают никакой интерпретации и рассматриваются как вспомогательные. Последоват. приверженцы эмпирия, интерпретации единственно достаточным условием истинности физич. теории считают ее способность к предсказаниям, оправдывающимся на опыте, и не делают из факта успешности подобных предсказаний вывода о сходстве структуры матем. аппарата теории со структурой реальности. Наиболее последовательно принцип эмпирич. интерпретации осуществляется совр. Ф. в методе s-матрицы. Выражением борьбы тех же принципов интерпретации является полемика вокруг интерпретации квантовой механики (точнее, ее матем. аппарата). Так, ?-функция, задающая состояние микрообъектов, интерпретируется сторонниками онтологич. интерпретации (Д. Бом, Л. до Бройль, А. Яноши и др.) как отображение нек-рого объективно существующего волнового поля. Сторонники же эмпирич. интерпретации (копенгагенская школа и ее разновидности) считают?-функцию лишь промежуточным средством расчета результатов реальных экспериментов. С проблемой интерпретации в совр. Ф. тесно связана проблема реальности – проблема принципов построения картины мира. Обычно эту картину строят на базе принципов онтологич. интерпретации – путем онтологизации матем. аппарата теории (именно так появились в совр. Ф. представления о двойственной корпускулярно- волновой природе микрообъектов, о кварках и т.п.). При этом изменение вида используемого в теории матем. аппарата влечет за собой изменение онтологич. представлений. Иногда онтологизируются не матем. выражения, а модельные представления, управляющие оперированием с этими выражениями (как, напр., в ядерной Ф.). Полученная подобным способом физич. картина мира считается образом реальности, лежащей на ненаблюдаемом уровне. Сторонники эмпирич. интерпретации склоняются к тому, чтобы употреблять термин "реальность" и конкретизировать его смысл только на эмпирич. уровне исследования, принципиально отказываясь придавать онтологич. смысл гипотезам о характере непосредственно не наблюдаемых объектов. Промежуточной является позиция М. Борна, считающего образами реальности инварианты, фигурирующие в матем. аппарате теории. Поиск "сумасшедших идей", столь актуальный в совр. Ф., с т. зр. проблемы реальности представляет собой проблему существенно новых принципов построения физич. картины мира, к-рые позволили бы придать теории элементарных частиц логич. замкнутость и полноту. Большинство ученых считает, что принципов квантовой механики и теории относительности недостаточно для осуществления этой цели. Однако отсутствие ощутимых успехов в преодолении этой недостаточности вынуждает при решении конкретных задач до сих пор ограничиваться лишь незначит, модификациями квантово-релятивистского концептуального аппарата, не затрагивающими его принципиальных основ. Лит.: Дюгем П., Физич. теория, ее цель и строение, пер. с франц., СПБ, 1910; Планк М., Физич. очерки, пер. с нем., М., ; Гейзенберг В., Филос. проблемы атомной Ф., пер. [с англ.], М., 1953; его же, Ф. и философия, пер. с нем., М., 1963; Кудрявцев П. С, История Ф., , т. 1–2, М., 1956; Лауэ М., История Ф., пер. с нем., М., 1956; Нильс Бор и развитие физики. Сб. [ст.], М., 1958; Очерки развития осн. физич. идей. Сб. ст., М., 1959; Филос. вопросы совр. физики. Сб. ст., М., 1959; Бор Н., Атомная Ф. и человеч. познание, пер. с англ., М., 1961; Бройль Л. де, По тропам науки, пер. с франц., М., 1962; его же, Революция в Ф., пер. с франц., 2 изд., М., 1965; Теоретич. физика 20 века, М., 1962; Над чем думают физики, вып. 1–4, М., 1962–65; Развитие совр. Ф. Сб. ст., М., 1964; Борн?., ?. в жизни моего поколения. Сб. ст., М., 1963; Филос. проблемы Ф. элементарных частиц, М., 1963; Спасский Б. И., История Ф., ч. 1–2, М., 1963–64; Эйнштейн?., ?. и реальность. Сб. ст., пер. с нем. и англ., М., 1965; Ландау Л. Д., Лифшиц В. М., Теоретич. физика, 2 изд., т. 1–9, М., 1965; Фейнмановские лекции по Ф., [пер. с англ.], вып. 1–8, М., 1965–66; Кузнецов Б. Г., Развитие физич. идей от Галилея до Эйнштейна в свете совр. науки, 2 изд., М., 1966; Эйнштейн?., Инфельд Л., Эволюция Ф., пер. с англ., 4 изд., [М.], 1966; Campbell N. R., Physics. The elements, Camb., 1920; Lenzen V. Г., The nature of physical theory, N. Y., 1931; Bridgman P. W., The nature of physical theory, Princeton, 1936; Planck M., The philosophy of physics, N. Y., ; Stebbing L. S., Philosophy and the physicists, L., ; Frank Ph., Between physics and philosophy, Camb., 1941; Destouches J. L., Principes foundamentaux de physique th?orique, P., ; Lindsay R. В., Margenau H., Foundations of physics, , N. Y.–L., ; Eddington ?., The philosophy of physical science, Camb., 1949; Margenau H., The nature of physical reality, N.Y., 1950; Destouches-F?vrier P., La structure des th?ories physiques, P., 1951; Weizs?cker C.F. von, Zum Weltbild der Physik, 6 Aufl., Stuttg., 1954. И. Алексеев, Ю. Румер. Новосибирск.

  • 2.2 Распределение Максвелла и Больцмана
  • 2.2.1 Скорости газовых молекул
  • 2.3. Первое начало термодинамики
  • 2.3.1 Работа и энергия в тепловых процессах. Первое начало термодинамики
  • 2.3.2 Теплоемкость газа. Применение первого начала термодинамики к изопроцессам
  • 2.4. Второе начало термодинамики
  • 2.4.1. Работа тепловых машин. Цикл Карно
  • 2.4.2 Второе начало термодинамики. Энтропия
  • 2.5 Реальные газы
  • 2.5.1 Уравнение Ван-дер-Ваальса. Изотермы реального газа
  • 2.5.2 Внутренняя энергия реального газа. Эффект Джоуля-Томсона
  • III Электричество и магнетизм
  • 3.1 Электростатика
  • 3.1.1 Электрические заряды. Закон Кулона
  • 3.1.2 Напряженность электрического поля. Поток линий вектора напряженности
  • 3.1.3 Теорема Остроградского - Гаусса и его применение для расчета полей
  • 3.1.4 Потенциал электростатического поля. Работа и энергия заряда в электрическом поле
  • 3.2 Электрическое поле в диэлектриках
  • 3.2.1 Электроемкость проводников, конденсаторы
  • 3.2.2 Диэлектрики. Свободные и связанные заряды, поляризация
  • 3.2.3 Вектор электростатической индукции. Сегнетоэлектрики
  • 3.3 Энергия электростатического поля
  • 3.3.1 Электрический ток. Законы Ома для постоянного тока
  • 3.3.2 Разветвленные цепи. Правила Кирхгофа. Работа и мощность постоянного тока
  • 3.4 Магнитное поле
  • 3.4.1 Магнитное поле. Закон Ампера. Взаимодействие параллельных токов
  • 3.4.2 Циркуляция вектора индукции магнитного поля. Закон полного тока.
  • 3.4.3 Закон Био-Савара-Лапласа. Магнитное поле прямого тока
  • 3.4.4 Сила Лоренца Движение заряженных частиц в электрических и магнитных полях
  • 3.4.5 Определение удельного заряда электрона. Ускорители заряженных частиц
  • 3.5 Магнитные свойства вещества
  • 3.5.1 Магнетики. Магнитные свойства веществ
  • 3.5.2 Постоянные магниты
  • 3.6 Электромагнитная индукция
  • 3.6.1 Явления электромагнитной индукции. Закон Фарадея. Токи Фуко
  • 3.6.2 Ток смещения. Вихревое электрическое поле Уравнения Максвелла
  • 3.6.3 Энергия магнитного поля токов
  • IV Оптика и основы ядерной физики
  • 4.1. Фотометрия
  • 4.1.1 Основные фотометрические понятия. Единицы измерений световых величин
  • 4.1.2 Функция видности. Связь между светотехническими и энергетическими величинами
  • 4.1.3 Методы измерения световых величин
  • 4.2 Интерференция света
  • 4.2.1 Способы наблюдения интерференции света
  • 4.2.2 Интерференция света в тонких пленках
  • 4.2.3 Интерференционные приборы, геометрические измерения
  • 4.3 Дифракция света
  • 4.3.1 Принцип Гюйгенса-Френеля. Метод зон Френеля. Зонная пластинка
  • 4.3.2 Графическое вычисление результирующей амплитуды. Применение метода Френеля к простейшим дифракционным явлениям
  • 4.3.3 Дифракция в параллельных лучах
  • 4.3.4 Фазовые решетки
  • 4.3.5 Дифракция рентгеновских лучей. Экспериментальные методы наблюдения дифракции рентгеновских лучей. Определение длины волны рентгеновских лучей
  • 4.4 Основы кристаллооптики
  • 4.4.1 Описание основных экспериментов. Двойное лучепреломление
  • 4.4.2 Поляризация света. Закон Малюса
  • 4.4.3 Оптические свойства одноосных кристаллов. Интерференция поляризованных лучей
  • 4.5 Виды излучения
  • 4.5.1 Основные законы теплового излучения. Абсолютно черное тело. Пирометрия
  • 4.6 Действие света
  • 4.6.1 Фотоэлектрический эффект. Законы внешнего фотоэффекта
  • 4.6.2 Эффект Комптона
  • 4.6.3 Давление света. Опыты Лебедева
  • 4.6.4 Фотохимическое действие света. Основные фотохимические законы. Основы фотографии
  • 4.7 Развитие квантовых представлений об атоме
  • 4.7.1 Опыты Резерфорда по рассеянию альфа-частиц. Планетарно-ядерная модель атома
  • 4.7.2 Спектр атомов водорода. Постулаты Бора
  • 4.7.3 Корпускулярно-волновой дуализм. Волны де Бройля
  • 4.7.4 Волновая функция. Соотношение неопределенности Гейзенберга
  • 4.8 Физика атомного ядра
  • 4.8.1 Строение ядра. Энергия связи атомного ядра. Ядерные силы
  • 4.8.2 Радиоактивность. Закон радиоактивного распада
  • 4.8.3 Радиоактивные излучения
  • 4.8.4 Правила смещения и радиоактивные ряды
  • 4.8.5 Экспериментальные методы ядерной физики. Методы регистрации частиц
  • 4.8.6 Физика элементарных частиц
  • 4.8.7 Космические лучи. Мезоны и гипероны. Классификация элементарных частиц
  • Содержание
  • Министерство образования и науки Республики Казахстан

    Павлодарский государственный университет

    им. С. Торайгырова

    В.А. Жексенбекова, Т.Т. Данияров, М.Ш. Алинова

    ФИЗика

    Павлодар

    Учебник рекомендован к изданию учебно-методической секцией по специальностям профессионального обучения, искусства и услуг Республиканского учебно-методического совета (РУМС) МОН РК при ЮКГУ им. М. Ауэзова, протокол №4 от 22.05.09

    Рецензенты:

    Т.С.Рамазанов - доктор физико-математических наук, профессор, КазНУ им. Аль-Фараби, г. Алматы;

    С.К. Тлеукенов - доктор физико-математических наук, профессор, ПГУ им.С.Торайгырова, г. Павлодар;

    А.М. Мубараков – доктор педагогических наук, профессор, Инновационный Евразийский университет, г. Павлодар.

    В.А. Жексембекова, Т.Т. Данияров, М. Ш. Алинова

    А50 Физика: учебник.  Павлодар: Кереку, 2009.  370 с.

    ISBN 9965 - 9965 - 32 – 910-9

    В учебнике обобщен опыт подготовки будущих педагогов профессионального обучения к профессиональной деятельности через раскрытие содержания и структуры курса физики с учетом достижений современной науки и практики.

    В курсе физики рассматриваются вопросы, предусмотренные требованиями стандарта специальности, которые должны обеспечить будущему педагогу профессионального обучения основы его теоретической подготовки в различных областях физической науки.

    Учебник предназначен для учащихся колледжей и студентов специальности 0505120 –Профессиональное обучение, педагогов и работников организаций профессионального образования.

    А 1604000000

    ISBN 9965 - 9965 - 32 – 910-9

     Жексембекова В.А., Данияров Т.Т., Алинова М.Ш., 2009

     ПГУ им. С. Торайгырова, 20099

    Введение Физика как наука. Содержание и структура физики

    «Физика»- по-гречески «природа». Наряду с другими естественными науками физика изучает свойства окружающего нас мира, строение и свойства материи, законы взаимодействия и движения материальных тел. Физика - наука о наиболее простых общих свойствах материи. Среди всех наук о природе физика занимает особое положение: это есть наука о наиболее общих свойствах и формах движения материи. Материя находится в непрерывном движении, под которым понимается всякое изменение вообще. Движение представляет собой неотъемлемое свойство материи, которое несотворимо и неуничтожимо, как и сама материя. Материя существует и движется в пространстве и во времени, которые являются формами бытия материи.

    Процесс познания в физике, как и в любой науке, начинается либо с наблюдения явлений в естественных условиях, либо со специально поставленных опытов - экспериментов. Результат эксперимента, при постановке которого исследователь уже руководствуется определенной гипотезой, дает возможность проверить гипотезу, уточнить и расширить ее до степени теории, установить физический закон, т. е. установить характер объективной зависимости между различными физическими величинами. Опыт (наблюдение, эксперимент, практика) является источником всех наших знаний.

    Физические законы устанавливаются на основе обобщения опытных фактов и выражают объективные закономерности, существующие в природе. Эти законы обычно формулируются в виде количественных соотношений между различными величинами.

    Основным методом исследования в физике является опыт, т. е. наблюдение исследуемого явления в точно контролируемых условиях, позволяющих следить за ходом явления и воссоздавать его каждый раз при повторении этих условий. Экспериментально могут быть вызваны явления, которые естественно в природе не наблюдаются. Например, из числа известных в настоящее время химических элементов более десяти в природе пока не обнаружены и были получены искусственным путем с помощью ядерных реакций.

    На основе накопленного экспериментального материала строится предварительное научное предположение о механизме и взаимосвязи явлений - создается гипотеза. Гипотеза - это научное предположение, выдвигаемое для объяснения какого-либо факта или явления и требующее проверки и доказательства для того, чтобы стать научной теорией или законом. Правильность высказанной гипотезы проверяется посредством постановки соответствующих опытов, путем выяснения согласия следствий, вытекающих из гипотезы, с результатами опытов и наблюдений. Успешно прошедшая такую проверку и доказанная гипотеза превращается в научный закон или теорию.

    Физическая теория представляет собой систему основных идей, обобщающих опытные данные и отражающих объективные закономерности природы. Физическая теория дает объяснение целой области явлений природы с единой точки зрения.

    Вся история науки показывает, что процесс познания материального мира не заканчивается каждым таким кругом - от опыта к теории и от теории обратно к опыту. Очень скоро обнаруживаются новые области явлений и накапливаются факты, объяснение которых не укладывается в рамки существующих теорий и требует выдвижения новых гипотез.

    Научное исследование является единством теории и практики при решающей роли практики и ведущей роли теории. Без теоретических обобщений, без указаний теории о разумном направлении экспериментов невозможно движение науки вперед. Развитие теоретических представлений происходит посредством замены одних устаревших теорий другими, более совершенными, которые по-новому, точнее объясняют возросший круг изученных явлений и в то же время сохраняют в себе все зерна истины, имевшиеся в старых теориях.

    Цели, которые ставятся при изучении физики в вузах, многообразны. Важнейшая из них состоит в ознакомлении с основными физическими явлениями, их механизмом, закономерностями и практическими приложениями. Этим закладывается физическая основа для изучения последующих общетехнических и специальных дисциплин. Этими главнейшими задачами и определяются выбор основных изучаемых разделов физики и объем их изложения.

    То обстоятельство, что изучение физики начинается с изучения механического движения тел, не случайно и обусловлено не только исторической последовательностью развития физики. Несмотря на то, что механическое движение представляет собой самую простую форму движения, к современному его представлению шли долго. Особую роль в становлении классической механики играли исследования И. Ньютона.

    Перед формулировкой основных законов механики Ньютон уточняет основные понятия, необходимые для их определения. Одно из основных следствий законов механики гласит: «Относительные движения друг по отношению к другу тел, заключенных в каком-либо пространстве, одинаковы, покоится ли это пространство или движется равномерно и прямолинейно без вращения». В другом месте Ньютон утверждает: «Может оказаться, что в действительности не существует покоящегося тела, к которому можно было бы относить места и движения прочих», и, таким образом, он считает, что наблюдаемые нами движения относительны и абсолютного движения не существует. Но он знает также, что ускоренное движение системы отсчета проявляется динамически, вызывая явление инерции.

    Ньютон принимает, что в природе существует абсолютный покой, абсолютно неподвижная система отсчета. Это пустое однородное неподвижное пространство атомистов и Евклида - чистое вместилище всех вещей. Существенно, что наряду с абсолютным пространством Ньютон признает и абсолютное время, текущее само по себе, безотносительно к каким-либо процессам. Вот как он определяет абсолютное и относительное время и пространство.

    «I. Абсолютное , истинное математическое время само по себе и по самой своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью. Абсолютное время различается в астрономии от обыкновенного, солнечного времени, уравнением времени.

    Относительное , кажущееся, или обыденное, время - есть или точная, или изменчивая, постигаемая чувствами, внешняя, совершаемая при посредстве какого-либо движения мера продолжительности, употребляемая в обыденной жизни вместо истинного математического времени, как-то: час, день, месяц, год». Наше измерение времени, как несовершенное, повседневное (от зари до зари), так и точное, астрономическое время, дает нам относительное, или обыденное, время, основанное на наблюдаемых нами движениях. Эти движения, даже вращение Земли, могут быть не вполне равномерными, в то время как истинное математическое время течет само по себе абсолютно равномерно. Постигая относительное время, конструируя все более и более точные часы, мы имеем в виду недостижимый идеал, истинное, абсолютное время.

    «II. Абсолютное пространство по самой своей сущности безотносительно к чему бы то ни было внешнему, остается всегда одинаковым и неподвижным.

    Относительное пространство есть его мера или какая-либо ограниченная подвижная часть, которая определяется нашими чувствами по положению его относительно некоторых тел и которое в обыденной жизни принимается за пространство неподвижное: так, например, протяжение пространства подземного воздуха или надземного, определяемых по их положению относительно Земли»

    «III. Место есть часть пространства, занимаемого телом, и по отношению к пространству бывает или абсолютным, или относительным»

    «IV. Абсолютное движение есть перемещение тела из одного абсолютного его места в другое, относительное - из относительного в относительное же».

    Из приведенных определений Ньютона вытекает, что:

    1) пространство и время обладают объективной реальностью; это правильно;

    2) пространство и время не связаны органически с материей; это неверно. Такой подход к понятиям о пространстве и времени метафизичен. Концепция абсолютного пространства- времени, оторванного от материальных тел и реальных процессов,- метафизична. Ньютон сам упорно стремился преодолеть отмеченную выше метафизичность сделанных им определений пространства и времени. Ньютон видел, что для преодоления метафизичности необходимо установить связь пространства и времени с материей. Но из-за тогдашнего невысокого уровня научных познаний выводы Ньютона, правильные по существу, еще не имели должной широты.

    Но, несмотря на это, важно, что основой классической физики были законы, установленные Ньютоном для движения тел в абсолютном евклидовом пространстве. По принципу относительности это пространство представлялось любой системой отсчета, в которой не проявляется ощутимым образом действие инерционных сил. То обстоятельство, что абсолютное пространство не ощущается нашими чувствами, ни в какой мере не поколебало убежденности Ньютона в том, что понятия об абсолютном пространстве и абсолютном времени должны быть положены в основу механики. Объективная реальность абсолютного пространства и абсолютного времени для Ньютона не подлежала сомнению, поэтому и к понятиям «покой» и «равномерность» Ньютон относился, как к понятиям, выражающим объективную реальность, вне зависимости от того, легко или трудно нам распознать эту реальность. Ньютон говорит: «Может оказаться, что в природе не существует покоящегося тела, к которому можно было бы относить места и движения прочих Возможно, что не существует в природе такого равномерного движения, которым время, могло бы измеряться с совершенной точностью». Ньютон считает, что эти вопросы должны быть исследованы и изучены. Не останавливаясь ни перед какими трудностями, Ньютон видел задачу механики и физики в «нахождении истинных движений тел по причинам, их производящим, по их проявлениям и по разностям кажущихся движений».

    Многие вопросы, возникающие сразу после рождения нового физического понятия, проясняются постепенно, по мере развития физики. Это приводит дальше к расширению и уточнению идей ученых.

    Во второй половине XIX в. была создана теория электромагнитного поля, открыты и изучены электромагнитные волны. На этой базе началось бурное развитие радиотехники. Созданная во второй половине XIX века молекулярно-кинетическая теория исходила из положения, что все тела построены из мельчайших частичек, находящихся в непрерывном движении. Эти частички были названы атомами, что по-гречески значит «неделимые». Однако уже в конце XIX века были обнаружены испускаемые атомами еще более мелкие (по массе) частички - отрицательно заряженные электроны. Экспериментальное открытие электрона, радиоактивности, термоэлектронной эмиссии (испускание нагретыми металлами электронов), фотоэффекта (вырывание электронов из металлов под действием света) и других явлений - все это указывало на то, что атом вещества является сложной системой, построенной из более мелких частиц. Перед физикой встала проблема строения атома. И в начале XX века было доказано, что атом имеет ажурное строение, а в центре его расположено положительно заряженное ядро, в котором сосредоточена почти вся масса атома.

    Начало XX столетия ознаменовалось созданием теории относительности, которая стала ведущей теорией движений со скоростями, близкими к скорости света, и явилась основой методов расчета ускорителей заряженных частиц, применяемых в современной ядерной технике. Этот период характеризуется настойчивыми попытками проникнуть во внутреннее строение атомов. Ключом к выяснению строения атомов послужило изучение атомных спектров. Первый разительный успех в объяснении наблюдаемых спектров принесла теория атома, развитая Нильсом Бором в 1913 г. Однако эта теория носила явные черты непоследовательности: наряду с подчинением движения электрона в атоме законам классической механики, она налагала на это движение специальные квантовые ограничения. За эту непоследовательность теории вскоре пришлось расплатиться. После первых успехов в объяснении спектра простейшего атома - водорода - обнаружилась неспособность теории Бора объяснить поведение атомов с двумя и большим числом электронов.

    Назрела необходимость создания новой целостной теории атомов. Начало созданию такой теории было положено в 1924 г. смелой гипотезой Луи де Бройля. К тому времени было известно, что свет, будучи волновым процессом, вместе с тем в ряде случаев обнаруживает корпускулярную природу, т. е. ведет себя как поток частиц. Введя представление об испускании света отдельными порциями - квантами, Макс Планк (1858-1947) в 1900 г. решил задачу об излучении абсолютно черного тела. Таким образом, на пороге XX столетия появилось понятие кванта, играющее в современной физике исключительно важную роль и приведшее к созданию квантовой механики.

    Де Бройль высказал мысль, что и частицы вещества, в свою очередь, должны обнаруживать при определенных условиях волновые свойства. Гипотеза де Бройля вскоре получила блестящее экспериментальное подтверждение: было доказано, что с частицами вещества связан некий волновой процесс, который должен быть учтен при рассмотрении механики атома. Результатом этого открытия было создание Э. Шредингером и В. Гейзенбергом новой физической теории - волновой или квантовой механики. Квантовая механика достигла поразительных успехов в объяснении атомных процессов и строения вещества. В тех случаях, когда удалось преодолеть, математические трудности, были получены результаты, превосходно согласующиеся с опытом.

    Последние 100 лет внесли существенные изменения в положение физики среди других наук о природе. В 1919 г. удалось впервые расщепить атомное ядро и показать сложность его строения. Были открыты многочисленные новые так называемые элементарные частицы (протон, нейтрон, гипероны, мезоны, нейтрино), и было показано, что они способны превращаться друг в друга. Используя современные сверхмощные ускорители ядерных частиц, в 1956 г. удалось получить новые, ранее не наблюдавшиеся и лишь теоретически предсказанные физиками частицы - антипротон, антинейтрон и др.

    С каждым таким открытием непрерывно расширялись и углублялись представления о строении вещества и взаимодействии элементарных частиц, и возникала необходимость в создании новых гипотез и развитии новых теорий. Последние годы ознаменовались большими достижениями в области физики элементарных частиц, термоядерного синтеза, квантовой электроники, физики твердого тела и т. д.

    Итак, начало XX века ознаменовалось в физике коренной ломкой целого ряда привычных понятий и представлений о строении вещества. Человек все более и более глубоко проникает в сущность окружающего его материального мира.

    Толчком к развитию физики, как и всех других наук, послужили практические требования людей. Механика древних египтян и греков возникла непосредственно в связи с теми запросами, которые были поставлены тогдашней строительной и военной техникой. Также под влиянием развивающейся техники и военного дела были сделаны крупные научные открытия конца XVII и начала XVIII столетий.

    Основоположник русской физики и химии М. В. Ломоносов сочетал свою научную работу с требованиями практики. Его многочисленные и разнообразные исследования по природе твердых и жидких тел, оптике, метеорологии, атмосферному электричеству были связаны с теми или другими практическими задачами.

    В начале XIX столетия применение паровых машин сделало необходимым решение вопроса о наиболее выгодном превращении тепла в механическую работу. Этот вопрос не мог быть решен при узкотехническом подходе. После того как в 1824 г. французский инженер Сади Карно в общем виде рассмотрел проблему о переходе тепла в работу, можно было действительно увеличить коэффициент полезного действия тепловых машин. Одновременно работа Карно послужила фундаментом для возникновения общего учения о передаче и превращении энергии, получившего впоследствии название термодинамики. Таким образом, требования практики приводят к новым физическим открытиям, а эти последние служат базой для дальнейшего развития техники. Нередко, весьма теоретические, и отвлеченные на первый взгляд физические открытия со временем находят самые разнообразные и важные технические применения. Открытие в 1831 г. Фарадеем электромагнитной индукции сделало возможным широкое практическое использование электрических явлений. Открытый в 1869 г. Д. И. Менделеевым периодический закон не только сыграл исключительную роль в развитии учения об атомах и природе химических явлений, но и является руководящим при решении огромного количества практических задач химии и физики.

    В семидесятых годах прошлого столетия Максвелл создал общую теорию электромагнитных процессов. Исходя из этой теории, он пришел к выводу о возможности распространения электромагнитной энергии в виде волн. В 1888 г. Герц экспериментально подтвердил правильность этого вывода Максвелла. Несколькими годами позже открытие Максвелла - Герца было использовано А. С. Поповым для осуществления радиотелеграфии. В свою очередь развитие радиотехники открыло перед физиками новые, исключительно широкие экспериментальные возможности в изучении свойств природы. Теория Максвелла является фундаментом почти всех разделов электротехники и радиотехники

    Исследования А. Г. Столетова по «актино-электрическим» явлениям (1888-1889) сыграли существенную роль в выяснении природы фотоэлектрического эффекта, широко применяемого в современной технике (телевидение, автоматика и т. д.).

    В настоящее время исключительно важные проблемы, которые способны в корне изменить технику, как, например, непосредственное практическое использование солнечной энергии или получение энергии за счет термоядерных реакций требуют для своего решения дальнейшего глубокого изучения физических явлений. Решение принципиальных проблем физики элементарных частиц, которые имеют тесную связь с проблемой ядерных сил, решение проблемы управляемых термоядерных реакций в настоящее время являются передним краем наступательного фронта физических наук.

    Связь физики с другими науками. Физика теснейшим образом связана с философией. Крупнейшие открытия в области физики, такие, как законы сохранения в механике, закон сохранения и превращения энергии, второй закон термодинамики и др., всегда являлись ареной острой борьбы между материализмом и идеализмом. В начале нашего столетия, в связи с потоком открытий современной физики, эта борьба стала особенно ожесточенной. Идеалистически настроенные физики и философы пытались и пытаются поныне использовать конкретные достижения физики, ломку установившихся физических теорий и представлений для «ниспровержения» материализма. Верные философские выводы из научных открытий в области физики всегда подтверждали и подтверждают основные положения диалектического материализма. Поэтому изучение этих открытий и их философское обобщение играют важную роль в формировании подлинно научного мировоззрения.

    Последние 100 лет внесли существенные изменения в положение физики среди других наук о природе. В этот период физика развивалась такими темпами и достигла таких результатов, каких не знала ни одна из других естественных наук за всю историю своего существования. Остановимся кратко на связи ядерной физики с некоторыми другими науками.

    Астрофизика наших дней исследует много таких проблем, успешное решение которых возможно лишь в том случае, если она будет опираться на достоверные законы физики.

    Проблема генерирования энергии в недрах Солнца и других звезд при высоких температурах и проблема эволюции звезд тесно связаны с проблемой термоядерных реакций, протекающих в недрах звезд. Решение проблемы о возрасте космических объектов: метеоритов, Солнца, звезд, Галактики и доступной нам части Вселённой, по-видимому, должно проводиться с учетом периодов распада долгоживущих и «не имеющих родителей» радиоактивных элементов, например таких, как 92 U 238 , 19 K 40 и т.д.

    Проблема происхождения космических лучей, проблема «рождения пар» частиц в космических условиях и многие другие также находятся в тесной связи с проблемами ядерной физики.

    Геология, геофизика. Решение вопроса об истории Земли тесно связано с исследованиями естественной радиоактивности. Для определения абсолютного возраста Земли и разных ее слоев широко используются радиоактивные методы. Если определить соотношение между количеством радиоактивного элемента (урана) и количеством устойчивых продуктов распада (свинец, гелий) в исследуемой горной породе, то это даст возможность вычислить возраст исследуемой породы.

    Тепловая история Земли и вопросы современного теплового состояния ее недр также тесно связаны с проблемами естественной радиоактивности. В настоящее время широко применяется радиометрическая аппаратура при разведке и разработке урановых и ториевых месторождений, в геофизических методах поисков и разведки нефти, угля и других ископаемых.

    Археология. Метод изучения радиоактивности предметов нашел применение в определении возраста археологических находок, в. получении важных сведений об историческом прошлом человечества по этим вещественным историческим находкам. Это важное «поручение» - рассказать о прожитых веках - выполняет радиоактивный изотоп углерода 6 С 14 .

    Под действием нейтронов космического излучения некоторая часть ядер азота земной атмосферы превращаются в ядра радиоактивного углерода 6 С 14 . На протяжении тысячелетней истории Земли концентрация углерода в атмосфере оставалась практически постоянной. Они входят в состав органических соединений путем усвоения углекислого газа зелеными листьями. Если растение, например дерево, погибает и перестает поглощать соединения углерода из атмосферы, то содержание радиоактивного углерода постепенно уменьшается, так как он распадается с периодом полураспада 5568 лет. Через 5568 лет активность (количество) углерода 6 С 14 в угле уменьшается в два раза и т. д.

    Химия. В результате развития ядерной физики были искусственно получены новые заурановые элементы, которые не встречаются в природе. Большим и важным разделом современной химии является радиохимия, которая изучает химические и физико-химические свойства радиоактивных элементов, разрабатывает методы выделения и концентрирования радиоактивных изотопов.

    Медицина. Естественные и искусственно полученные радиоактивные изотопы нашли широкое применение в медицине для диагностики и лечения некоторых заболеваний. Методом меченых атомов установлено, что кальций входит не только в кости, но и в нервную систему, цинк играет важную роль в образовании инсулина и в деятельности белых кровяных шариков. Радиоактивный фосфор используется для диагностики заболеваний крови, опухоли печени, заболеваний кожи.

    Границы между физикой и некоторыми" другими естественными науками не могут быть установлены резко. Существуют обширные пограничные области между физикой и химией, возникли даже особые науки: физическая химия и химическая физика. Области знания, где физические методы применяются для изучения более или менее частных вопросов, также соединяются в особые науки: так возникла например, астрофизика, изучающая физические явления, в небе, и геофизика, изучающая физические протекающие в атмосфере Земли и в земной коре. Физические открытия часто давали толчок к развитию других наук. Изобретение микроскопа и телескопа ускорило развитие биологии и астрономии. Открытый физиками спектральный анализ стал одним из основных методов, астрофизики и т. д.

    Известно, что развитие науки и техники определяется экономическими потребностями общества. Технический уровень производства в значительной степени зависит от состояния науки. История развития физики и техники показывает, какое большое значение имели открытия в физике для создания и развития новых отраслей техники. Физика явилась фундаментом, на котором выросли такие новые области техники, как электро- и радиотехника, электронная и вычислительная техника, приборостроение, ядерная техника и др. Физики вооружают промышленность принципиально новыми приборами и установками, создают основы новых, более совершенных методов производства. Быстро развилась физика полупроводников, почти немедленно получившая практическое приложение в технике полупроводниковых устройств и приборов.

    Краткий методический анализ разделов физики. Механика. В современной физике основные понятия классической механики не утратили своего значения, а получили лишь дальнейшее развитие, обобщение и критическую оценку, с точки зрения пределов их применимости. При изложении физических основ механики следует избегать абстрактности механических представлений, максимально сближая теорию с реальными физическими явлениями и конкретной природой действующих сил. Ясная физическая и философская интерпретация представлений классической механики в современной физике должна явиться основным руководящим началом при изучении этого раздела программы курса физики.

    В начале изложения кинематики точки и поступательного движения твердого тела следует остановиться на тех представлениях о свойствах пространства и времени, которые лежат в основе классической (ньютоновской) механики. В классической механике пространство и время рассматриваются как объективные формы существования материи, но в отрыве друг от друга и от движения материальных тел. Ньютон полагал, что тела и их движение не влияют ни на ход времени, одинаковый во всех инерциальных системах отсчета, ни на свойства пространства, описываемые геометрией Евклида. В ньютоновской механике признается возможность мгновенной передачи взаимодействий между телами.

    При изложении кинематики необходимо использовать математический аппарат векторной алгебры и дифференциального исчисления. Следует получить выражения для касательной и нормальной составляющих ускорения материальной точки в криволинейном движении и ввести понятие о радиусе кривизны траектории (на примере плоской траектории).

    Колебания здесь рассматриваются, как один из видов движения, наравне с прямолинейным и вращательным движениями. Для колебательного движения, как вида движения, необходимо ввести все кинематические характеристики – скорость, ускорение и т.д. Такое изложение приводит к значительной экономии времени и на математической стороне дела и в то же время позволяет наглядно сравнивать физические процессы, происходящие при соответствующих движениях. Это способствует выработке у студентов единого подхода к движениям различной физической природы. Везде, где возможно, следует использовать графический метод представления гармонического колебания с помощью вращающегося вектора. Нужно разъяснить студентам, что любые колебания линейной системы всегда можно представить в виде суперпозиции одновременно совершающихся гармонических колебаний с различными частотами, амплитудами и начальными фазами. Рассматривая резонанс при вынужденных колебаниях, необходимо обсудить это явление с энергетической точки зрения.

    Изложение динамики материальной точки и поступательного движения твердого тела должно быть развитием и углублением соответствующего раздела курса физики средней школы. Внимание нужно сосредоточить на таких вопросах, как закон движения центра масс механической системы, закон сохранения импульса и условия сохранения проекции импульса на ось, работа силы, ее выражение через криволинейный интеграл и условие независимости работы от формы траектории, связь кинетической энергии механической системы с работой сил, приложенных к этой системе. Особенно тщательно и неторопливо следует излагать вопросы о поле как форме материи, осуществляющей взаимодействие между частицами вещества или телами, о потенциальной энергии материальной точки во внешнем поле (в частности, нужно рассмотреть энергию в поле центральных сил) и о законе сохранения механической энергии.

    Кинематические характеристики вращательного движения твердого тела и их связь с линейными характеристиками целесообразно рассматривать непосредственно перед динамикой вращательного движения. Имеет смысл ввести понятие о моменте силы и моментеимпульса механической системы относительно неподвижной точки и оси.

    Законы сохранения импульса, момента импульса и механической энергии обычно выводят, основываясь на законах Ньютона. Поэтому очень важно обратить внимание студентов па то, что в отличие от законов Ньютона и построенной на них классической механики, имеющих ограниченные области применимости, законы сохранения являются универсальными законами, которые отражают фундаментальные свойства симметрии пространства и времени. Для иллюстрации универсальности законов сохранения и эффективности их использования при решении реальных физических задач можно применить эти законы к расчету удара двух тел.

    При изучении темы о неинерциальных системах отсчета и силах инерции нужно обратить внимание студентов на то, что два основных положения ньютоновской механики, согласно которым ускорение всегда вызывается силой, а сила всегда обусловлена взаимодействием между телами, не выполняются одновременно в системах отсчета, движущихся с ускорением. Полезно обсудить вопрос о том, являются ли силы инерции «реальными» или «фиктивными».

    Молекулярная физика и термодинамики. В начале изложения этого. раздела курса необходимо разъяснить студентам два качественно различных и взаимно дополняющих друг друга метода исследования физических свойств макроскопических систем - статистический (молекулярно-кинетический) и термодинамический. Первый лежит в основе молекулярной физики, второй - термодинамики. Нужно отметить, что свойства огромной совокупности молекул отличны от свойств каждой отдельной молекулы. Даже если, как это делается в классической статистической физике, базирующейся на механической картине мира, можно считать, что каждая молекула движется по законам ньютоновской механики, совокупное движение огромного коллектива молекул обладает специфическими закономерностями. Свойства макроскопической системы, в конечном счете, определяются свойствами частиц системы, особенностями их движения и средними значениями динамических характеристик этих частиц.

    Говоря о термодинамическом методе, необходимо четко сформулировать определения таких основных понятий термодинамики, как термодинамическая система, термодинамические параметры (параметры состояния), равновесное состояние, уравнение состояния, термодинамический процесс, внутренняя энергия и т. д. Следует подчеркнуть, что термодинамика, в отличие от молекулярной физики, не связана с какой-либо конкретной физической картиноймира. Она основывается на нескольких универсальных принципах - началах термодинамики, надежно подтвержденных экспериментами. В этом, с одной стороны, сила термодинамического метода, пригодного дляанализасамых различных физических систем, а с другой - его слабость. Например, методами термодинамики нельзя вывести, уравнениесостояния системы, нельзя обосновать существование флуктуациии т.д.

    Переходя к рассмотрению молекулярно-кинетической теории идеального газа, необходимо специально остановиться на той роли, которую играет в молекулярной физике модель рассматриваемой системы. Следует подчеркнуть, что выбор этой модели зависит не только от специфических особенностей системы, но и от того, какие ее свойства исследуются. Например, при расчете давления газа на стенки сосуда можно, в первом приближении, принять молекулы газа как упругие шарики малого размера, беспорядочно движущиеся в сосуде и сталкивающиеся только с его стенками. В то же время для объяснения процессов установления равновесного распределения молекул газа, а также закономерностей явлений переноса совершенно необходимо учитывать столкновения молекул друг с другом, хотя при этом по-прежнему можно пренебрегать их собственным объемом. В этой связи весьма поучительно сопоставить на лекции значения суммарного собственного объема и суммарной площади поверхности всех молекул газа, находящихся в сосуде, соответственно с объемом сосуда и площадью поверхности его стенок. Наконец, в молекулярно-кинетической теории теплоемкости газа необходимо уже учитывать внутреннюю структуру молекул. Для объяснения отличия свойств реальных и идеальных газов необходимо дальнейшее уточнение модели газа с тем, чтобы она учитывала действие сил взаимного притяжения и отталкивания молекул, как это сделано, например, в модели газа Ван-дер-Ваальса.

    Следует достаточно обстоятельно рассмотреть такие вопросы, как молекулярно-кинетическая теория идеальных газов и ее ограниченность, границы применимости закона равнораспределения энергии, законы распределения Максвелла и Больцмана.

    Первое начало термодинамики целесообразно сформулировать и записать для малого изменения состояния закрытой системы, т. е. системы, обменивающейся энергией с внешней средой только путем теплообмена и совершения работы. Необходимо разъяснить студентам, что внутренняя энергия в отличие от теплоты и работы является функцией состояния. Используя выражение для внутренней энергии идеального газа, полученное от молекулярно-кинетических представлений, следует записать уравнение первого начала термодинамики для идеального газа, а затем применить этот закон к расчету трех изопроцессов и адиабатного процесса идеальных газов. В заключение можно рассмотреть политропный процесс. Очень полезно приучать студентов к изображению и распознаванию всевозможных политропных процессов в различных термодинамических диаграммах. В особой тщательности изложения нуждается второе начало термодинамики и его статистическое толкование, а также понятие энтропии. Очень полезно привести несколько различных формулировок второго начала термодинамики и показать, что они полностью эквивалентны. Вряд ли целесообразно излагать доказательство теоремы Карно о независимости КПД обратимого цикла Карно от природы рабочего тела. Следует найти выражение для энтропии идеального газа и показать на этом примере, что энтропия в отличие от количества теплоты является функцией состояния.

    Электричество и магнетизм. В электростатике, а затем в электродинамике впервые в курсе физики более или менее серьезно с соответствующим математическим аппаратом рассматривается теория поля. Следует обратить внимание студентов на связь теоремы Остроградского - Гаусса с законом Кулона и геометрическими свойствами пространства. Под этим же углом зрения целесообразно подходить к вопросу о распределении зарядов в проводниках, находящихся в электростатическом поле. Излагая закон сохранения электрического заряда, нужно вновь подчеркнуть роль и значение законов сохранения в физике. Не следует увлекаться расчетами сложных полей методом суперпозиции. Рекомендуется обратить основное внимание на физический смысл потенциала и его связь с напряженностью поля, на графическое представление и анализ зависимостей напряженности и потенциала от координат для электростатических полей, создаваемых простейшими симметричными системами зарядов.

    Особого внимания заслуживает круг вопросов, связанных с расчетом электростатического поля в диэлектрических средах. Необходимо ввести классификацию зарядов на свободные и связанные, рассмотреть механизм и рассчитать поляризацию диэлектриков с неполярными и полярными молекулами. Электрическое смещение целесообразно ввести в связи с доказательством теоремы Остроградского - Гаусса для электростатического поля в диэлектрической среде (обычно это делают на примере поля в диэлектрической среде с неполярными молекулами). Далее рекомендуется получить условия, которым удовлетворяют векторы напряженности поля и электрического смещения на границе раздела двух диэлектрических сред, и рассмотреть примеры расчета напряженности и потенциала электростатического поля в диэлектрике. Можно ограничиться качественным феноменологическим описанием свойств сегнетоэлектриков.

    При изложении вопроса об энергии заряженных проводников и конденсатора нужно указать, что, оставаясь в рамках электростатики, нельзя однозначно решить вопрос о локализации этой энергии. Целесообразно везде, где возможно, пользоваться законом сохранения и превращения энергии.

    Раздел курса о постоянном токе не следует излишне растягивать на лекциях. При изложении классической электронной теории проводимости металлов нужно рассказать как о достижениях этой теории, так и о трудностях. В связи с законом Ома необходимо дать четкое разграничение таких понятий, как разность потенциалов, электродвижущая сила и электрическое напряжение. Следует также ввести точечные электрические характеристики и сформулировать законы постоянного тока в дифференциальной форме.

    В качестве основной характеристики магнитного поля следует вводить магнитную индукцию, основываясь на силовом действии магнитного поля либо на небольшой элемент проводника с током, либо на небольшой замкнутый контур с током. Напряженность магнитного поля целесообразно вводить значительно позднее при изучении магнитного поля в веществе. Не следует увлекаться сложными расчетами магнитных полей на основе закона Био- Савара - Лапласа. Важно подчеркнуть, что для магнитных полей выполняется принцип суперпозиции. Закон полного тока для поля в вакууме и теорему Остроградского - Гаусса достаточно показать на примере магнитного поля прямолинейного проводника с током.

    Рассматривая действие магнитного поля на движущийся заряд, нужно уделить особое внимание вопросу о релятивистском толковании магнитного взаимодействия, а также анализу закономерностей движения заряженных частиц в магнитном поле и практическому использованию этих закономерностей в ускорителях, МГД-генераторах, масс-спектрометрах и т. д.

    Закон электромагнитной индукции Фарадея - Максвелла достаточно рассмотреть качественно, на основе опытов. Во втором случае необходимо остановиться на том, за счет какой энергии совершается работа индукционного тока. Весьма поучительно обсудить возникновение ЭДС электромагнитной индукции и индукционного тока в неподвижном проводящем контуре, находящемся в переменном магнитном поле.

    При рассмотрении магнитных свойств вещества нужно остановиться на гипотезе молекулярных токов Ампера, а также ввести понятие макро- и микротоков и намагниченности. Рассматривая элементарную теорию диа- и парамагнетизма, следует указать на невозможность всякой классической теории магнитных свойств вещества. Напряженность магнитного поля целесообразно ввести в связи с обобщением закона полного тока на магнитное поле в веществе (обычно это делают на примере поля в диамагнитной среде). Затем рекомендуется получить условия, которым удовлетворяют магнитная индукция и напряженность магнитного поля на границе раздела двух сред. Изложение свойств ферромагнетиков должно носить феноменологический характер.

    В заключение нужно рассмотреть основы теории Максвелла для электромагнитного поля. При этом особое внимание следует обратить на физический смысл тех обобщений экспериментально установленных законов, которые были сделаны Максвеллом. Необходимо подчеркнуть относительный характер электрической и магнитной составляющих электромагнитного поля, т. е. их зависимость от выбора инерциальной системы отсчета.

    Оптика и основы ядерной физики. Волновая оптика излагается как часть общего учения о распространении волн. Следует подчеркнуть общность явлений интерференции и дифракции волн любой природы. Изложение этих явлений должно подготовить студента к пониманию основ квантовой механики. Наряду с общими волновыми свойствами нужно отметить специфические особенности световых волн и их практические приложения. Когерентность и монохроматичность должны быть связаны с конечной длительностью свечения отдельного атома. Расчет интерференции многих волн полезно вести с помощью графического метода. Следует сопоставить способы наблюдения линий равного наклона и равной толщины.

    Необходимо четко сформулировать условия наблюдения дифракции. При изложении принципа Гюйгенса - Френеля его нужно рассматривать как расчетный прием, заменяющий строгое, но очень трудное решение волнового уравнения. При рассмотрении излучения Вавилова - Черенкова нужно указать, что это классическое явление можно истолковывать на основе представлений об интерференции света. Объяснение двойного лучепреломления надо проводить на основе электромагнитных представлений и с учетом анизотропии электрических свойств кристаллов. Необходимо подчеркнуть значение поляризационных эффектов для экспериментального доказательства поперечности световых волн, а также обратить внимание на их практическое применение.

    Проблема теплового излучения - важный этап в формировании научного мировоззрения студентов, так как с теорией равновесного излучения абсолютно черного тела связан переход от классической физики к квантовой. Важно подчеркнуть согласие классической теории с опытом в области малых частот и расхождение в области больших частот. Необходимо рассмотреть гипотезу Планка о квантовании энергии осцилляторов. Полный вывод средней энергии осциллятора и формулы Планка на основе этой гипотезы приводить не обязательно. Необходимо показать, что при малых частотах она переходит в классическую формулу Рэлея - Джинса.

    После анализа трудностей классической физики в истолковании законов внешнего фотоэффекта нужно остановиться на гипотезе Эйнштейна о «световых квантах», позднее названных фотонами, т. е. о дискретной структуре излучения.

    При изложении светового давления необходимо остановиться на опытах П. Н. Лебедева, являющихся образцом экспериментального искусства и сыгравших большую роль в утверждении электромагнитной теории света. Следует качественно пояснить.возникновение светового давления с классической (волновой) точки зрения и вывести формулу для давления на основе квантовых представлений. Эффект Комптона нужно рассматривать как наиболее полное и яркое представление корпускулярных свойств излучения. Он подтверждает универсальный характер законов сохранения.

    Анализ двойственности свойств света должен подготовить студентов к восприятию двойственности свойств вещества. Важно подчеркнуть статистический характер попадания фотонов в отдельные точки экрана. Обсуждая опыты по дифракции электронов, нужно подчеркнуть их значение как доказательство существования у частиц вещества волновых свойств. Соотношение неопределенностей следует рассматривать в связи с корпускулярно-волновым дуализмом свойств материи. Следует подчеркнуть физический смысл соотношения неопределенностей как квантового ограничения применимости понятий классической механики. Затем необходимо рассмотреть соотношение неопределенностей для энергии и времени. В заключение нужно указать, что из соотношения неопределенностей вытекает необходимость описания состояния микрообъекта с помощью волновой функции, и разъяснить статистический смысл волновой функции частицы.

    Физика атомного ядра. Говоря о составе ядра и его характеристиках, целесообразно, если позволяет время, начать с характеристики экспериментальных методов определения массы, линейных размеров, момента импульса и магнитного момента ядер атомов. Очень важно привести аргументацию невозможности существования электронов в ядрах атомов. Говоря о составе ядра и взаимодействии нуклонов в ядре, нужно рассмотреть свойства ядерных сил и остановиться на их обменной природе. Дефект массы должен трактоваться как разность между массой атома данного изотопа и его массовым числом, т. е. числом нуклонов в ядре. Надо указать на существование зависимости удельной энергии связи ядер (энергии связи, отнесенной к одному нуклону) от массового числа.

    Рассматривая α-распад ядер, следует остановиться на квантовом механизме этого явления, служащего примером проявления туннельного эффекта. Важно обратить внимание студентов на дискретный характер энергетического спектра α-частиц и γ-излучения, свидетельствующий о квантовании энергии ядер. Необходимо специально остановиться на тех трудностях, которые возникли в согласовании закономерностей β-распада с законами сохранения энергии и момента импульса, и на том, что выход из этих трудностей был найден путем введения гипотезы о существовании нейтрино.

    Рассмотрение ядерных реакций целесообразно начать с описания опыта Резерфорда и открытия искусственной радиоактивности. В этой связи нужно кратко остановиться на явлениях радиоактивности ядер, а также на явлении электронного захвата. Следует подчеркнуть, что во всех ядерных реакциях выполняются законы сохранения энергии, импульса, момента импульса, электрического заряда (зарядового числа) и массы (массового числа). Особое внимание нужно уделить реакции деления тяжелых ядер и ее энергетическому балансу. Для обоснования реакции деления целесообразно использовать капельную модель ядра Н. Бора-Л И. Френкеля. В связи с рассмотрением ядерных реакций синтеза следует остановиться на проблеме осуществления управляемых термоядерных реакций. Необходимо подчеркнуть огромное значение этой проблемы, так как ее решение откроет человечеству неисчерпаемый источник энергии.

    В заключение нужно остановиться на четырех фундаментальных взаимодействиях, на классификации, основных свойствах и взаимных превращениях элементарных частиц, избегая при этом излишней перегрузки памяти студентов большим количеством фактических данных. Следует отметить, что современные представления физики по этим вопросам еще далеки от завершенности.

    Физика (греч. от physis - природа) - наука о природе, изучающая простейшие и вместе с тем наиболее общие свойства материального мира .

    Физика - одна из основных областей естествознания - наука о свойствах и строении мира, о формах ее движения и изменения, об общих закономерностях явлений природы .

    Основоположниками физики являются такие великие ученые как: Галио Галилей - итальянский физик, астроном, философ, математик, Блез Паскаль - французский математик, физик, религиозный философ, Исаак Ньютон - английский математик, астроном, физик. Ньютона принято считать основоположником физики.

    От ранних цивилизаций, возникших на берегах Тигра, Евфрата и Нила, не осталось никаких свидетельств в области физических знаний, на тот момент не было системы физических знаний, а существовали только определенные описания и факты, не подтвержденные теоретическими обобщениями и выводами. Древние называли физикой любое исследование окружающего мира и явлений природы. Такое понимание физики сохранялось до конца 17 века.

    Аристотель в IV веке до нашей эры впервые употребил слово «фюзис», что означает природа. Он также употребил слова «материя» и «форма».

    Так, с какого же периода истории возникла физика, которую еще нельзя было назвать наукой?

    На наш взгляд наблюдение над природой началось в глубокой древности, когда у человека появилась необходимость прокормить себя и своих близких, но человек еще не перешел к земледелию и к скотоводству, а пользовался плодами леса и охотой на диких животных.

    Попробуем представить абстрактную картину. Случайно в буреломе, где хаотично повалены деревья, одно из них оказалось на другом так, что корневая система, «выдранного» дерева лежала на земле, ствол его, опираясь на другое дерево, свободно свисал. Древний человек случайно вступил на ствол довольно далеко от точки опоры, своим весом приподнял всю корневую систему дерева весом, гораздо большим, чем вес самого человека.

    Человек ничего не понял, но заметил эту особенность, которую и стал применять при необходимости. Так, появился рычаг. Произошло это задолго до исследований Архимеда (287 год до нашей эры). Человек, как мы полагаем, заметил и несколько рассчитал соотношение плеч рычага и действующих на него сил.

    Архимед же привел в систему весь накопленный опыт. Согласно преданию Архимед произнес известную всем фразу: «Дайте мне точку опоры, и я подниму Землю»!

    Конечно, он имел в виду применение рычага.

    Вклад Архимеда в математику и физику, безусловно, велик. Архимед является основоположником теоретической механики и гидростатики. Он разработал методы нахождения площадей, поверхностей и объемов различных фигур и тел.

    В основополагающих трудах по статике и гидростатике (закон Архимеда) Архимед дал образцы применения математики в естествознании и технике. Ему принадлежит множество технических изобретений: архимедов винт, определение состава сплавов взвешиванием в воде, системы для поднятия больших тяжестей, военные метательные машины.

    В физике Архимед ввел понятие «центр тяжести». Он установил научные принципы статики и гидростатики, дал образцы применения математических методов в физических исследованиях. Основные положения статики сформулированы в сочинении «О равновесии плоских фигур». Архимед делает вывод о законе рычага. Знаменитый закон гидростатики, вошедший в науку с именем Архимеда (Архимеда закон), сформулирован в трактате «О плавающих телах» .

    Появление паруса, как мы считаем, также произошло случайно. Древние люди вновь при помощи наблюдений приобрели опыт. Как мы думаем, человек заметил, что если встать и плыть на бревне с помощью примитивного весла, и при этом дует попутный ветер, то бревно начинает двигаться довольно быстро. Возможно, человек заметил, что плывущий по воде ствол дерева с торчащими ветвями движется быстрее, чем без веток. Позднее человек сознательно соорудил из веток с листьями или из звериной шкуры подобие паруса. Так, появился первый примитивный парус.

    Много столетий спустя, в результате накопленного человечеством опыта, появились парусные корабли, которые уже были способны плыть и против ветра. И среди них барк, самый современный парусник. В основе этого явления лежит сложение действующих сил.

    Другим величайшим изобретением древности является колесо. Мы полагаем, что это, скорее всего коллективное изобретение, так как один человек не мог придумать колесо, затем посадить его на ось, закрепить на ней платформу и получить, таким образом, телегу. Как мы считаем, древние люди заметили, что если взять толстое бревно, то его легче перемещать по земле, если под бревно подкладывать круглые обрубки дерева. В результате размышлений человека, даже не группы людей, а целых поколений, получилось колесо.

    Изобретение колеса дало колоссальный толчок в развитии современной цивилизации.

    Здесь хотелось бы упомянуть о цивилизации древних инков. Инки - это индейское племя, которое проживало на землях таких современных стран, как Перу, Эквадор, Боливия и другие. Древние инки не знали и не применяли колесо из-за рельефа земель, которые они занимали. Перу - страна горная, и инками не был замечен тот факт, что пресловутое бревно, можно перемещать качками.

    Так, мы полагаем, что физика зародилась на основе сбора наблюдений, опыта, информации. Когда же такой информации накопилось достаточно много, величайшие ученые древности систематизировали накопленные знания, создав фундаментальную теорию механики.

    Наше небольшое размышление о том, когда зародилась физика, хотелось бы закончить стихотворением:

    Читай, внимай и понимай,

    Почаще думай, мысли, познавай,

    Ты в жанры разные «влетай»

    И книги полностью «глотай»,

    Но ничего не упускай!

    Учти, что всяк разумный человек

    Читает книги разных лет.

    Он в них живет, поет и пляшет,

    Он знания все там берет

    И все дословно узнает,

    Внимает, мыслит, познает,

    Вернувшись в мир,

    Он всем расскажет,

    Что дарят чудны пейзажи,

    Картин из тех чудеснейших долин,

    Где жизнь он мысленно прожил

    И мир с других сторон открыл.

    За что всю жизнь благодарил

    Литературный дивный свет,

    Пролитый с древних лет на мир .

    Литература:

    1. Большой энциклопедический словарь, гл. ред. Прохоров А. М. - М.: Большая Российская энциклопедия, 2002. - 1456 с.

    2. Житомирский С. В. Ученый из Сиракуз: Архимед. Историческая повесть. - М.: Молодая гвардия, 1982. - 191 с.

    3. Ожегов С. И., Шведова Н. Ю. Толковый словарь русского языка: 72500 слов и выражений/Российская АН. институт русского языка.; Российский фонд культуры. - М.: Азъ Ltd., 1992. - 960 с.

    4. Царева М. В. Стихотворение, «Великий чтива книг», 2015.

    error: