Как выглядит f орбиталь. Строение атома, атомные орбитали

Химический элемент – определенный вид атомов, обозначаемый названием и символом и характеризуемый порядковым номером и относительной атомной массой.

В табл. 1 перечислены распространенные химические элементы, приведены символы, которыми они обозначаются (в скобках – произношение), порядковые номера, относительные атомные массы, характерные степени окисления.

Нулевая степень окисления элемента в его простом веществе (веществах) в таблице не указана.




Все атомы одного элемента имеют одно и то же число протонов в ядре и число электронов в оболочке. Так, в атоме элемента водород Н находится 1р + в ядре и на периферии 1е - ; в атоме элемента кислород О находится 8р + в ядре и 8е - в оболочке; атом элемента алюминий Аl содержит 13р + в ядре и 13е - в оболочке.

Атомы одного элемента могут различаться числом нейтронов в ядре, такие атомы называются изотопами. Так, у элемента водород Н три изотопа: водород-1 (специальное название и символ протий 1 H) с 1 р + в ядре и 1е - в оболочке; водород-2 (дейтерий 2 Н, или D) с 1р + и 1п 0 в ядре и 1е - в оболочке; водород-3 (тритий 3 Н, или Т) с 1р + и 2п 0 в ядре и 1е - в оболочке. В символах 1 Н, 2 Н и 3 Н верхний индекс указывает массовое число – сумму чисел протонов и нейтронов в ядре. Другие примеры:




Электронную формулу атома любого химического элемента в соответствии с его расположением в Периодической системе элементов Д. И. Менделеева можно определить по табл. 2.




Электронная оболочка любого атома делится на энергетические уровни (1, 2, 3-й и т. д.), уровни делятся на подуровни (обозначаются буквами s, р, d, f ). Подуровни состоят из атомных орбиталей – областей пространства, где вероятно пребывание электронов. Орбитали обозначаются как 1s (орбиталь 1-го уровня s-подуровня), 2s , 2р , 3s , 3р, 3d, 4s … Число орбиталей в подуровнях:



Заполнение атомных орбиталей электронами происходит в соответствии с тремя условиями:

1) принцип минимума энергии

Электроны заполняют орбитали, начиная с подуровня с меньшей энергией.

Последовательность нарастания энергии подуровней:

1s < 2c < 2p < 3s < 3p < 4s ? 3d < 4p < 5s ? 4d < 5p < 6s

2) правило запрета (принцип Паули)

В каждой орбитали может разместиться не более двух электронов.

Один электрон на орбитали называется неспаренным, два электрона - электронной парой:




3) принцип максимальной мультиплетности (правило Хунда)

В пределах подуровня электроны сначала заполняют все орбитали наполовину, а затем – полностью.

Каждый электрон имеет свою собственную характеристику – спин (условно изображается стрелкой вверх или вниз). Спины электронов складываются как вектора, сумма спинов данного числа электронов на подуровне должна быть максимальной (мультиплетность):




Заполнение электронами уровней, подуровней и орбиталей атомов элементов от Н (Z = 1) до Kr (Z = 36) показано на энергетической диаграмме (номера отвечают последовательности заполнения и совпадают с порядковыми номерами элементов):



Из заполненных энергетических диаграмм выводятся электронные формулы атомов элементов. Число электронов на орбиталях данного подуровня указывается в верхнем индексе справа от буквы (например, 3d 5 – это 5 электронов на Зd -подуровне); вначале идут электроны 1-го уровня, затем 2-го, 3-го и т. д. Формулы могут быть полными и краткими, последние содержат в скобках символ соответствующего благородного газа, чем передается его формула, и, сверх того, начиная с Zn, заполненный внутренний d-подуровень. Примеры:

3 Li = 1s 2 2s 1 = [ 2 He]2s 1

8 O = 1s 2 2s 2 2p 4 = [ 2 He]2s 2 2p 4

13 Al = 1s 2 2s 2 2p 6 3s 2 3p 1 = [ 10 Ne]3s 2 3p 1

17 Cl = 1s 2 2s 2 2p 6 3s 2 3p 5 = [ 10 Ne]3s 2 3p 5

2O Са = 1s 2 2s 2 2p 6 3s 2 3p4s 2 = [ 18 Ar]4s 2

21 Sc = 1s 2 2s 2 2p 6 3s 2 3p 6 3d 1 4s 2 = [ 18 Ar]3d 1 4s 2

25 Mn = 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 2 = [ 18 Ar]3d 5 4s 2

26 Fe = 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 = [ 18 Ar]3d 6 4s 2

3O Zn = 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 = [ 18 Ar, 3d 10 ]4s 2

33 As = 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 3 = [ 18 Ar, 3d 10 ]4s 2 4p 3

36 Kr = 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 = [ 18 Ar, 3d 10 ]4s 2 4p 6

Электроны, вынесенные за скобки, называются валентными. Именно они принимают участие в образовании химических связей.

Исключение составляют:

24 Cr = 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1 = [ 18 Аr]Зd 5 4s 1 (а не 3d 4 4s 2 !),

29 Cu = 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 = [ 18 Ar]3d 10 4s 1 (а не 3d 9 4s 2 !).

Примеры заданий части А

1. Название, не относящееся к изотопам водорода, – это

1) дейтерий

2) оксоний


2. Формула валентных подуровней атома металла – это


3. Число неспаренных электронов в основном состоянии атома железа равно


4. В возбужденном состоянии атома алюминия число неспаренных электронов равно


5. Электронная формула 3d 9 4s 0 отвечает катиону


6. Электронная формула аниона Э 2- 3s 2 3p 6 отвечает элементу


7. Суммарное число электронов в катионе Mg 2+ и анионе F - равно

Физические и химические свойства атомов, а следовательно, и вещества в целом во многом определяются особенностями электронного облака вокруг атомного ядра. Положительно заряженное ядро притягивает отрицательно заряженные электроны. Электроны вращаются вокруг ядра так быстро, что точно определить их местонахождение не представляется возможным. Движущиеся вокруг ядра электроны можно сравнить с облаком или туманом, в одних местах более или менее плотным, в других – совсем разреженным. Форму электронного облака, а также вероятность нахождения электрона в любой его точке можно определить, решив соответствующие уравнения квантовой механики . Области наиболее вероятного нахождения электронов называют орбиталями. Каждая орбиталь характеризуется определенной энергией, и на ней может находиться не более двух электронов. Обычно вначале заполняются ближайшие к ядру самые низкоэнергетические орбитали, затем орбитали с более высокой энергией и т.д.

Совокупность электронных орбиталей с близкой энергией образует слой (т.е. оболочку, или энергетический уровень). Энергетические уровни нумеруют, начиная от ядра атома: 1, 2, 3, ... . Чем дальше от ядра, тем просторнее слои и тем больше орбиталей и электронов они могут вместить. Так, на n -м уровне n 2 орбиталей, и на них могут располагаться до 2 n 2 электронов. У известных элементов электроны находятся только на первых семи уровнях, и лишь первые четыре из них бывают заполненными.

Существует четыре типа орбиталей, их обозначают s , p , d и f . На каждом уровне (слое) имеется одна s -орбиталь, которая содержит наиболее прочно связанные с ядром электроны. За ней следуют три p -орбитали, пять d -орбиталей и, наконец, семь f -орбиталей.

Оболочка n

Число орбиталей n 2

Тип орбиталей

Число электронов 2n 2

s , p

s , p , d

s , p , d , f

s - Орбитали имеют форму сферы, p – форму гантели или двух соприкасающихся сфер, у d -орбиталей – 4 «лепестка», а у f -орбиталей – 8. В разрезе эти орбитали выглядят примерно так, как показано на рисунке.

Три р -орбитали ориентированы в пространстве вдоль осей прямоугольной системы координат и обозначаются соответственно p x , p y и p z ; d - и f -орбитали тоже располагаются под определенными углами друг к другу; сферические s -орбитали пространственной ориентации не имеют.

Каждый следующий элемент в периоде имеет атомный номер, на единицу превышающий номер предыдущего элемента, и содержит на один электрон больше. Этот дополнительный электрон занимает следующую орбиталь в порядке возрастания. Нужно иметь в виду, что электронные слои диффузны и энергия у некоторых орбиталей наружных слоев ниже, чем у внутренних. Поэтому, например, сначала заполняется s -орбиталь четвертого уровня (4 s -орбиталь), и только после нее завершается заполнение 3 d -орбитали. Порядок заполнения орбиталей, как правило, следующий: 1 s , 2 s , 2 p , 3 s , 3 p , 4 s , 3 d , 4 p , 5 s , 4 d , 5 p , 6 s , 4 f , 5 d , 6 p , 7 s . В записи, которую используют для представления электронной конфигурации элемента, верхний индекс при букве, обозначающей орбиталь, указывает число электронов на этой орбитали. Например, запись 1 s 2 2 s 2 2 p 5 означает, что на 1 s -орбитали атома находится два электрона, на 2 s -орбиталях – два, на 2 р – пять электронов. Нейтральные атомы, имеющие на внешней электронной оболочке 8 электронов (т.е. заполнены s - и р -орбитали), настолько стабильны, что практически не вступают ни в какие химические реакции. Таковы атомы инертных газов. Электронная конфигурация гелия 1 s 2 , неона – 2 s 2 2 p 6 , аргона – 3 s 2 3 p 6 , криптона – 4 s 2 3 d 10 4 p 6 , ксенона – 5 s 2 4 d 10 5 p 6 и, наконец, радона – 6 s 2 4 f 14 5 d 10 6 p 6 .

После завершения формального описания квантово-механического движения стало ясно, что в атомном пространстве каждый объект имеет такую характеристику, как атомная орбиталь.

Атомная орбиталь (АО) - область пространства вокруг ядра атома, в которой по законам квантовой механики с наибольшей вероятностью находится электрон с заданной энергией.

Энергетическое состояние электрона описывается функцией трех целочисленных параметров п } I, т 1У которые называются квантовыми числами. При определенных значениях квантовых чисел можно получить характеристики области, где может находиться электрон.

Квантовые числа имеют следующий физический смысл :

  • п - главное квантовое число , характеризует энергетический уровень и размер орбитали;
  • / - орбитальное квантовое число , характеризует энергетический подуровень и форму орбитали;
  • т { - магнитное квантовое число , учитывает влияние внешнего магнитного поля на энергетическое состояние электрона.

Главное квантовое число п является натуральным и соответствует номерам периодов в таблице Д. И. Менделеева (1, 2, 3, 4, 5, 6, 7). Главное квантовое число определяет основную долю энергии электрона, находящегося на данной орбитали. Это квантовое число называют также номером энергетического уровня. Чем больше п , тем больше размер орбитали.

Атомы, в которых электроны находятся на орбиталях с большим значением п (п > 8), называются ридберговскими атомами. Первые экспериментальные данные по ридберговским атомам в радиоастрономии были получены в 1964 г. сотрудниками ФИАПа (Р. С. Сороченко и др.) на 22-метровом зеркальном радиотелескопе. При ориентации телескопа на туманность Омега в спектре ее радиоизлучения была обнаружена линия излучения с длиной волны X = 3,4 см. Эта длина волны соответствует переходу между ридберговскими состояниями п = 90 и п = 91 в спектре атома водорода. Сегодня в лаборатории получены ридберговские атомы с п ~ 600! Это почти макроскопические объекты размером около 0,1 мм и временем жизни ~1 с. Изучение ридберговских состояний атомов оказалось полезным в работах по созданию квантовых компьютеров.

При этом увеличение размера не меняет формы орбитали. Чем больше п у тем больше энергия электрона. Электроны с одинаковым значением главного квантового числа находятся на одном энергетическом уровне. Номер п энергетического уровня указывает на число подуровней, входящих в состав данного уровня.

Орбитальное квантовое число I может принимать значения / = 0, 1,2,... до (п - 1), т.е. при данном главном квантовом числе п орбитальное квантовое число / может принять п значений. Орбитальное квантовое число определяет геометрическую форму орбиталей и определяет орбитальный момент количества движения (импульс) электрона, т.е. вклад данного подуровня в общую энергию электрона. Кроме численных значений, орбитальное квантовое число / имеет и буквенное обозначение:

Формы 5-, р-, (1-, /-орбиталей приведены на рис. 1.1. Знаки, проставленные на геометрических элементах орбиталей, не являются знаками заряда, а относятся к значениям волновой функции у для этих элементов. Поскольку при расчете вероятности рассматривается | н/| 2 - квадрат величины по модулю, то области орбиталей волновой функции у со знаками «+» и «-» становятся равнозначными.

Рис. 1.1.

Сложная форма большинства орбиталей обусловлена тем, что волновая функция электрона в полярных координатах имеет две составляющие - радиальную и угловую. При этом вероятность нахождения электрона в данной точке зависит как от ее расстояния до ядра, так и от направления в пространстве вектора, связывающего ядро с этой точкой. Эти функции зависят как от / (для 5- и р-орбиталей), так и от т 1 (для с1 - и /-орбиталей).

Например, абрисом (внешним контуром) всех 5-орбиталей является сфера. По оказывается, что вероятность обнаружения электрона внутри этой сферы не равномерна, а напрямую зависит от расстояния данной орбитали от ядра. На рис. 1.2 показана внутренняя структура 15- и 25-орбиталей. Как следует из рисунка, 25-орбиталь подобна «двухслойной луковице» с внутренними оболочками, расположенными на расстоянии 1 и 4 радиуса боровской орбиты. Как правило, в химии факт сложности внутреннего строения орбиталей не играет значительной роли и в данном курсе нс рассматривается.


Рис. 1.2. Распределение вероятности обнаружения электрона в атоме водорода в состояниях is и 2s. г { = 5,29*10 11 м - радиус первой боровской орбиты

Источник : wvw.college.ru/enportal/physics/content/chapter9/section/paragraph3/theory.html

Орбитальное магнитное квантовое число m t может принимать значения от -/ до +/, включая нуль. Это квантовое число определяет ориентацию орбитали в пространстве при воздействии внешнего магнитного поля и характеризует изменение энергии электрона, находящегося на этой орбитали, под влиянием внешнего магнитного поля. Количество орбиталей с данным значением т 1 составляет (2/ + 1).

Рассмотренные три квантовых числа п, /, т { являются следствием решения волнового уравнения Шредингера и позволяют определить энергию электрона через описание его волновых свойств. При этом не учитывался двойственный характер природы элементарных частиц, их корпускулярноволновой дуализм в описании энергетического состояния электрона.

Собственное магнитное квантовое число электрона m s {спин). Как следствие корпускулярных свойств электрона , в описании его энергетического состояния играет роль еще одно число - собственное квантовое число m s электрона {спин). Это квантовое число характеризует не орбиталь, а свойство самого электрона, находящегося на этой орбитали.

Спин (от англ, spin - вертеть[-ся], вращение) - собственный момент импульса элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого. Часто используемая аналогия для описания спина как свойства, связанного с вращением электрона вокруг своей оси, оказалась несостоятельной. Такое описание приводит к противоречию со специальной теорией относительности - экваториальная скорость вращения электрона в этой модели превышает скорость света. Введение спина явилось удачным применением новой физической идеи: постулируется, что существует пространство состояний, никак не связанных с перемещением частицы в обычном пространстве. Необходимость введения такого пространства состояний свидетельствует о необходимости рассмотрения и более общего вопроса о реальности физического многомирия.

Электрон проявляет свои собственные магнитные свойства в том, что во внешнем электрическом иоле собственный момент импульса электрона ориентируется либо по полю, либо против ноля. В первом случае принимается, что собственное квантовое число электрона m s = +1/2, а во втором m s = -1/2. Отметим, что спин - единственное дробное число среди набора квантовых характеристик, определяющих состояние электрона в атоме.

Как уже отмечалось, современная теория химической связи основана на квантово-механическом рассмотрении молекулы как системы из электронов и атомных ядер.

Из курсов неорганической химии и физики известно, что электроны представляют собой вид материи, обладающий одновременно свойствами частицы и электромагнитной волны.

Согласно квантовой теории состояние электронов в атоме описывается с помощью четырех квантовых чисел. п главное кван товое число, I - азимутальное квантовое число, т

славное кван-

маспитпое

квантовое число и л

спиновое квантовое число.

Электрон в атоме находится на определенной атомной орби-

тали. Атомная орбиталь (АО) - это область пространства, внутри которой наиболее вероятно нахождение электрона.

Состояние электрона определяется расстоянием электронного облака от ядра, его формой, ориентацией в пространстве и вращением электрона вокруг собственной оси.

В зависимости от расстояния электрона от ядра атома изменяется траектория его движения, то есть форма атомной орбитали (рис. 2.1). Существуют л, р, й, /-атомные орбитали, которые отличаются друг от друга запасом энергии, а следовательно, и формой электронного облака, то есть траекторией движения электрона.

в-орбиталь

/О-орбиталь

о<-орбиталь

±и^. 2.1. 1сим&1ричс^ьйл шиумй й-, и- и и-й!имп^1л иуии1^1&и

для атомных орбиталей ^-типа характерна сферическая симметрия, для электронов р-типа существуют три одинаковые по энергии гантелеобразной формы орбитали, которые отличаются

2. Химическая связь. Взаимное влияние атомов в органических соединениях

друг от друга лишь ориентацией в пространстве. рх, р_^, р^-атоданые

орбитали. В каждой из них существует узловая область р-орбита-ли, где вероятность нахождения электрона равна нулю. Для й-атомных орбиталей существуют пять более сложных геометрических форм.

Электроны 5-орбитали ближе находятся к атомному ядру и с большей силой притягиваются к нему, чем р-электроны, которые более удалены и имеют большую подвижность. Энергия электрона падает в следующем ряду.

/ > й > р > 5

Атомная орбиталь, не занятая электронами, называется в а-кантной и условно обозначается как □.

іі^іоггідгіоліцгіл /iv7iVII ііііл игош^іьи

Согласпо кваптово-мелапическим представлепиям о лимиче-

ской связи число образуемыл атомом ковалептпыл связей определяется количеством одпоэлектроппыл атомпыл орбиталей, то есть количеством песпареппыл электропов. идпако в действительпости атомы элемептов образуют большее число ковалептпыл связей, чем содержат песпареппыл электропов па впешпем эпергетическом уровпе. Например, атом углерода в осповпом (пе ^воізбуждеппом) состояпии имеет два песпареппыл электропа (І5 25 2р), а образует четыре ковалептпые связи. Это можпо объяспить возможпостью

перелода одпого 25-электропа па 2р-подуровепь (І5 25 2р).

іаким образом, па впешпем эпергетическом уровпе атома

углерода палодятся четыре песпареппыл электропа: одип - 5 и три - р. Поскольку лимические связи образуются валептпыми электропами, то связи, папример в молекуле метапа СИ4, должпы были бы быть перавпоцеппыми: одпа связь С-Н образовапа 5-электропом, а три остальпые - р. В действительпости в молекуле метапа все связи совершеппо равпоцеппы. Для объяспепия этого факта в кваптовой мелапике вводится попятие о гибридизации атомпыл орбиталей. Слово гибридизация озпачает взаимодействие,

2р 2р 2р 2р 2р 2р

перекрывание, перемешивание. При перекрывании одного 5-элек-тронного облака с тремя /-электронными облаками образуются четыре качественно новых гибридизированных электронных облака или атомные орбитали:

Таким образом, из нескольких различных по форме и близких по энергии АО путем комбинирования (смешивания, сочетания) образуется такое же количество одинаковых по форме и равных по энергии гибридизированных атомных орбиталей:

Гибридизированные орбитали по сравнению с негибридизи-рованными более выгодны геометрически, так как позволяют увеличить площадь перекрывания с орбиталями других атомов, что ведет к образованию более прочных связей. Результатом перекрывания большей доли гибридной орбитали с орбиталями других атомов является ковалентная связь.

Атом углерода может претерпевать три вида гибридизации с участием s- и р-орбиталей, каждому из которых соответствует определенное валентное состояние атома.

Первое валентное состояние углерода -гибридизация). Обра-

зование а-связи. Состояние вр -гибридизации - результат взаимодействия одной в- и трех р-атомных орбиталей (рис. 2.2).

1в + 3р = 4вр.

25-орбиталь 2р2-орбиталь 2ру-орбиталь 2р2-орбиталь

Рис. 2.2. Схема образования и расположение в пространстве гибридных 5р3-орбиталей

четыре ер -гибридные орбитали

2. Химическая связь. Взаимное влияние атомов в органических соединениях 21

Четыре равноценные орбитали между собой образуют угол 109° 28" и ориентированы в пространстве от центра правильного тетраэдра к его вершинам. Такое размещение связано со стремлением АО к максимальному удалению друг от друга за счет взаимного электростатического отталкивания. Расположение атомных орбиталей определяет название состояния 5р3-гибридизации как тетраэдрическое.

Доля s-облака в каждой из четырех гибридных sp3 -орбиталей равна 7.. В результате перекрывания таких орбиталей с другими ор-

биталями (s, p, d и гибридными sp , sp, sp) вдоль линии, соединяющей центры атомов, образуются только простые ковалентные, или ст-связи (греч. «сигма»). Перекрывание атомных орбиталей вдоль линии, соединяющей центры атомов, называют ст-п ерекрывани-е м, или о с е в ы м, так как максимальная электронная плотность при этом находится на оси, соединяющей два ядра (рис. 2.3).

о-перекрывание

Рис. 2.3. Образование а-связей в молекуле этана

Состояние 5р3-гибридизации характерно для алканов. Рассмотрим образование ст-связей на примере этана.

В молекуле этана в результате осевого s-sp -перекрывания образуются шесть ст-связей СПН, а за счет перекрывания sp -sp -орбиталей - одна СП С-связь.

ст-Связи во многих органических соединениях образуются преимущественно за счет перекрывания гибридизированных орби-талей.

Второе валентное состояние углерода (sp -гибридизация). Образование п-связи. Состояние sp2-гибридизации - результат взаимодействия одной s- и двух р-орбиталей (рис. 2.4).

Образованные три эквивалентные sp -гибридные орбитали находятся в одной плоскости под углом 120°, поэтому sp -гибридизация называется тригональной. Негибридизированная р^-орбиталь

2з-орбиталь 2рх-орбиталь 2/з^-орбиталь

три зр -гибридные орбитали и р2-орбиталь

три ер -гибридные орбитали

±и^. 2.4. ^1риспиь й!имй углерода

в ^р2-гибридизации

расположения гибридных орбиталей. Усливни доля я-облака в каж-дий из трех яр2 -гибридных ирбиталей равна 1/у Такая гибридизация характерна для сиединений с двойными связями, например для этилена (рис. 2.5).

яр -АО углерода

о-перекрывание (о-связь)

Образование л-связи в молекуле атилена

Атомггы углерода в милекуле этилена находятся в яр -гибридизации. За счет перекрывания трех гибридных АО каждиго из атимив ибразуются ст-связи (четыре С-Н и идна С-С); а перекрывание двух негибридизириванных р-орбиталей в плоскости, перпендикулярний плоскости ст-связи (п-перекрывание), приводит к образованию п-связи. Ее максимальная электронная плотность сконцентрирована в двух областях - выше и ниже оси, соединяющей центры атомов. п-Связь менее прочна, чем ст; она образуется только между атомами, которые находятся в яр2- или яр-гибридизации.

2. Химическая связь. Взаимное влияние атомов в органических соединениях 2

Л;/-1ИирИДИ^йЦИШ называют СЩС JIUneUnUU HU1UMJ, ни две

sp-гибридные орбитали расположены под углом 180°. Остальные две негибридизированные р^- и р^-орбитали находятся в двух взаимно перпендикулярных плоскостях и расположены под прямым углом к sp-гибридным АО. Доля s-облака в каждой из двух гибридных sp-орбиталей равна 1/2. Такой тип гибридизации характерен для соединений с тройной связью, например для ацетилена (рис. 2.7).

В молекуле ацетилена sp-гибридизированные атомы образуют две простые ст-связи С-Н и одну ст-связь между двумя атомами углерода, а негибридизированные p-АО образуют две п-связи, расположенные во взаимно перпендикулярных плоскостях.

Для описания химической связи с позиций квантовой механики пользуются двумя основными методами: методом валентных связей (МВС) и методом молекулярных орбиталей (МО).

Метод валентных связей был предложен в 1927 году В. Гайтле-ром и Ф. Лондоном. Основные положения метода заключаются в следующем. Химическая связь представлена в виде пары электронов с противоположными спинами. Она образуется в результате перекрывания атомных орбиталей.

л-перекрывание (я-связь)

а-перекрывание (а-связь)

оира^ивание л-свя:зи в молекуле ацетилена

при иирй^исап^1^1 милсАулш атоммные ирииюли и^1йЮ1СЛ ии^

изменений, а пара связывающих электронов локализована между двумя атомами.

В отличие от метода валентных связей метод молекулярных орбиталей рассматривает молекулу не как совокупность атомов, сохраняющих свою индивидуальность, а как единое целое. Предполагается, что каждый электрон в молекуле движется в суммарном поле, создаваемом остальными электронами и всеми ядрами атомов. Иначе говоря, в молекуле различные АО взаимодействуют между соиой с оиразованием нового типа орииталей, называемых молекулярными орииталями.

Перекрывание двух атомных орииталей приводит к оиразова-нию двух молекулярных орииталей (рис. 2.8).

□"-разрыхляющая МО

АО------АО^^)-

а-связывающая МО

ст*-разрыхляющая МО

а-связывающая МО

Одна из них имеет иолее низкую энергию, чем исходные АО,

ігі паошоасі^л юлошои^шси и^^ншилнш, диуіал ииладасі и^лъъ г>х>і-

2. Химическая связь. Взаимное влияние атомов в органических соединениях 2:

ШАиИ ЛПС^ІИСИ, ЧСМ образующая ее ЛЛ^, И ИйЛМВйСІСИ разрылляю-

щей, или антисвязывающей орбиталью. Заполнение молекулярных орбиталей электронами происходит аналогично заполнению атомных, то есть по принципу Паули и в соответствии с правилом Гунда. Молекулярная разрыхляющая орбиталь в основном состоянии остается вакантной. Ее заполнение электронами происходит при возбуждении молекулы, что ведет к разрыхлению связи и распаду молекулы на атомы.

При обсуждении химических свойств атомов и молекул - строения и реакционной способности - большую помощь в качественном решении того или иного вопроса может оказать представление о пространственной форме атомных орбиталей. В общем случае АО записываются в комплексной форме, но, используя линейные комбинации комплексных функций, относящихся к одному и тому же уровню энергии с главным квантовым числом п и с одинаковым значением орбитального момента /, можно получить выражения в действительной форме, которые можно изобразить в реальном пространстве.

Рассмотрим последовательно ряд АО в атоме водорода.

Наиболее просто выглядит волновая функция основного состояния 4^. Она имеет сферическую симметрию

Величина а определяется выражением где величина

называется радиусом Бора. Боровский радиус говорит о характерных размерах атомов. Величина 1/ос определяет масштаб характерного спада функций в одноэлектронных атомах

Из (ЗЛО) видно, что размер одноэлектронных атомов сжимается по мере роста заряда ядра обратно пропорционально значению Z. Например, в атоме Не + волновая функция будет спадать в два раза быстрее, чем в атоме водорода с характерным расстоянием, равным 0,265 А.

График зависимости *F ls от расстояния приведен на рис. 3.3. Максимум функции *Fj находится в нуле. Нахождение электрона внутри ядра не должно вызывать большого удивления, так как ядро нельзя представлять в виде непроницаемой сферы.

Максимальная вероятность обнаружить электрон на некотором расстоянии от ядра в основном состоянии атома водорода приходится на г = а 0 = 0,529 А. Эту величину можно найти следующим образом. Вероятность найти электрон в некотором малом объеме А V равна |*Р| 2 ДЙ. Объем AV полагаем настолько малым, что значение волновой функции можно считать постоянным в пределах этого малого объема. Нас интересует вероятность нахождения электрона на расстоянии г от ядра в тонком слое толщиной Аг. Так как вероятность нахождения электрона на расстоянии г не зависит от направления и конкретное направление нас не интересует, то нужно найти вероятность пребывания электрона в очень тонком сферическом слое толщиной Аг. Так как значение | V F| 2 легко вычисляется, нам необходимо

Рис. 3.3. Зависимость *F 1s от расстояния. Значения функции нормированы на ее величину в при г = О

Рис. 3.4. Схема вычисления объема сферического слоя

найти объем сферического слоя, который обозначим через А К Он равен разности объемов двух шаров с радиусами г и г + Аг (рис. 3.4):

Так как А г мало по сравнению с г, то при вычислении величины (г + Аг) 3 можно ограничиться первыми двумя слагаемыми. Тогда для объема сферического слоя получим

Последнее выражение можно получить и более простым способом. Так как А г мало по сравнению с г, то объем сферического слоя можно принять равным произведению площади сферического слоя на его толщину (см. рис. 3.4). Площадь сферы равна 4кг 2 , а толщина А г. Произведение этих двух величин дает то же выражение (3.11).

Итак, вероятность W найти электрон в этом слое равна

Выражение для *P ls взято из приложения 3.1. Если считать величину Аг постоянной, то максимум приведенной функции наблюдается при г = а 0 .

Если хотят узнать, какова вероятность W обнаружить электрон в объеме V, то необходимо проинтегрировать плотность вероятности обнаружения электрона по этой области пространства в соответствии с выражением (3.6).

Например, какова вероятность обнаружить электрон в атоме водорода в сферической области пространства с центром в ядре и с радиусом й 0 . Тогда

Здесь величина d V в процессе вычислений заменена на 4кг 1 dr по аналогии с (3.11), так как волновая функция зависит только от расстояния и поэтому интегрировать по углам не нужно ввиду отсутствия угловой зависимости интегрируемой функции.

Качественное представление о распределении волновой функции в пространстве дает изображение атомных орбиталей в виде облаков, причем, чем интенсивнее цвет, тем выше значение Ч"-функции. Орбиталь будет выглядеть так (рис. 3.5):

Рис. 3.5.

Орбиталь 2p z B виде облака изображена на рис. 3.6.

Рис. 3.6. Изображение 2р г -орбитали атома водорода в виде облака

Аналогичным образом в виде облака будет выглядеть распределение электронной плотности, которое можно найти, умножив плотность вероятности I"Fj 2 на заряд электрона. В этом случае иногда говорят о размазывании электрона. Однако это ни в коей мере не означает, что мы имеем дело с размазыванием электрона по пространству - никакого реального размазывания электрона по пространству не происходит, и поэтому атом водорода нельзя представлять в виде ядра, погруженного в реальное облако отрицательного заряда .

Однако такие изображения в виде облаков используют редко, а гораздо чаще используют линии, чтобы создать представление об угловой зависимости Ч"-функций. Для этого рассчитывают значения Ч"-функций на сфере, проведенной на некотором расстоянии от ядра. Затем рассчитанные значения откладывают на радиусах с указанием знака Ч"-функций для наиболее информативного для данной Ч"-функций плоского сечения. Например, орбиталь Is обычно изображают в виде окружности (рис. 3.7).

Рис.

На рис. 3.8 2/> г -орбиталь построена на сфере некоторого радиуса. Для получения пространственной картины необходимо произвести вращение фигуры относительно оси z. Индекс «z» при записи функции указывает на ориентацию функции вдоль оси «г». Знаки «+» и «-» соответствуют знакам Ч"-функций. Значения 2/? г -функции положительны в той области пространства, где ^-координата положительна, и отрицательны в той области, где ^-координата отрицательна.

Рис. 3.8. Форма 2p z -орбитали. Построена на сфере некоторого радиуса

Аналогичная ситуация и в случае остальных /ьорбиталей. Например, 2/? х -орбиталь ориентирована вдоль оси х и положительна в той части пространства, где координата х положительна, и ее значения отрицательны там, где значения координаты х отрицательны (рис. 3.9).

Изображение волновых функций с указанием знака имеет важное значение для качественного описания реакционной способности химических соединений, и поэтому изображения типа приведенных на рис. 3.9 встречаются в химической литературе наиболее часто.

Рассмотрим теперь d-орбитали (рис. 3.10). Орбитали d xy , d xz , d yz , выглядят эквивалентным образом. Их ориентация и знаки определяются нижними индексами: индекс ху показывает,

Рис. 3.9. Форма 2р х - орбитали. Построена на сфере некоторого радиуса


что орбиталь ориентирована под углами в 45° по отношению к осям х и у и что знак У-функции положителен там, где произведение индексов х и у положительно.


Рис. 3.10.

Похожим образом дело обстоит и с остальными ^/-орбиталями. Изображение ^/-орбиталей, приведенное на рис. 3.10, наиболее часто встречается в литературе. Видно, что орбитали d , d x2 _ y2 , d z2 не являются эквивалентными. Эквивалентными являются только орбитали d , d xz , d yz . Если для описания структуры молекулы необходимо использовать пять эквивалентных ^/-орбиталей, то их можно построить, используя линейные комбинации орбиталей .

error: