Доказал что водород простое вещество. Все реакции с водородом

Существуют три изотопные формы водорода: протий дейтерий и тритий разд. 1.1 и 4.1). В природном водороде содержится 99,985% изотопа , остальные 0,015% приходятся на долю дейтерия. Тритий представляет собой неустойчивый радиоактивный изотоп и поэтому встречается лишь в виде следов. Он испускает Р-частицы и имеет период полураспада 12,3 года (см. разд. 1.3).

Все изотопные формы водорода обладают практически одинаковыми химическими свойствами. Однако они различаются по физическим свойствам. В табл. 12.4 указаны некоторые физические свойства водорода и дейтерия.

Таблица 12.4. Физические свойства

Для каждого соединения водорода существует его дейтериевый аналог. Важнейшим из них является оксид дейтерия так называемая тяжелая вода. Она используется в качестве замедлителя в ядерных реакторах некоторых типов (см. разд. 1.3).

Оксид дейтерия получают электролизом воды. По мере того как на катоде происходит выделение остающаяся вода обогащается оксидом дейтерия. В среднем этот метод позволяет получать из 100 л воды .

Другие соединения дейтерия обычно получают из оксида дейтерия, например

Атомарный водород

Водород, получаемый описанными выше лабораторными методами, во всех случаях представляет собой газ, состоящий из двухатомных молекул , т. е. молекулярный водород. Его можно диссоциировать на агомы, используя какой-либо источник высокой энергии, например газоразрядную трубку, содержащую водород при низком давлении. Водород можно также атомизировать в электрической дуге, образуемой между вольфрамовыми электродами. Атомы водорода рекомбинируют на поверхности металла, и при этом выделяется столь большая энергия, что это приводит к

повышению температуры приблизительно до 3500°С. Этот эффект используется для водородно-дуговой сварки металлов.

Атомарный водород - сильный восстановитель. Он восстанавливает оксиды и хлориды металлов до свободных металлов.

Водород в момент выделения

Газообразный водород, т. е. молекулярный водород, является плохим восстановителем. Это обусловлено его большой энергией связи, равной Например, при пропускании газообразного водорода через раствор, содержащий ионы их восстановления не происходит. Однако, если образование водорода происходит непосредственно в растворе, содержащем ионы эти ионы немедленно восстанавливаются в ионы

Для того чтобы водород образовывался непосредственно в растворе, содержащем ионы туда добавляют разбавленную серную кислоту и цинк. Водород, образующийся в таких условиях, называют водород в момент выделения

Ортоводород и параводород

Два протона в молекуле водорода связаны между собой двумя , находящимися на -связывающей орбитали (см. разд. 2.1). Эти два электрона, находящиеся на указанной орбитали, должны иметь противоположно направленные спины. Однако в отличие от электронов два протона в молекуле водорода могут иметь либо параллельные, либо противоположно направленные спины. Разновидность молекулярного водорода с параллельными спинами протонов двух ядер называется ортоводородом, а разновидность с противоположно направленными спинами протонов двух ядер - параводородом (рис. 12.1).

Обычный водород представляет собой смесь ортоводорода и параводорода. При очень низких температурах в нем преобладает параводород. По мере повышения температуры доля ортоводорода возрастает, и при 25°С смесь содержит приблизительно 75% ортоводорода и 25% параводорода.

Параводород можно получать, пропуская обычный водород через трубку, наполненную древесным углем, а затем охлаждая его до температуры жидкого воздуха. Ортоводород и параводород совершенно одинаковы по своим химическим свойствам, но несколько различаются по температурам плавления и кипения (см. табл. 12.5).

Рис. 12.1. Ортоводород и параводород.

Таблица 12.5. Температуры плавления и кипения ортоводорода и параводорода

Водород H — самый распространённый элемент во Вселенной (около 75 % по массе), на Земле — девятый по распространенности. Наиболее важным природным соединением водорода является вода.
Водород занимает первое место в периодической системе (Z = 1). Он имеет простейшее строение атома: ядро атома – 1 протон, окружено электронным облаком, состоящим из 1 электрона.
В одних условиях водород проявляет металлические свойства (отдает электрон), в других - неметаллические (принимает электрон).
В природе встречаются изотопы водорода: 1Н — протий (ядро состоит из одного протона), 2Н — дейтерий (D — ядро состоит из одного протона и одного нейтрона), 3Н — тритий (Т — ядро состоит из одного протона и двух нейтронов).

Простое вещество водород

Молекула водорода состоит из двух атомов, связанных между собой ковалентной неполярной связью.
Физические свойства. Водород — бесцветный нетоксичный газ без запаха и вкуса. Молекула водорода не полярна. Поэтому силы межмолекулярного взаимодействия в газообразном водороде малы. Это проявляется в низких температурах кипения (-252,6 0С) и плавления (-259,2 0С).
Водород легче воздуха, D (по воздуху) = 0,069; незначительно растворяется в воде (в 100 объемах H2O растворяется 2 объема H2). Поэтому водород при его получении в лаборатории можно собирать методами вытеснения воздуха или воды.

Получение водорода

В лаборатории :

1.Действие разбавленных кислот на металлы:
Zn +2HCl → ZnCl 2 +H 2

2.Взаимодействие щелочных и щ-з металлов с водой:
Ca +2H 2 O → Ca(OH) 2 +H 2

3.Гидролиз гидридов: гидриды металлов легко разлагаются водой с образованием соответствующей щелочи и водорода:
NaH +H 2 O → NaOH +H 2
СаH 2 + 2Н 2 О = Са(ОН) 2 + 2Н 2

4.Действие щелочей на цинк или алюминий или кремний:
2Al +2NaOH +6H 2 O → 2Na +3H 2
Zn +2KOH +2H 2 O → K 2 +H 2
Si + 2NaOH + H 2 O → Na 2 SiO 3 + 2H 2

5. Электролиз воды. Для увеличения электрической проводимости воды к ней добавляют электролит, например NаОН, Н 2 SO 4 или Na 2 SO 4 . На катоде образуется 2 объема водорода, на аноде - 1 объем кислорода.
2H 2 O → 2H 2 +О 2

Промышленное получение водорода

1. Конверсия метана с водяным паром, Ni 800 °С (самый дешевый):
CH 4 + H 2 O → CO + 3 H 2
CO + H 2 O → CO 2 + H 2

В сумме:
CH 4 + 2 H 2 O → 4 H 2 + CO 2

2. Пары воды через раскаленный кокс при 1000 о С:
С + H 2 O → CO + H 2
CO +H 2 O → CO 2 + H 2

Образующийся оксид углерода (IV) поглощается водой, этим способом получают 50 % промышленного водорода.

3. Нагреванием метана до 350°С в присутствии железного или нике­левого катализатора:
СH 4 → С + 2Н 2

4. Электролизом водных растворов KCl или NaCl, как побочный продукт:
2Н 2 О + 2NaCl→ Cl 2 + H 2 + 2NaOH

Химические свойства водорода

  • В соединениях водород всегда одновалентен. Для него характерна степень окисления +1, но в гидридах металлов она равна -1.
  • Молекула водорода состоит из двух атомов. Возникновение связи между ними объясняется образованием обобщен­ной пары электронов Н:Н или Н 2
  • Благодаря этому обобщению электронов молекула Н 2 более энергети­чески устойчива, чем его отдельные атомы. Чтобы разорвать в 1 моль водорода молекулы на атомы, необходимо затратить энергию 436 кДж: Н 2 = 2Н, ∆H° = 436 кДж/моль
  • Этим объясняется сравнительно небольшая активность молекулярного водорода при обычной температуре.
  • Со многими неметаллами водород образует газообразные соедине­ния типа RН 4 , RН 3 , RН 2 , RН.

1) С галогенами образует галогеноводороды:
Н 2 + Cl 2 → 2НСl.
При этом с фтором — взрывается, с хлором и бромом реагирует лишь при освещении или нагревании, а с йодом только при нагревании.

2) С кислородом:
2Н 2 + О 2 → 2Н 2 О
с выделением тепла. При обычных температурах реакция протекает медленно, выше 550°С — со взрывом. Смесь 2 объемов Н 2 и 1 объема О 2 называется гремучим газом.

3) При нагревании энергично реагирует с серойь(значительно труднее с селеном и теллуром):
Н 2 + S → H 2 S (сероводород),

4) С азотом с образованием аммиака лишь на катализаторе и при повышенных температурах и давлениях:
ЗН 2 + N 2 → 2NН 3

5) С углеродом при высоких температурах:
2Н 2 + С → СН 4 (метан)

6) С щелочными и щелочноземельными металлами образует гидриды (водород – окислитель):
Н 2 + 2Li → 2LiH
в гидридах металлов ион водорода заряжен отрицательно (степень окисления -1), то есть гидрид Na + H — построен подобно хлориду Na + Cl —

Со сложными веществами:

7) С оксидами металлов (используется для восстановления металлов):
CuO + H 2 → Cu + H 2 O
Fe 3 O 4 + 4H 2 → 3Fe + 4Н 2 О

8) с оксидом углерода (II):
CO + 2H 2 → CH 3 OH
Синтез — газ (смесь водорода и угарного газа) имеет важное практическое значение, тк в зависимости от температуры, давления и катализатора образуются различные органические соединения, например НСНО, СН 3 ОН и другие.

9)Ненасыщенные углеводороды реагируют с водородом, переходя в насыщенные:
С n Н 2n + Н 2 → С n Н 2n+2 .


Атом водорода по сравнению с атомами других элементов имеет простейшую структуру: он состоит из одного протона.

образующего атомное ядро, и одного электрона, расположенно­го на ls-орбитали. Уникальность атома водорода заключается в том, что его единственный валентный электрон находится не­посредственно в поле действия ядра атома, поскольку он не экранируется другими электронами. Это обеспечивает ему специ­фические свойства. Он может в химических реакциях отдавать свой электрон, образуя катион Н + (подобно атомам щелочных металлов), или присоединять электрон от партнера с образо­ванием аниона Н- (подобно атомам галогенов). Поэтому водород в периодической системе помещают чаще в IA группе, иногда в VIIA группе, но встречаются варианты таблиц, где водород не принадлежит ни к одной из групп периодической таблицы.

Молекула водорода двухатомна - Н2. Водород - самый лег­кий из всех газов. Вследствие неполярности и большой прочно­сти молекулы Н2 (Е св = 436 кДж/моль) при нормальных усло­виях водород активно взаимодействует только со фтором, а при освещении также с хлором и бромом. При нагревании реагиру­ет со многими неметаллами, хлором, бромом, кислородом, се­рой, проявляя восстановительные свойства, а вступая во взаи­модействие со щелочными и щелочноземельными металлами, является окислителем и образует гидриды этих металлов:

Среди всех органогенов у водорода наименьшая относитель­ная электроотрицательность (0Э0 = 2,1), поэтому в природных соединениях водород всегда проявляет степень окисления +1. С позиции химической термодинамики водород в живых систе­мах, содержащих воду, не может образовывать ни молекуляр­ный водород (Н 2), ни гидрид-ион (Н~). Молекулярный водород при обычных условиях химически малоактивен и при этом сильно летуч, из-за чего он не может удерживаться организмом и участвовать в обмене веществ. Гидрид-ион химически чрез­вычайно активен и сразу взаимодействует даже с очень малым количеством воды с образованием молекулярного водорода. По­этому водород в организме находится или в виде соединений с другими органогенами, или в виде катиона Н + .

Водород с элементами-органогенами образует только ковалентные связи. По степени полярности эти связи располагаются в сле­дующий ряд:


Этот ряд очень важен для химии природных соединений, так как полярность этих связей и их поляризуемость предопре­деляют кислотные свойства соединений, т. е. диссоциацию с образованием протона.

Кислотные свойства. В зависимости от природы элемента, образующего связь Х-Н, выделяют 4 типа кислот:

ОН-кислоты (карбоновые кислоты, фенолы, спирты);

SH-кислоты (тиолы);

NH-кислоты (амиды, имиды, амины);

СН-кислоты (углеводороды и их производные).

С учетом высокой поляризуемости связи S-Н можно соста­вить следующий ряд кислот по способности к диссоциации:

Концентрация катионов водорода в водной среде определяет ее кислотность, которая выражается с помощью водородного показателя рН = -lg (разд. 7.5). Большинство физиологиче­ских сред организма имеет реакцию, близкую к нейтральной (рН = 5,0-7,5), только у желудочного сока рН = 1,0-2,0. Это обеспечивает, с одной стороны, противомикробное действие, уби­вая многие микроорганизмы, занесенные в желудок с пищей; с другой стороны, кислая среда оказывает каталитическое дейст­вие при гидролизе белков, полисахаридов и других биосубстра­тов, способствуя получению необходимых метаболитов.

Окислительно-восстановительные свойства. Вследствие боль­шой плотности положительного заряда катион водорода являет­ся довольно сильным окислителем (ф° = 0 В), окисляя актив­ные и средней активности металлы при взаимодействии с ки­слотами и водой:


В живых системах таких сильных восстановителей нет, а окислительная способность катионов водорода в нейтральной среде (рН = 7) значительно понижена (ф° = -0,42 В). Поэтому в организме катион водорода не проявляет окислительных свойств, но активно участвует в окислительно-восстановительных реак­циях, способствуя превращению исходных веществ в продукты реакции:

Во всех приведенных примерах атомы водорода своей степе­ни окисления +1 не изменили.

Восстановительные свойства характерны для молекулярного и особенно для атомарного водорода, т. е. водорода в момент ныделения непосредственно в реакционной среде, а также для гидрид-иона:

Однако в живых системах таких восстановителей (Н2 или Н-) нет, и поэтому нет подобных реакций. Встречающееся в литера­туре, в том числе и в учебниках, мнение, что водород является носителем восстановительных свойств органических соединений, не соответствует действительности; так, в живых системах вос­становителем биосубстратов выступает восстановленная форма кофермента дегидрогеназы, в которой донором электронов явля­ются атомы углерода, а не атомы водорода (разд. 9.3.3).

Комплексообразующие свойства. Вследствие наличия у ка­тиона водорода свободной атомной орбитали и высокого поляри­зующего действия самого катиона Н + он является активным ионом-комплексообразователем. Так, в водной среде катион водоро­да образует ион гидроксония Н3О + , а при наличии аммиака -ион аммония NH4:

Склонность к образованию ассоциатов. Атомы водорода силь­нополярных связей О-Н и N--Н образуют водородные связи (разд. 3.1). Прочность водородной связи (от 10 до 100 кДж/моль) зависит от величины локализованных зарядов и длины водородной связи, т. е. от расстояния между атомами электро­отрицательных элементов, участвующих в ее образовании. Для аминокислот, углеводов, белков, нуклеиновых кислот харак­терны следующие длины водородных связей, пм:

Благодаря водородным связям возникают обратимые меж­молекулярные взаимодействия между субстратом и ферментом, между отдельными группами в природных полимерах, опре­деляющие их вторичную, третичную и четвертичную структуру (разд. 21.4, 23.4). Ведущую роль водородная связь играет в свойствах воды как растворителя и реагента.

Вода и ее свойства. Вода - важнейшее соединение водорода. Все химические реакции в организме протекают только в водной среде, жизнь без воды невозможна. Вода как растворитель рас­сматривалась в разд. 6.1.

Кислотно-основные свойства. Вода как реагент с по­зиции кислотно-основных свойств является истинным амфолитом (разд. 8.1). Это проявляется и при гидролизе солей (разд. 8.3.1), и при диссоциации кислот и оснований в водной среде (разд. 8.3.2).

Количественной характеристикой кислотности водных сред яв­ляется водородный показатель рН.

Вода как кислотно-основной реагент участвует в реакциях гидролиза биосубстратов. Например, гидролиз аденозинтрифосфата служит источником запасенной энергии для организма, ферментативный гидролиз ненужных белков служит для получения аминокислот, являющихся исходным материалом для син­теза необходимых белков. При этом катионы Н + или анионы ОН- являются кислотно-основными катализаторами реакций гидролиза биосубстратов (разд. 21.4, 23.4).

Окислительно-восстановительные свойства. В молекуле воды и водород, и кислород находятся в устойчи­вых степенях окисления. Поэтому вода не проявляет ярко вы­раженных окислительно-восстановительных свойств. Окислитель­но-восстановительные реакции возможны при взаимодействии воды только с очень активными восстановителями или очень активными окислителями, или в условиях сильной активации реагентов.

Вода может быть окислителем за счет катионов водорода при взаимодействии с сильными восстановителями, например щелоч­ными и щелочноземельными металлами или их гидридами:

При высоких температурах возможно взаимодействие воды с менее активными восстановителями:

В живых системах их компонент вода никогда не выступает как окислитель, поскольку это привело бы к уничтожению этих систем из-за образования и необратимого удаления молекуляр­ного водорода из организмов.

Вода может выступать в роли восстановителя за счет атомов кислорода например при взаимодействии с таким сильнейшим окислителем, как фтор:

Под действием света и при участии хлорофилла в растени­ях протекает процесс фотосинтеза с образованием О2 из воды (разд. 9.3.6):

Кроме непосредственного участия в окислительно-восстано­вительных превращениях вода и продукты ее диссоциации Н + и ОН- принимают участие как среда, которая способствует про­теканию многих окислительно-восстановительных реакций вследствие ее высокой полярности ( = 79) и участия образуемых ею ионов в превращениях исходных веществ в конечные (разд. 9.1).

Комплексообразующие свойства. Молекула во­ды из-за наличия у атома кислорода двух неподеленных элек­тронных пар является достаточно активным монодентатным лигандом, который с катионом водорода образует комплексный ион оксония Н 3 0 + , а с катионами металлов в водных растворах -достаточно устойчивые аквакомплексы, например [Са(Н 2 0) 6 ] 2+ , [ Fe(H 2 0) 6 ] 3+ , 2+ . В этих комплексных ионах молекулы ноды ковалентно связаны с комплексообразователями достаточ­но прочно. Катионы щелочных металлов аквакомплексов не обра­зуют, а за счет электростатических сил образуют гидратированные катионы. Время оседлой жизни молекул воды в гидратных обо­лочках этих катионов не превышает 0,1 с, а их состав по числу молекул воды может легко изменяться.

Склонность к образованию ассоциатов. Вслед­ствие большой полярности, способствующей электростатическому взаимодействию и образованию водородных связей, молекулы воды даже в чистой воде (разд. 6.1) образуют межмолекулярные ассоциаты, различающиеся по структуре, числу молекул и вре­мени их оседлой жизни в ассоциатах, а также времени жизни самих ассоциатов. Таким образом, чистая вода является откры­той сложной динамической системой. Под действием внешних факторов: радиоактивное, ультрафиолетовое и лазерное излуче­ния, упругие волны, температура, давление, электрические, маг­нитные и электромагнитные поля от искусственных и естествен­ных источников (космос, Солнце, Земля, живые объекты) - вода изменяет свои структурно-информационные свойства, а следова­тельно, изменяются ее биологические и физиологические функ­ции.

Кроме самоассоциации молекулы воды гидратируют ионы, по­лярные молекулы и макромолекулы, образуя вокруг них гидратные оболочки, тем самым стабилизируют их в растворе и способ­ствуют их растворению (разд. 6.1). Вещества, молекулы которых неполярны и имеют относительно небольшие размеры, способны только незначительно растворяться в воде, заполняя пустоты ее ассоциатов с определенной структурой. При этом в результате гидрофобного взаимодействия неполярные молекулы структу­рируют окружающую их гидратную оболочку, превращая ее в структурированный ассоциат, обычно с льдоподобной структурой, внутри которого расположена данная неполярная молекула.

В живых организмах можно выделить две категории воды -"связанную" и "свободную", последняя, по-видимому, есть только в межклеточной жидкости (разд. 6.1). Связанная вода, в свою очередь, подразделяется на "структурированную" (прочносвязанную) и "деструктурированную" (слабосвязанную или рых­лую) воду. Вероятно, все перечисленные выше внешние факто­ры влияют на состояние воды в организме, изменяя соотноше­ния: "структурированная"/ "деструктурированная" и "связанная"/ "свободная" вода, а также ее структурно-динамические пара­метры. Это проявляется в изменениях физиологического со­стояния организма. Не исключено, что внутриклеточная вода непрерывно претерпевает регулируемые, в основном белками, пульсационные переходы из "структурированного" в "деструктурированное" состояние. Эти переходы взаимосвязаны с выталки­ванием из клетки отслуживших метаболитов (шлаков) и всасы­ванием необходимых веществ. С современной точки зрения вода участвует в формировании единой внутриклеточной структуры, благодаря которой достигается упорядоченность процессов жиз­недеятельности. Поэтому, по образному выражению А. Сент-Дьёрдьи, вода в организме является "матрицей жизни".

Вода в природе. Вода - самое важное и распространен­ное вещество на Земле. Поверхность земного шара на 75 % по­крыта водой. Объем Мирового океана составляет 1,4 млрд. км 3 . Столько же воды находится в минералах в виде кристаллиза­ционной воды. Атмосфера содержит 13 тыс. км 3 воды. В то же время запасы пресной воды, пригодной для питья и бытовых нужд, довольно ограничены (объем всех пресноводных водоемов составляет 200 тыс. км 3). Пресная вода, употребляемая в быту, содержит различные примеси от 0,05 до 1 г/л, чаще всего это соли: гидрокарбонаты, хлориды, сульфаты, - в том числе рас­творимые соли кальция и магния, присутствие которых делает воду жесткой (разд. 14.3). В настоящее время охрана водных ресурсов и очистка сточных вод являются наиболее актуальны­ми экологическими проблемами.

В обычной воде присутствует около 0,02 % тяжелой воды D2O (D - дейтерий). Она накапливается при испарении или электролизе обычной воды. Тяжелая вода токсична. Тяжелую воду применяют для изучения движения воды в живых орга­низмах. С ее помощью установлено, что скорость движения во­ды в тканях некоторых растений достигает 14 м/ч, а вода, вы­питая человеком, за 2 ч полностью распределяется по его органам и тканям и лишь через две недели полностью выводится из организма. Живые организмы содержат от 50 до 93 % воды, которая является непременным участником всех процессов жиз­недеятельности. Без воды жизнь невозможна. При продолжи­тельности жизни 70 лет человек с пищей и питьем потребляет около 70 т воды.

В научной и медицинской практике широко используется дистиллированная вода - бесцветная прозрачная жидкость без запаха и вкуса, рН = 5,2-6,8. Это фармакопейный препарат для приготовления многих лекарственных форм.

Вода для инъекций (апирогенная вода) - также фармако­пейный препарат. Эта вода не содержит пирогенных веществ. Пирогены - вещества бактериального происхождения - метабо­литы или продукты жизнедеятельности бактерий, которые, по­падая в организм, вызывают озноб, повышение температуры тела, головные боли, нарушение сердечно-сосудистой деятельности. Приготавливают апирогенную воду двойной перегонкой ноды (бидистиллят) с соблюдением асептических условий и ис­пользуют в течение 24 ч.

Заканчивая раздел, необходимо подчеркнуть особенности водорода как биогенного элемента. В живых системах водород всегда проявляет степень окисления +1 и встречается или свя­занным полярной ковалентной связью с другими биогенными элементами, или в виде катиона Н + . Катион водорода является носителем кислотных свойств и активным комплексообразователем, взаимодействующим со свободными электронными па­рами атомов других органогенов. С позиции окислительно-восстановительных свойств связанный водород в условиях ор­ганизма не проявляет свойств ни окислителя, ни восстановите­ля, однако катион водорода активно участвует во многих окис­лительно-восстановительных реакциях, не изменяя при этом своей степени окисления, но способствуя превращению биосуб­стратов в продукты реакции. Водород, связанный с электроот­рицательными элементами, образует водородные связи.

Водород является самым первым элементом в Периодической системе химических элементов, имеет атомный номер 1 и относительную атомную массу 1,0079. Каковы физические свойства водорода?

Физические свойства водорода

В переводе с латыни водород означает «рождающий воду». Еще в 1766 году английский ученый Г. Кавендиш собрал выделяющийся при действии кислот на металлы «горючий воздух» и стал исследовать его свойства. В 1787 году А. Лавуазье определил этот «горючий воздух» как новый химический элемент, который входит в состав воды.

Рис. 1. А. Лавуазье.

У водорода существуют 2 стабильных изотопа – протий и дейтерий, а также радиоактивный – тритий, количество которого на нашей планете очень мало.

Водород является самым распространенным элементом в космосе. Солнце и большинство звезд имеют водород в своем составе в качестве основного элемента. Также этот газ входит в состав воды, нефти, природного газа. Общее содержание водорода на Земле составляет 1%.

Рис. 2. Формула водорода.

В состав атома этого вещества входит ядро и один электрон. Когда у водорода теряется электрон, он образует положительно заряженный ион, то есть проявляет металлические свойства. Но также атом водорода способен не только терять, но и присоединять электрон. В этом он очень похож на галогены. Поэтому водород в Периодической системе относится и к I и к VII группе. Неметаллические свойства водорода выражены у него в большей степени.

Молекула водорода состоит из двух атомов, связанных между собой ковалентной связью

Водород при обычных условиях является бесцветным газообразным элементом, который не имеет запаха и вкуса. Он в 14 раз легче воздуха, а его температура кипения составляет -252,8 градусов по Цельсию.

Таблица «Физические свойства водорода»

Кроме физических свойств водород обладает и рядом химических свойств. водород при нагревании или под действием катализаторов вступает в реакции с металлами и неметаллами, серой, селеном, теллуром, а также может восстанавливать оксиды многих металлов.

Получение водорода

Из промышленных способов получения водорода (кроме электролиза водных растворов солей) следует отметить следующие:

  • пропускание паров воды через раскаленный уголь при температуре 1000 градусов:
  • конверсия метана водяным паром при температуре 900 градусов:

CH 4 +2H 2 O=CO 2 +4H 2

Рис. 3. Паровая конверсия метана.

  • разложение метана в присутствии катализатора (Ni) при температуре 400 градусов:

ВОДОРОД, Н (лат. hydrogenium; а. hydrogen; н. Wasserstoff; ф. hydrogene; и. hidrogeno), — химический элемент периодической системы элементов Менделеева, который относят одновременно к I и VII группам, атомный номер 1, атомная масса 1,0079. Природный водород имеет стабильные изотопы — протий (1 Н), дейтерий (2 Н, или D) и радиоактивный — тритий (3 Н, или Т). Для природных соединений среднее отношение D/Н = (158±2).10 -6 Равновесное содержание 3 Н на Земле ~5.10 27 атомов.

Физические свойства водорода

Водород впервые описал в 1766 английский учёный Г. Кавендиш. При обычных условиях водород — газ без цвета, запаха и вкуса. В природе в свободном состоянии находится в форме молекул Н 2 . Энергия диссоциации молекулы Н 2 — 4,776 эВ; потенциал ионизации атома водорода 13,595 эВ. Водород — самое лёгкое вещество из всех известных, при 0°С и 0,1 МПа 0,0899 кг/м 3 ; t кипения- 252,6°С, t плавления — 259,1°С; критические параметры: t — 240°С, давление 1,28 МПа, плотность 31,2 кг/ м 3 . Наиболее теплопроводный из всех газов — 0,174 Вт/(м.К) при 0°С и 1 МПа, удельная теплоёмкость 14,208.10 3 Дж(кг.К).

Химические свойства водорода

Жидкий водород очень лёгок (плотность при -253°С 70,8 кг/м 3) и текуч ( при -253°С равна 13,8 сП). В большинстве соединений водород проявляет степень окисления +1 (подобен щелочным металлам), реже -1 (подобен гидридам металлов). В обычных условиях молекулярный водород малоактивен; растворимость в воде при 20°С и 1 МПа 0,0182 мл/г; хорошо растворим в металлах — Ni, Pt, Pd и др. С кислородом образует воду с выделением тепла 143,3 МДж/кг (при 25°С и 0,1 МПа); при 550°С и выше реакция сопровождается взрывом. При взаимодействии с фтором и хлором реакции идут также со взрывом. Основные соединения водорода: Н 2 О, аммиак NH 3 , сероводород Н 2 S, CH 4 , гидриды металлов и галогенов CaH 2 , HBr, Hl, а также органические соединения С 2 Н 4 , HCHO, CH 3 OH и др.

Водород в природе

Водород — широко распространённый в природе элемент, содержание его в 1 % (по массе). Главный резервуар водорода на Земле — вода (11,19%, по массе). Водород — один из основных компонентов всех природных органических соединений. В свободном состоянии присутствует в вулканических и других природных газах, в (0,0001%, по числу атомов). Составляет основную часть массы Солнца, звёзд, межзвёздного газа, газовых туманностей. В атмосферах планет присутствует в форме Н 2 , CH 4 , NH 3 , Н 2 О, CH, NHOH и др. Входит в состав корпускулярного излучения Солнца (потоки протонов) и космических лучей (потоки электронов).

Получение и применение водорода

Сырьё для промышленного получения водорода — газы нефтепереработки, продукты газификации и др. Основные способы получения водорода: реакция углеводородов с водяным паром, неполное окисление углеводородов , конверсия окиси , электролиз воды. Водород применяют для производства аммиака, спиртов, синтетического бензина, соляной кислоты, гидроочистки нефтепродуктов, резки металлов водородно-кислородным пламенем.

Водород — перспективное газообразное горючее. Дейтерий и тритий нашли применение в атомной энергетике.

error: