Что называют вершиной многоугольника. Виды многоугольников» в рамках технологии «Развитие критического мышления через чтение и письмо

В курсе гео-мет-рии мы изу-ча-ем свой-ства гео-мет-ри-че-ских фигур и уже рас-смот-ре-ли про-стей-шие из них: тре-уголь-ни-ки и окруж-но-сти. При этом мы об-суж-да-ли и кон-крет-ные част-ные слу-чаи этих фигур, такие как пря-мо-уголь-ные, рав-но-бед-рен-ные и пра-виль-ные тре-уголь-ни-ки. Те-перь при-шло время по-го-во-рить о более общих и слож-ных фи-гу-рах - мно-го-уголь-ни-ках .

С част-ным слу-ча-ем мно-го-уголь-ни-ков мы уже зна-ко-мы - это тре-уголь-ник (см. Рис. 1).

Рис. 1. Тре-уголь-ник

В самом на-зва-нии уже под-чер-ки-ва-ет-ся, что это фи-гу-ра, у ко-то-рой три угла. Сле-до-ва-тель-но, в мно-го-уголь-ни-ке их может быть много, т.е. боль-ше, чем три. На-при-мер, изоб-ра-зим пя-ти-уголь-ник (см. Рис. 2), т.е. фи-гу-ру с пятью уг-ла-ми.

Рис. 2. Пя-ти-уголь-ник. Вы-пук-лый мно-го-уголь-ник

Опре-де-ле-ние. Мно-го-уголь-ник - фи-гу-ра, со-сто-я-щая из несколь-ких точек (боль-ше двух) и со-от-вет-ству-ю-ще-го ко-ли-че-ства от-рез-ков, ко-то-рые их по-сле-до-ва-тель-но со-еди-ня-ют. Эти точки на-зы-ва-ют-ся вер-ши-на-ми мно-го-уголь-ни-ка, а от-рез-ки - сто-ро-на-ми . При этом ни-ка-кие две смеж-ные сто-ро-ны не лежат на одной пря-мой и ни-ка-кие две несмеж-ные сто-ро-ны не пе-ре-се-ка-ют-ся.

Опре-де-ле-ние. Пра-виль-ный мно-го-уголь-ник - это вы-пук-лый мно-го-уголь-ник, у ко-то-ро-го все сто-ро-ны и углы равны.

Любой мно-го-уголь-ник раз-де-ля-ет плос-кость на две об-ла-сти: внут-рен-нюю и внеш-нюю. Внут-рен-нюю об-ласть также от-но-сят кмно-го-уголь-ни-ку .

Иными сло-ва-ми, на-при-мер, когда го-во-рят о пя-ти-уголь-ни-ке , имеют в виду и всю его внут-рен-нюю об-ласть, и гра-ни-цу. А ко внут-рен-ней об-ла-сти от-но-сят-ся и все точки, ко-то-рые лежат внут-ри мно-го-уголь-ни-ка, т.е. точка тоже от-но-сит-ся к пя-ти-уголь-ни-ку (см. Рис. 2).

Мно-го-уголь-ни-ки еще ино-гда на-зы-ва-ют n-уголь-ни-ка-ми, чтобы под-черк-нуть, что рас-смат-ри-ва-ет-ся общий слу-чай на-ли-чия ка-ко-го-то неиз-вест-но-го ко-ли-че-ства углов (n штук).

Опре-де-ле-ние. Пе-ри-метр мно-го-уголь-ни-ка - сумма длин сто-рон мно-го-уголь-ни-ка.

Те-перь надо по-зна-ко-мить-ся с ви-да-ми мно-го-уголь-ни-ков. Они де-лят-ся на вы-пук-лые и невы-пук-лые . На-при-мер, мно-го-уголь-ник, изоб-ра-жен-ный на Рис. 2, яв-ля-ет-ся вы-пук-лым, а на Рис. 3 невы-пук-лым.

Рис. 3. Невы-пук-лый мно-го-уголь-ник

2. Выпуклые и невыпуклые многоугольники

Опре-де-ле-ние 1. Мно-го-уголь-ник на-зы-ва-ет-ся вы-пук-лым , если при про-ве-де-нии пря-мой через любую из его сто-рон весь мно-го-уголь-ник лежит толь-ко по одну сто-ро-ну от этой пря-мой. Невы-пук-лы-ми яв-ля-ют-ся все осталь-ные мно-го-уголь-ни-ки .

Легко пред-ста-вить, что при про-дле-нии любой сто-ро-ны пя-ти-уголь-ни-ка на Рис. 2 он весь ока-жет-ся по одну сто-ро-ну от этой пря-мой, т.е. он вы-пук-лый. А вот при про-ве-де-нии пря-мой через в че-ты-рех-уголь-ни-ке на Рис. 3 мы уже видим, что она раз-де-ля-ет его на две части, т.е. он невы-пук-лый.

Но су-ще-ству-ет и дру-гое опре-де-ле-ние вы-пук-ло-сти мно-го-уголь-ни-ка.

Опре-де-ле-ние 2. Мно-го-уголь-ник на-зы-ва-ет-ся вы-пук-лым , если при вы-бо-ре любых двух его внут-рен-них точек и при со-еди-не-нии их от-рез-ком все точки от-рез-ка яв-ля-ют-ся также внут-рен-ни-ми точ-ка-ми мно-го-уголь-ни-ка.

Де-мон-стра-цию ис-поль-зо-ва-ния этого опре-де-ле-ния можно уви-деть на при-ме-ре по-стро-е-ния от-рез-ков на Рис. 2 и 3.

Опре-де-ле-ние. Диа-го-на-лью мно-го-уголь-ни-ка на-зы-ва-ет-ся любой от-ре-зок, со-еди-ня-ю-щий две не со-сед-ние его вер-ши-ны.

3. Теорема о сумме внутренних углов выпуклого n-угольника

Для опи-са-ния свойств мно-го-уголь-ни-ков су-ще-ству-ют две важ-ней-шие тео-ре-мы об их углах: тео-ре-ма о сумме внут-рен-них углов вы-пук-ло-го мно-го-уголь-ни-ка и тео-ре-ма о сумме внеш-них углов вы-пук-ло-го мно-го-уголь-ни-ка . Рас-смот-рим их.

Тео-ре-ма. О сумме внут-рен-них углов вы-пук-ло-го мно-го-уголь-ни-ка (n -уголь-ни-ка).

Где - ко-ли-че-ство его углов (сто-рон).

До-ка-за-тель-ство 1. Изоб-ра-зим на Рис. 4 вы-пук-лый n-уголь-ник.

Рис. 4. Вы-пук-лый n-уголь-ник

Из вер-ши-ны про-ве-дем все воз-мож-ные диа-го-на-ли. Они делят n-уголь-ник на тре-уголь-ни-ка, т.к. каж-дая из сто-рон мно-го-уголь-ни-ка об-ра-зу-ет тре-уголь-ник, кроме сто-рон, при-ле-жа-щих к вер-шине . Легко ви-деть по ри-сун-ку, что сумма углов всех этих тре-уголь-ни-ков как раз будет равна сумме внут-рен-них углов n-уголь-ни-ка. По-сколь-ку сумма углов лю-бо-го тре-уголь-ни-ка - , то сумма внут-рен-них углов n-уголь-ни-ка:

До-ка-за-тель-ство 2. Воз-мож-но и дру-гое до-ка-за-тель-ство этой тео-ре-мы. Изоб-ра-зим ана-ло-гич-ный n-уголь-ник на Рис. 5 и со-еди-ним любую его внут-рен-нюю точку со всеми вер-ши-на-ми.

Мы по-лу-чи-ли раз-би-е-ние n-уголь-ни-ка на n тре-уголь-ни-ков (сколь-ко сто-рон, столь-ко и тре-уголь-ни-ков). Сумма всех их углов равна сумме внут-рен-них углов мно-го-уголь-ни-ка и сумме углов при внут-рен-ней точке, а это угол . Имеем:

Что и тре-бо-ва-лось до-ка-зать.

До-ка-за-но.

По до-ка-зан-ной тео-ре-ме видно, что сумма углов n-уголь-ни-ка за-ви-сит от ко-ли-че-ства его сто-рон (от n). На-при-мер, в тре-уголь-ни-ке , а сумма углов . В че-ты-рех-уголь-ни-ке , а сумма углов - и т.д.

4. Теорема о сумме внешних углов выпуклого n-угольника

Тео-ре-ма. О сумме внеш-них углов вы-пук-ло-го мно-го-уголь-ни-ка (n -уголь-ни-ка).

Где - ко-ли-че-ство его углов (сто-рон), а , …, - внеш-ние углы.

До-ка-за-тель-ство. Изоб-ра-зим вы-пук-лый n-уголь-ник на Рис. 6 и обо-зна-чим его внут-рен-ние и внеш-ние углы.

Рис. 6. Вы-пук-лый n-уголь-ник с обо-зна-чен-ны-ми внеш-ни-ми уг-ла-ми

Т.к. внеш-ний угол свя-зан со внут-рен-ним как смеж-ные, то и ана-ло-гич-но для осталь-ных внеш-них углов. Тогда:

В ходе пре-об-ра-зо-ва-ний мы вос-поль-зо-ва-лись уже до-ка-зан-ной тео-ре-мой о сумме внут-рен-них углов n-уголь-ни-ка .

До-ка-за-но.

Из до-ка-зан-ной тео-ре-мы сле-ду-ет ин-те-рес-ный факт, что сумма внеш-них углов вы-пук-ло-го n-уголь-ни-ка равна от ко-ли-че-ства его углов (сто-рон). Кста-ти, в от-ли-чие от суммы внут-рен-них углов.

Далее мы более по-дроб-но будем ра-бо-тать с част-ным слу-ча-ем мно-го-уголь-ни-ков - че-ты-рех-уголь-ни-ка-ми. На сле-ду-ю-щем уроке мы по-зна-ко-мим-ся с такой фи-гу-рой, как па-рал-ле-ло-грамм, и об-су-дим его свой-ства.

ИСТОЧНИК

http://interneturok.ru/ru/school/geometry/8-klass/chyotyrehugolniki/mnogougolniki

http://interneturok.ru/ru/school/geometry/8-klass/povtorenie/pryamougolnye-treugolniki

http://interneturok.ru/ru/school/geometry/8-klass/povtorenie/treugolniki-2

http://nsportal.ru/shkola/geometriya/library/2013/10/10/mnogougolniki-urok-v-8-klasse

https://im0-tub-ru.yandex.net/i?id=daa2ea7bbc3c92be3a29b22d8106e486&n=33&h=190&w=144

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Словарь медицинских терминов

Толковый словарь русского языка. Д.Н. Ушаков

многоугольник

многоугольника, м. (мат.). Плоская фигура, ограниченная тремя, четырьмя и т. д. прямыми линиями.

Толковый словарь русского языка. С.И.Ожегов, Н.Ю.Шведова.

многоугольник

А, м. В математике: геометрическая фигура, ограниченная замкнутой ломаной линией.

Новый толково-словообразовательный словарь русского языка, Т. Ф. Ефремова.

многоугольник

м. Геометрическая фигура, ограниченная замкнутой ломаной линией, звенья которой образуют более четырех углов.

Энциклопедический словарь, 1998 г.

многоугольник

МНОГОУГОЛЬНИК (на плоскости) геометрическая фигура, ограниченная замкнутой ломаной линией, звенья которой называются сторонами многоугольника, а их концы - вершинами многоугольника. По числу вершин различают треугольники, четырехугольники и т.д. Многоугольник называется выпуклым, если он весь лежит по одну сторону от прямой, несущей любую из его сторон, и невыпуклым - в противном случае. Многоугольник называется правильным, если все его стороны и углы равны.

Многоугольник

замкнутая ломаная линия. Подробнее, М. ≈ линия, которая получается, если взять n любых точек A1, A2, ..., An и соединить прямолинейным отрезком каждую из них с последующей, а последнюю ≈ с первой (см. рис. 1 , а). Точки A1, A2, ..., An называются вершинами М., а отрезки A1A2, А2А3, ..., An-1An, AnA1 ≈ его сторонами. Далее рассматриваются только плоские М. (т. е. предполагается, что М. лежит в одной плоскости). М. может сам себя пересекать (см. рис. 1 , б), причём точки самопересечения могут не быть его вершинами.

Существуют и другие точки зрения на то, что считать М. Многоугольником можно называть связную часть плоскости, вся граница которой состоит из конечного числа прямолинейных отрезков, называемых сторонами многоугольника. М. в этом смысле может быть и многосвязной частью плоскости (см. рис. 1 , г), т. е. такой М. может иметь «многоугольные дыры». Рассматриваются также бесконечные М. ≈ части плоскости, ограниченные конечным числом прямолинейных отрезков и конечным числом полупрямых.

Дальнейшее изложение опирается на данное выше первое определение М. Если М. не пересекает сам себя (см., например, рис. 1 , а и б), то он разделяет совокупность всех точек плоскости, на нем не лежащих, на две части ≈ конечную (внутреннюю) и бесконечную (внешнюю) в том смысле, что если две точки принадлежат одной из этих частей, то их можно соединить друг с другом ломаной, не пересекающей М., а если разным частям, то нельзя. Несмотря на совершенную очевидность этого обстоятельства, строгий его вывод из аксиом геометрии довольно труден (т. н. теорема Жордана для М.). Внутренняя по отношению к М. часть плоскости имеет определённую площадь. Если М. ≈ самопересекающийся, то он разрезает плоскость на определённое число кусков, из которых один бесконечный (называемый внешним по отношению к М.), а остальные конечные односвязные (называются внутренними), причём граница каждого из них есть некоторый самонепересекающийся М., стороны которого есть целые стороны или части сторон, а вершины ≈ вершины или точки самопересечения данного М. Если каждой стороне М. приписать направление, т. е. указать, какую из двух определяющих её вершин мы будем считать её началом, а какую ≈ концом, и притом так, чтобы начало каждой стороны было концом предыдущей, то получится замкнутый многоугольный путь, или ориентированный М. Площадь области, ограниченной самопересекающимся ориентированным М., считается положительной, если контур М. обходит эту область против часовой стрелки, т. е. внутренность М. остаётся слева от идущего по этому пути, и отрицательной ≈ в противоположном случае. Пусть М. ≈ самопересекающийся и ориентированный; если из точки, лежащей во внешней по отношению к нему части плоскости, провести прямолинейный отрезок к точке, лежащей внутри одного из внутренних его кусков, и М. пересекает этот отрезок р раз слева направо и q раз справа налево, то число р ≈ q (целое положительное, отрицательное или нуль) не зависит от выбора внешней точки и называется коэффициентом этого куска. Сумма обычных площадей этих кусков, помноженных на их коэффициенты, считается «площадью» рассматриваемого замкнутого пути (ориентированного М.). Так определяемая «площадь замкнутого пути» играет большую роль в теории математических приборов (планиметр и др.); она получается там обычно в виде интеграла ═(в полярных координатах r, w) или ═(в декартовых координатах х, у), где конец радиус-вектора r или ординаты y один раз обегает этот путь.

Сумма внутренних углов любого самонепересекающегося М. с n сторонами равна (n ≈ 2)180╟. М. называется выпуклым (см. рис. 1 , а), если никакая сторона М., будучи неограниченно продолженной, не разрезает М. на две части. Выпуклый М. можно охарактеризовать также следующим свойством: прямолинейный отрезок, соединяющий любые две точки плоскости, лежащие внутри М., не пересекает М. Всякий выпуклый М. ≈ самонепересекающийся, но не наоборот. Например, на рис. 1 , б изображен самонепересекающийся М., который не является выпуклым, т. к. отрезок PQ, соединяющий некоторые его внутренние точки, пересекает М.

Важнейшие М.: треугольники, в частности прямоугольные, равнобедренные, равносторонние (правильные); четырёхугольники, в частности трапеции, параллелограммы, ромбы, прямоугольники, квадраты. Выпуклый М. называется правильным, если все его стороны равны и все внутренние углы равны. В древности умели по стороне или радиусу описанного круга строить при помощи циркуля и линейки правильные М. только в том случае, если число сторон М. равно m = 3 ╥ 2n, 4 ╥ 2n,5 ╥ 2n, 3 ╥ 5 ╥ 2n, где n ≈ любое положительное число или нуль. Немецкий математик К. Гаусс в 1801 показал, что можно построить при помощи циркуля и линейки правильный М., когда число его сторон имеет вид: m = 2n ╥ p1 ╥ p2 ╥ ... ╥ pk, где p1, p2, ... pk ≈ различные простые числа вида ═(s ≈ целое положительное число). До сих пор известны только пять таких р: 3, 5, 17, 257, 65537. Из теории Галуа (см. Галуа теория) следует, что никаких других правильных М., кроме указанных Гауссом, построить при помощи циркуля и линейки нельзя. Т. о., построение возможно при m = 3, 4, 5, 6, 8, 10, 12, 15 16, 17, 20, 24, 32, 34, ... и невозможно при m = 7, 9, 11, 13, 14, 18, 19, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, ...

В приведённой ниже таблице указаны радиус описанной окружности, радиус вписанной окружности и площадь правильного n-yгольника (для n = 3, 4, 5, 6, 8, 10), сторона которого равна k.

Радиус описанной окружности

Радиус вписанной окружности

Начиная с пятиугольника существуют также невыпуклые (самопересекающиеся, или звездчатые) правильные М., т. е. такие, у которых все стороны равны и каждая следующая из сторон повёрнута в одном и том же направлении и на один и тот же угол по отношению к предыдущей. Все вершины такого М. также лежат на одной окружности. Такова, например, пятиконечная звезда. На рис. 2 даны все правильные (как выпуклые, так и невыпуклые) М. от треугольника до семиугольника.

Лит. см. при ст. Многогранник.

Википедия

Многоугольник

Многоуго́льник - это геометрическая фигура, обычно определяемая как замкнутая ломаная .

Существуют три различных варианта определения многоугольника:

  • Плоская замкнутая ломаная - наиболее общий случай;
  • Плоская замкнутая ломаная без самопересечений, любые два соседних звена которой не лежат на одной прямой;
  • Часть плоскости, ограниченная замкнутой ломаной без самопересечений - плоский многоугольник

В любом случае вершины ломаной называются вершинами многоугольника, а её отрезки - сторонами многоугольника.

Многоугольник (значения)

  • Многоугольник в геометрии
  • Каменный многоугольник в мерзлотоведении

Примеры употребления слова многоугольник в литературе.

Джилмен был даже рад погрузиться в сумрачную бездну с ее привычным приглушенным ревом, хотя и там настойчивое преследование двух существ, похожих на скопление переливающихся пузырей и маленький многоугольник со сторонами, меняющимися словно в калейдоскопе, вызывало особенно острое ощущение угрозы и необычайно раздражало.

Сумрачные ревущие пропасти -- зеленый каменистый склон холма -- блистающая всеми цветами радуги терраса -- притяжение неизвестных планет -- черная спираль эфира -- черный человек -- грязный переулок и скрипучая лестница -- старая колдунья и маленькая косматая тварь с длинными клыками -- скопление пузырей и маленький многоугольник -- странный загар -- ранки на руке -- что-то маленькое и бесформенное в руках у старухи -- покрытые грязью ноги -- сказки и страхи суеверных иностранцев -- что все это, наконец, означало?

Могу ли я из прямоугольной текстовой рамки сделать многоугольник в форме звезды?

Многогранник, основание к-рого представляет собой многоугольник , а остальные грани - треугольники с общей вершиной.

Нужно было, следовательно, наметить, где и как конкретно расположить резервы на Западном направлении, причем особенно беспокойным местом оставался как раз неправильный по форме многоугольник Калининского фронта.

Перед вами - неправильный, вдавшийся резко на север многоугольник , именовавшийся Маньчжурией.

Если графическая рамка имеет форму овала или многоугольника

Если текстовая рамка имеет форму овала или многоугольника , то эта опция становится недоступной.

Берутся три или больше предмета с одинаковой массой, помещаются в вершинах равностороннего многоугольника и разгоняются до одинаковой угловой скорости относительно центра их общей массы.

Почти вопреки своей воле он парил по сумеречной пропасти вслед за скоплением переливающихся пузырей и маленьким многоугольником , когда заметил, что края находившихся в стороне от него гигантских призм образуют на удивление правильные повторяющиеся углы.

Ровные, девственные, белые, кое-где искореженные подвижками, похожие на бесчисленные многоугольники , окантованные черными полосками открытой воды.

Эх, видеть бы аргусовым оком многоугольники коралла и волоконцы, вплетенные в грани, и внутренность волокон.

Это отполированные ветрами глинистые такыры, растрескавшиеся на бесчисленное множество многоугольников , гладкие, словно каток, твердые, как бетон.

Вот фонтан фаллической формы, который виднелся то ли из-под арки, то ли из-под портика, с Нептуном, стоящим верхом на дельфине, ворота с колоннами, напоминавшими ассирийские, и опять арка неопределенной формы, что-то вроде нагромождения треугольников и многоугольников , причем верхушку каждого из них венчала фигурка животного - лося, обезьяны, льва.

Картинки могут располагаться не только в прямоугольных графических рамках, но и в видоизменяемых многоугольниках и овалах.

Виды многоугольников:

Четырехугольники

Четырехугольники , соответственно, состоят из 4-х сторон и углов.

Стороны и углы, расположенные напротив друг друга, называются противоположными .

Диагонали делят выпуклые четырехугольники на треугольники (см. на рисунке).

Сумма углов выпуклого четырехугольника равна 360° (по формуле: (4-2)*180°).

Параллелограммы

Параллелограмм - это выпуклый четырехугольник с противоположными параллельными сторонами (на рис. под номером 1).

Противоположные стороны и углы в параллелограмме всегда равны.

А диагонали в точке пересечения делятся пополам.

Трапеции

Трапеция - это тоже четырехугольник, и в трапеции параллельны только две стороны, которые называются основаниями . Другие стороны - это боковые стороны .

Трапеция на рисунке под номером 2 и 7.

Как и в треугольнике:

Если боковые стороны равны, то трапеция - равнобедренная ;

Если один из углов прямой, то трапеция - прямоугольная.

Средняя линия трапеции равна полусумме оснований и параллельна им.

Ромб

Ромб - это параллелограмм, у которого все стороны равны.

Помимо свойств параллелограмма, ромбы имеют своё особое свойство - диагонали ромба перпендикулярны друг другу и делят углы ромба пополам .

На рисунке ромб под номером 5.

Прямоугольники

Прямоугольник - это параллелограмм, у которого каждый угол прямой (см. на рис. под номером 8).

Помимо свойств параллелограмма, прямоугольники имеют своё особое свойство - диагонали прямоугольника равны .

Квадраты

Квадрат - это прямоугольник, у которого все стороны равны (№4).

Обладает свойствами прямоугольника и ромба (так как все стороны равны).

error: