Основные функции мембраны. Какую функцию выполняет клеточная мембрана — её свойства и функции

Мембраны выполняют большое число различных функций:

мембраны определяют форму органеллы или клетки;

барьерная : контролируют обмен растворимых веществ (например, ионов Na + , K + , Cl -) между внутренним и наружным компартментом;

энергетическая : синтез АТФ на внутренних мембранах митохондрий и фотосинтез в мембранах хлоропластов; формируют поверхность для протекания химических реакций (фосфорилирование на митохондриальных мембранах);

являются структурой, обеспечивающей распознавание химических сигналов (на мембране расположены рецепторы гормонов и нейромедиаторов);

играют роль в межклеточном взаимодействии и способствуют передвижению клеток.

Транспорт через мембрану. Мембрана обладает избирательной проницаемостью для растворимых веществ, что необходимо для:

отделения клетки от внеклеточной среды;

обеспечения проникновения в клетку и удержания в ней необходимых молекул (таких, как липиды, глюкоза и аминокислоты), а также удаления из клетки продуктов метаболизма (в том числе ненужных);

поддержания трансмембранного градиента ионов.

Внутриклеточные органеллы также могут обладать избирательно проницаемой мембраной. Например, в лизосомах мембрана поддерживает концентрацию ионов водорода (Н +) в 1000-10000 раз больше, чем в цитозоле.

Транспорт через мембрану может быть пассивным , облегченным или активным .

Пассивный транспорт - это движение молекул или ионов по концентрационному либо электрохимическому градиенту. Это может быть простая диффузия, как в случае проникновения через плазматическую мембрану газов (например О 2 и СО 2) или простых молекул (этанола). При простой диффузии растворенные во внеклеточной жидкости небольшие молекулы последовательно растворяются в мембране и затем во внутриклеточной жидкости. Указанный процесс неспецифичен, при этом скорость проникновения через мембрану определяется степенью гидрофобности молекулы, то есть ее жирорастворимостью. Скорость диффузии через липидный бислой прямо пропорциональна гидрофобности, а также трансмембранному градиенту концентрации или электрохимическому градиенту.

Облегченная диффузия - это быстрое движение молекул через мембрану с помощью специфических мембранных белков, называемых пермеазами. Этот процесс специфичен, он протекает быстрее простой диффузии, но имеет ограничение скорости транспорта.

Облегченная диффузия обычно характерна для водорастворимых веществ. Большинство (если не все) мембранных переносчиков являются белками. Конкретный механизм функционирования переносчиков при облегченной диффузии исследован недостаточно. Они могут, например, обеспечивать перенос путем вращательного движения в мембране. В последнее время появились сведения, что белки-переносчики при контакте с транспортируемым веществом изменяют свою конформацию, в результате в мембране открываются своеобразные «ворота», или каналы. Эти изменения происходят за счет энергии, высвобождающейся при связывании транспортируемого вещества с белком. Возможен также перенос эстафетного типа. В этом случае сам переносчик остается неподвижным, а ионы мигрируют вдоль него от одной гидрофильной связи к другой.

Моделью переносчика такого типа может служить антибиотик грамицидин. В липидном слое мембраны его длинная линейная молекула принимает форму спирали и образует гидрофильный канал, по которому может мигрировать по градиенту ион К.

Получены экспериментальные доказательства существования природных каналов в биологических мембранах. Транспортные белки отличаются высокой специфичностью по отношению к переносимому через мембрану веществу, по многим свойствам напоминая ферменты. Они обнаруживают большую чувствительность к рН, конкурентно ингибируются соединениями, близкими по структуре к переносимому веществу, и неконкурентно - агентами, изменяющими специфически функциональные группы белков.

Облегченная диффузия отличается от обычной не только скоростью, но и способностью к насыщению. Увеличение скорости переноса веществ происходит пропорционально росту градиента концентрации только до определенных пределов. Последний определяется «мощностью» переносчика.

Активный транспорт - это движение ионов или молекул через мембрану против градиента концентрации за счет энергии гидролиза АТФ. Имеются три основных типа активного транспорта ионов:

натрий-калиевый насос - Na + /K + -аденозинтрифосфатаза (АТФаза), переносящая Na + наружу, а K + внутрь;

кальциевый (Са 2+) насос - Са 2+ -АТФаза, которая транспортирует Са 2+ из клетки или цитозоля в саркоплазматический ретикулум;

протонный насос - Н + -АТФаза. Созданные активным транспортом градиенты ионов могут быть использованы для активного транспорта других молекул - таких, как некоторые аминокислоты и сахара (вторичный активный транспорт).

Котранспорт - это транспорт иона или молекулы, сопряженный с переносом другого иона. Симпорт - одновременный перенос обеих молекул в одном направлении; антипорт - одновременный перенос обеих молекул в противоположных направлениях. Если транспорт не сопряжен с переносом другого иона, этот процесс называется унипортом . Котранспорт возможен как при облегченной диффузии, так и в процессе активного транспорта.

Глюкоза может транспортироваться путем облегченной диффузии по типу симпорта. Ионы Cl - и HCO 3 - транспортируются через мембрану эритроцитов путем облегченной диффузии переносчиком, называемым полосой 3, по типу антипорта. При этом Cl - и HCO 3 - переносятся в противоположных направлениях, а направление переноса определяется преобладающим градиентом концентрации.

Активный транспорт ионов против градиента концентрации требует энергии, выделяемой при гидролизе АТФ до АДФ: АТФ АДФ + Ф (неорганический фосфат). Для активного транспорта, как и для облегченной диффузии, характерны: специфичность, ограничение максимальной скорости (то есть кинетическая кривая выходит на плато) и наличие ингибиторов. В качестве примера можно привести первичный активный транспорт, осуществляемый Na + /K + - АТФазой. Для функционирования этой фрментной системы антипорта необходимо наличие Na + , K + и ионов магния. Она присутствует практически во всех клетках животных, причем ее концентрация особенно высока в возбудимых тканях (например, в нервах и мышцах) и в клетках, принимающих активное участие в движении осуществляемый Na + через плазматическую мембрану (например, в корковом слое почек и слюнных железах).

Сам фермент АТФаза представляет собой олигомер, состоящий из 2 -субъедениц по 110 кД и 2 гликопротеиновых -субъдениц по 55 кД каждая.. при гидролизе АТФ происходит обратимое фосфорилирование определенного остатка аспартата на -субъеденице с образованием -аспартамилфосфата.. Для фосфорилирования необходимы Na + и Мg 2+ , но не K + , тогда как для дефосфорилирования необходим K + , но не Na + или Мg 2+ . Описаны два конформационных состояния белкового комплекса с различным энергетическим уровнем, которые принято обозначать Е 1 и Е 2 , поэтому АТФазу называют также переносчиком типа Е 1 - Е 2 . Сердечные гликозиды, например дигоксин и уабаин , подавляют активность АТФазы.. Уабаин вследствие хорпошой растворимости в воде широко применяют в экспериментальных исследованиях для изучения натриевого насоса.

Общепринятое представлени о работе Na + /K + - АТФазой, сводится к следующему. Ионы Na и АТФ присоединяются к молекуле АТФазы в присутствии Мg 2+ . Связывание ионов Na запускает реакцию гидролиза АТФ, в результате которой образуются АДФ и фосфорилированная форма фермента. Фосфорилирование индуцирует переход ферментативного белка в новое конформационное состояние и участок или участки, несущие Na, оказываются обращенными к внешней среде. Здесь Na + обменивается на K + , так как для фосфорилированной формы ферментахарактерно высокое сродство к ионам К. обратный переход фермента в исходную конформацию инициируется гидролитическим отщеплением фосфорильной группы в виде неорганического фосфата и сопровождается освобождением K + во внутреннее пространство клетки. Дефосфорилированный активный центр фермента способен присоединить новую молекулу АТФ, и цикл повторяется.

Количества поступивших в клетку в результате работы насоса ионов К и Na не равны между собой. На три выведенных иона Na приходится два введенных иона К при одновременном гидролизе одной молекулы АТФ. Открывание и закрывание канала на противоположных сторонах мембраны и чередующееся изменение эффективности связывания Na и К обеспечиваются энергией гидролиза АТФ. Транспортируемые ионы - Na и К - кофакторы данной ферментативной реакции. Теоретически можно представить самые различные насосы, действующие по этому принципу, хотя в настоящее время известны лишь немногие из них.

Транспорт глюкозы. Транспорт глюкозы может происходить по типу как облегченной диффузии, так и активного транспорта, причем в первом случае он протекает как унипорт, во втором - как симпорт. Глюкоза может транспортироваться в эритроциты путем облегченной диффузии. Константа Михаэлиса (К m) для транспорта глюкозы в эритроциты составляет приблизительно 1,5 ммоль/л (то есть при этой концентрации глюкозы около 50% имеющихся молекул пермеазы будет связано с молекулами глюкозы). Поскольку концентрация глюкозы в крови человека составляет 4-6 ммоль/л, поглощение ее эритроцитами происходит практически с максимальной скоростью. Специфичность пермеазы проявляется уже в том, что L-изомер почти не транспортируется в эритроциты в отличие от D-галактозы и D-маннозы, но для достижения полунасыщения транспортной системы требуются более высокие их концентрации. Оказавшись внутри клетки, глюкоза подвергается фосфорилированию и более не способна покинуть клетку. Пермеазу для глюкозы называют также D-гексозной пермеазой. Она представляет собой интегральный мембранный белок с молекулярной массой 45кД.

Глюкоза может также транспортироваться Na + -зависимой системой симпорта, обнаруженной в плазматических мембранах ряда тканей, в том числе в канальцах почек и эпителии кишечника. При этом одна молекула глюкозы переносится путем облегченной диффузии против градиента концентрации, а один ион Na - по градиенту концентрации. Вся система в конечном счете функционирует за счет насосной функции Na + /K + - АТФазы. Таким образом, симпорт является вторичной системой активного транспорта. Аминокислоты транспортируются аналогичным образом.

Ca 2+ -насос представляет собой систему активного транспорта типа Е 1 - Е 2 , состоящую из интегрального мембранного белка, который в процессе переноса Ca 2+ фосфорилируется по остатку аспартата. При гидролизе каждой молекулы АТФ происходит перенос двух ионов Ca 2+ . В эукариотических клетках Ca 2+ может связываться с кальцийсвязывающим белком, называемым кальмодулином , и весь комплекс связывается с Ca 2+ -насосом. К Ca 2+ -связывающим белкам отнсятся также тропонин С и парвальбумин.

Ионы Са, подобно ионам Na, активно выводятся из клеток Ca 2+ -АТФазой. Особенно большое количество белка кальциевого насоса содержат мембраны эндоплазматического ретикулума. Цепь химических реакций, ведущих к гидролизу АТФ и перебросу Ca 2+ , может быть записана в виде следующих уравнений:

2Са н + АТФ + Е 1 Са 2 - Е - Р + АДФ

Са 2 - Е - Р 2Са вн + PO 4 3- + Е 2

Где Сан - Ca2+ , находящийся снаружи;

Са вн - Ca 2+ , находящийся внутри;

Е 1 и Е 2 - различные конформации фермента переносчика, переход которых из одной в другую связан с использованием энергии АТФ.

Система активного вывода Н + из цитоплазмы поддерживается двумя типами реакций: деятельностью электрон-транспортной цепи (редокс-цепи) и гидролизом АТФ. Оба - и редокс- и гидролитический Н + -насосы - находятся в мембранах, способных превращать световую или химическую энергию в энергию Н + (то есть плазматических мембранах прокариот, сопрягающих мембранах хлоропластов и митохондрий). В результате работы Н + АТФазы и/или редокс-цепи транслоцируются протоны, и на мембране возникает протондвижущая сила (Н +). Электрохимический градиент ионов водорода, как показывают исследования, может быть использован для сопряженного транспорта (вторичный активный транспорт) большого числа метаболитов - анионов, аминокислот, сахаров и т.д.

С активностью плазматической мембраны связаны обеспечивающие поглощение клеткой твердых и жидких веществ с большой молекулярной массой, - фагоцитоз и пиноцитоз (от герч. фагос - есть, пинос - пить, цитос - клетка). Клеточная мембрана образует карманы, или впячивания, которые втягивают вещества извне. Затем такие впячивания отшнуровываются и окружают мембраной капельку внешней среды (пиноцитоз) или твердые частицы (фагоцитоз). Пиноцитоз наблюдается в самых разнообразных клетках, особенно в тех органах, где происходят процессы всасывания.

1 – полярная головка молекулы фосфолипида

2 – жирнокислотный хвост молекулы фосфолипида

3 – интегральный белок

4 – периферический белок

5 – полуинтегральный белок

6 – гликопротеин

7 - гликолипид

Наружная клеточная мембрана присуща всем клеткам (животным и растительным), имеет толщину около 7,5 (до 10) нм и состоит из молекул липидов и белка.

В настоящее время распространена жидкостно-мозаичная модель построения клеточной мембраны. Согласно этой модели молекулы липидов расположены в два слоя, причем своими водоотталкивающими концами (гидрофобными – жирорастворимыми) они обращены друг к другу, а водорастворимыми (гидрофильными) – к периферии. В липидный слой встроены белковые молекулы. Некоторые из них находятся на внешней или внутренней поверхности липидной части, другие – частично погружены или пронизывают мембрану насквозь.

Функции мембран:

Защитная, пограничная, барьерная;

Транспортная;

Рецепторная – осуществляется за счет белков – рецепторов, которые обладают избирательной способностью к определенным веществам (гормонам, антигенам и др.), вступают с ними в химические взаимодействия, проводят сигналы внутрь клетки;

Участвуют в образовании межклеточных контактов;

Обеспечивают движение некоторых клеток (амебовидное движение).

У животных клеток сверху наружной клеточной мембраны имеется тонкий слой гликокаликса. Это комплекс углеводов с липидами и углеводов с белками. Гликокаликс участвует в межклеточных взаимодействиях. Точно такое же строение имеют цитоплазматические мембраны большинства органелл клетки.

У растительных клеток снаружи от цитоплазматической мембраны. расположена клеточная стенка, состоящая из целлюлозы.

Транспорт веществ через цитоплазматическую мембрану.

Существуют два основных механизма для поступления веществ в клетку или выхода из клетки наружу:

1.Пассивный транспорт.

2.Активный транспорт.

Пассивный транспорт веществ происходит без затраты энергии. Примером такого транспорта является диффузия и осмос, при которых движение молекул или ионов осуществляется из области с высокой концентрацией в область с меньшей концентрацией, например, молекул воды.

Активный транспорт – при этом виде транспорта молекулы или ионы проникают через мембрану против градиента концентрации, для чего необходима энергия. Примером активного транспорта служит натрий-калиевый насос, который активно выкачивает натрий из клетки и поглощает ионы калия из внешней среды, перенося их в клетку. Насос – это особый белок мембраны, приводит его в движение АТФ.

Активный транспорт обеспечивает поддержание постоянства объема клетки и мембранного потенциала.

Транспорт веществ может осуществляться путем эндоцитоза и экзоцитоза.

Эндоцитоз – проникновение веществ в клетку, экзоцитоз – из клетки.

При эндоцитозе плазматическая мембрана образует впячивание или выросты, которые затем обволакивают вещество и отшнуровываясь, превращаются в пузырьки.

Различают два типа эндоцитоза:

1)фагоцитоз- поглощение твердых частиц (клетки фагоциты),

2)пиноцитоз – поглощение жидкого материала. Пиноцитоз характерен для амебоидных простейших.

Путем экзоцитоза различные вещества выводятся из клеток: из пищеварительных вакуолей удаляются непереваренные остатки пищи, из секреторных клеток выводится их жидкий секрет.

Цитоплазма – (цитоплазма + ядро образуют протоплазму). Цитоплазма состоит из водянистого основного вещества (цитоплазматический матрикс, гиалоплазма, цитозоль) и находящихся в нем разнообразных органелл и включений.

Включения– продукты жизнедеятельности клеток. Выделяют 3 группы включений – трофического, секреторного (клетки желез) и специального (пигмент) значения.

Органеллы – это постоянные структуры цитоплазмы, выполняющие в клетке определенные функции.

Выделяют органеллы общего значения и специальные. Специальные встречаются в большинстве клеток, но в значительном количестве присутствуют только в клетках, выполняющих определенную функцию. К ним относятся микроворсинки эпителиальных клеток кишечника, реснички эпителия трахеи и бронхов, жгутики, миофибриллы (обеспечивающие сокращение мышц и др.).

К органеллам общего значения относят ЭПС, комплекс Гольджи, митохондрии, рибосомы, лизосомы, центриоли клеточного центра, пероксисомы, микротрубочки, микрофиламенты. В растительных клетках – пластиды, вакуоли. Органеллы общего значения можно подразделить на органеллы, имеющие мембранное и немембранное строение.

Органеллы, имеющие мембранное строение бывают двумембранные и одномембранные. К двумембранным относят митохондрии и пластиды. К одномембранным – эндоплазматическая сеть, комплекс Гольджи, лизосомы, пероксисомы, вакуоли.

Органеллы, не имеющие мембран: рибосомы, клеточный центр, микротрубочки, микрофиламенты.

Митохондрии это органеллы округлой или овальной формы. Они состоят из двух мембран: внутренней и наружной. Внутренняя мембрана имеет выросты – кристы, которые разделяют митохондрию на отсеки. Отсеки заполнены веществом – матриксом. В матриксе содержатся ДНК, иРНК, тРНК, рибосомы, соли кальция и магния. Здесь происходит автономный биосинтез белка. Основной же функцией митохондрий является синтез энергии и накопления ее в молекулах АТФ. Новые митохондрии образуются в клетке в результате деления старых.

Пластиды органеллы, встречающиеся преимущественно в растительных клетках. Они бывают трех типов: хлоропласты, содержащие пигмент зеленого цвета; хромопласты (пигменты красного, желтого, оранжевого цвета); лейкопласты (бесцветные).

Хлоропласты благодаря зеленому пигменту хлорофиллу, способны синтезировать органические вещества из неорганических, используя энергию солнца.

Хромопласты придают яркую окраску цветам и плодам.

Лейкопласты способны накапливать запасные питательные вещества: крахмал, липиды, белки и др.

Эндоплазматическая сеть(ЭПС) представляет собой сложную систему вакуолей и каналов, которые ограничены мембранами. Различают гладкую (агранулярную) и шероховатую (гранулярную) ЭПС. Гладкая не имеет на своей мембране рибосом. В ней происходит синтез липидов, липопротеидов, накопление и выведение из клетки ядовитых веществ. Гранулярная ЭПС имеет рибосомы на мембранах, в которых синтезируются белки. Затем белки поступают в комплекс Гольджи, а оттуда наружу.

Комплекс Гольджи (аппарат Гольджи) представляет собой стопку уплощенных мембранных мешочков – цистерн и связанную с ними систему пузырьков. Стопка цистерн называется диктиосома.

Функции комплекса Гольджи: модификация белков, синтез полисахаридов, транспорт веществ, формирование клеточной мембраны, образование лизосом.

Лизосомы представляют собой окруженные мембраной пузырьки, содержащие ферменты. Они осуществляют внутриклеточное расщепление веществ и подразделяются на первичные и вторичные. Первичные лизосомы содержат ферменты в неактивной форме. После попадания в органеллы различных веществ происходит активация ферментов и начинается процесс переваривания – это вторичные лизосомы.

Пероксисомы имеют вид пузырьков, ограниченных одной мембраной. Они содержат ферменты, которые расщепляют токсичную для клеток перекись водорода.

Вакуоли это органеллы клеток растений, содержащие клеточный сок. В клеточном соке могут находиться запасные питательные вещества, пигменты, отходы жизнедеятельности. Вакуоли участвуют в создании тургорного давления, в регуляции водно – солевого обмена.

Рибосомы органеллы, состоящие из большой и малой субъединиц. Могут находиться или на ЭПС или же располагаться свободно в клетке, образуя полисомы. Они состоят из рРНК и белка и образуются в ядрышке. В рибосомах происходит биосинтез белка.

Клеточный центр встречается в клетках животных, грибов, низших растений и отсутствует у высших растений. Он состоит из двух центриолей и лучистой сферы. Центриоль имеет вид полого цилиндра, стенка которого состоит из 9 триплетов микротрубочек. При делении клетки образуют нити митотического веретена, обеспечивающие расхождение хроматид в анафазе митоза и гомологичных хромосом при мейозе.

Микротрубочки трубчатые образования различной длины. Входят в состав центриолей, митотического веретена, жгутиков, ресничек, выполняют опорную функцию, способствуют перемещению внутриклеточных структур.

Микрофиламенты нитчатые тонкие образования, расположенные по всей цитоплазме, но особенно много их под клеточной оболочкой. Вместе с микротрубочками образуют цитоскелет клетки, обусловливают ток цитоплазмы, внутриклеточные перемещения пузырьков, хлоропластов и др. органелл.

Эволюция клетки

Существуют два этапа в эволюции клетки:

1.Химический.

2.Биологический.

Химический этап начался около 4,5 млрд лет назад. Под действием ультрафиолетового излучения, радиации, грозовых разрядов (источники энергии) происходило образование сначала простых химических соединений – мономеров, а затем более сложных – полимеров и их комплексов (углеводов, липидов, белков, нуклеиновых кислот).

Биологический этап образования клеток начинается с появления пробионтов – обособленных сложных систем, способных к самовоспроизведению, саморегуляции и естественному отбору. Пробионты появились 3-3,8 млрд. лет назад. От пробионтов произошли первые прокариотические клетки – бактерии. Эукариотические клетки произошли от прокариот (1-1,4 млрд. лет назад) двумя путями:

1)Путем симбиоза нескольких прокариотических клеток – это симбиотическая гипотеза;

2)Путем инвагинации клеточной мембраны. Суть инвагинационной гипотезы заключается в том, что прокариотическая клетка содержала несколько геномов, прикрепленных к клеточной оболочке. Затем происходила инвагинация – впячивание, отшнуровка клеточной мембраны, и эти геномы превращались в митохондрии, хлоропласты, ядро.

Дифференциация и специализация клеток.

Дифференциация – это формирование различных типов клеток и тканей в ходе развития многоклеточного организма. Одна из гипотез связывает дифференцировку с экспрессией генов в процессе индивидуального развития. Экспрессия – процесс включения тех или иных генов в работу, который создает условия для направленного синтеза веществ. Поэтому происходит развитие и специализация тканей в том или ином направлении.


Похожая информация.


Основная структурная единица живого организма - клетка, являющаяся дифференцированным участком цитоплазмы, окруженным клеточной мембраной. Ввиду того что клетка выполняет множество важнейших функций, таких, как размножение, питание, движение, оболочка должна быть пластичной и плотной.

История открытия и исследования клеточной мембраны

В 1925 году Гренделем и Гордером был поставлен успешный эксперимент по выявлению «теней» эритроцитов, или пустых оболочек. Несмотря на несколько допущенных грубых ошибок, учеными было произведено открытие липидного бислоя. Их труды продолжили Даниэлли, Доусон в 1935 году, Робертсон в 1960 году. В результате многолетней работы и накопления аргументов в 1972 году Сингер и Николсон создали жидкостно-мозаичную модель строения мембраны. Дальнейшие опыты и исследования подтвердили труды ученых.

Значение

Что же представляет собой клеточная мембрана? Это слово стало использоваться более ста лет назад, в переводе с латинского оно означает «пленка», «кожица». Так обозначают границу клетки, являющуюся естественным барьером между внутренним содержимым и внешней средой. Строение клеточной мембраны предполагает полупроницаемость, благодаря которой влага и питательные вещества и продукты распада свободно могут проходить сквозь нее. Эту оболочку можно назвать основной структурной составляющей организации клетки.

Рассмотрим основные функции клеточной мембраны

1. Разделяет внутреннее содержимое клетки и компоненты внешней среды.

2. Способствует поддержанию постоянного химического состава клетки.

3. Регулирует правильный обмен веществ.

4. Обеспечивает взаимосвязь между клетками.

5. Распознает сигналы.

6. Функция защиты.

"Плазменная оболочка"

Наружная клеточная мембрана, называемая также плазменной, представляет собой ультрамикроскопическую пленку, толщина которой составляет от пяти до семи наномиллиметров. Она состоит преимущественно из белковых соединений, фосфолидов, воды. Пленка является эластичной, легко впитывает воду, а также стремительно восстанавливает свою целостность после повреждений.

Отличается универсальным строением. Эта мембрана занимает пограничное положение, участвует в процессе избирательной проницаемости, выведении продуктов распада, синтезирует их. Взаимосвязь с «соседями» и надежная защита внутреннего содержимого от повреждения делает ее важной составляющей в таком вопросе, как строение клетки. Клеточная мембрана животных организмов иногда оказывается покрытой тончайшим слоем - гликокаликсом, в состав которого входят белки и полисахариды. Растительные клетки снаружи от мембраны защищены клеточной стенкой, выполняющей функции опоры и поддержания формы. Основной компонент ее состава - это клетчатка (целлюлоза) - полисахарид, не растворимый в воде.

Таким образом, наружная клеточная мембрана выполняет функцию восстановления, защиты и взаимодействия с другими клетками.

Строение клеточной мембраны

Толщина этой подвижной оболочки варьируется в пределах от шести до десяти наномиллиметров. Клеточная мембрана клетки имеет особый состав, основой которого служит липидный бислой. Гидрофобные хвосты, инертные к воде, размещены с внутренней стороны, в то время как гидрофильные головки, взаимодействующие с водой, обращены наружу. Каждый липид представляет фосфолипид, который является результатом взаимодействия таких веществ, как глицерин и сфингозин. Липидный каркас тесно окружают белки, которые расположены несплошным слоем. Некоторые из них погружены в липидный слой, остальные проходят сквозь него. В результате этого образуются проницаемые для воды участки. Выполняемые этими белками функции различны. Некоторые из них являются ферментами, остальные - транспортными белками, которые переносят различные вещества из внешней среды на цитоплазму и обратно.

Клеточная мембрана насквозь пронизана и тесно связана интегральными белками, а с переферическими связь менее прочная. Эти белки выполняют важную функцию, которая заключается в поддержании структуры мембраны, получении и преобразовании сигналов из окружающей среды, транспорте веществ, катализации реакций, которые происходят на мембранах.

Состав

Основу клеточной мембраны представляет бимолекулярный слой. Благодаря его непрерывности клетка имеет барьерное и механическое свойства. На разных этапах жизнедеятельности данный бислой может нарушиться. Вследствие этого образуются структурные дефекты сквозных гидрофильных пор. В таком случае могут изменяться абсолютно все функции такой составляющей, как клеточная мембрана. Ядро при этом может пострадать от внешних воздействий.

Свойства

Клеточная мембрана клетки имеет интересные особенности. Благодаря текучести эта оболочка не является жесткой структурой, а основная часть белков и липидов, которые входят в ее состав, свободно перемещается на плоскости мембраны.

В целом клеточная мембрана асимметрична, поэтому состав белковых и липидных слоев различается. Плазматические мамбраны в животных клетках со своей наружной стороны имеют гликопротеиновый слой, который выполняет рецепторные и сигнальные функции, а также играет большую роль в процессе объединения клеток в ткань. Клеточная мембрана является полярной, то есть на внешней стороне заряд положителен, а с внутренней стороны - отрицателен. Помимо всего перечисленного, оболочка клетки обладает избирательной проницательностью.

Это означает, что кроме воды в клетку пропускается только определенная группа молекул и ионов растворившихся веществ. Концентрация такого вещества, как натрий, в большинстве клеток значительно ниже, чем во внешней среде. Для ионов калия характерно другое соотношение: их количество в клетке намного выше, чем в окружающей среде. В связи с этим ионам натрия присуще стремление проникнуть в клеточную оболочку, а ионы калия стремятся освободиться наружу. При данных обстоятельствах мембрана активизирует особую систему, выполняющую «насосную» роль, выравнивая концентрацию веществ: ионы натрия откачиваются на поверхность клетки, а ионы калия накачиваются внутрь. Данная особенность входит в важнейшие функции клеточной мембраны.

Подобное стремление ионов натрия и калия переместиться внутрь с поверхности играет большую роль в вопросе транспортировки сахара и аминокислот в клетку. В процессе активного удаления ионов натрия из клетки мембрана создает условия для новых поступлений глюкозы и аминокислот внутрь. Напротив, в процессе переноса ионов калия внутрь клетки пополняется число "транспортировщиков" продуктов распада изнутри клетки во внешнюю среду.

Как происходит питание клетки через клеточную мембрану?

Многие клетки поглощают вещества посредством таких процессов, как фагоцитоз и пиноцитоз. При первом варианте гибкой наружной мембраной создается маленькое углубление, в котором оказывается захватываемая частица. Затем диаметр углубления становится больше, пока окруженная частица не попадет в клеточную цитоплазму. Посредством фагоцитоза подпитываются некоторые простейшие, например амебы, а также кровяные тельца - лейкоциты и фагоциты. Аналогичным образом клетки поглощают жидкость, которая содержит необходимые полезные вещества. Такое являние носит название пиноцитоз.

Наружная мембрана тесно соединена с эндоплазматической сетью клетки.

У многих типов основных составляющих ткани на поверхности мембраны расположены выступы, складки, микроворсинки. Растительные клетки снаружи этой оболочки покрыты еще одной, толстой и отчетливо различимой в микроскоп. Клетчатка, из которой они состоят, помогает формировать опору тканям растительного происхождения, например, древесину. Клетки животных также обладают рядом внешних структур, которые находятся поверх клеточной мембраны. Они носят исключительно защитный характер, пример тому - хитин, содержащийся в покровных клетках насекомых.

Помимо клеточной, существует внутриклеточная мембрана. Ее функция заключается в разделении клетки на несколько специализированных замкнутых отсеков - компартментов или органелл, где должна поддерживаться определенная среда.

Таким образом, невозможно переоценить роль такой составляющей основной единицы живого организма, как клеточная мембрана. Строение и функции предполагают значительное расширение общей площади поверхности клетки, улучшение обменных процессов. В состав этой молекулярной структуры входят белки и липиды. Отделяя клетку от внешней среды, мембрана обеспечивает ее целостность. С ее помощью межклеточные связи поддерживаются на достаточно крепком уровне, образовывая ткани. В связи с этим можно сделать вывод, что одну из важнейших ролей в клетке играет клеточная мембрана. Строение и функции, выполняемые ею, радикально отличаются в различных клетках, в зависимости от их предназначения. Посредством этих особенностей достигается разнообразие физиологической активности клеточных оболочек и их ролей в существовании клеток и тканей.

Клеточная мембрана также называется плазматической (или цитоплазматической) мембраной и плазмалеммой. Данная структура не только отделяет внутреннее содержимое клетки от внешней среды, но также входит с состав большинства клеточных органелл и ядра, в свою очередь отделяя их от гиалоплазмы (цитозоля) - вязко-жидкой части цитоплазмы. Договоримся называть цитоплазматической мембраной ту, которая отделяет содержимое клетки от внешней среды. Остальными терминами обозначать все мембраны.

В основе строения клеточной (биологической) мембраны лежит двойной слой липидов (жиров). Формирование такого слоя связано с особенностями их молекул. Липиды не растворяются в воде, а по-своему в ней конденсируются. Одна часть отдельно взятой молекулы липида представляет собой полярную головку (она притягивается водой, т. е. гидрофильна), а другая - пару длинных неполярных хвостов (эта часть молекулы отталкивается от воды, т. е. гидрофобна). Такое строение молекул заставляет их «прятать» хвосты от воды и поворачивать к воде свои полярные головки.

В результате образуется двойной липидный слой, в котором неполярные хвосты находятся внутри (обращены друг к другу), а полярные головки обращены наружу (к внешней среде и цитоплазме). Поверхность такой мембраны гидрофильна, а внутри она гидрофобна.

В клеточных мембранах среди липидов преобладают фосфолипиды (относятся к сложным липидам). Их головки содержат остаток фосфорной кислоты. Кроме фосфолипидов есть гликолипиды (липиды + углеводы) и холестерол (относится к стеролам). Последний придает мембране жесткость, размещаясь в ее толще между хвостами остальных липидов (холестерол полностью гидрофобный).

За счет электростатического взаимодействия, к заряженным головкам липидов присоединяются некоторые молекулы белков, которые становятся поверхностными мембранными белками. Другие белки взаимодействуют с неполярными хвостами, частично погружаются в двойной слой или пронизывают его насквозь.

Таким образом, клеточная мембрана состоит из двойного слоя липидов, поверхностных (периферических), погруженных (полуинтегральных) и пронизывающих (интегральных) белков . Кроме того, некоторые белки и липиды с внешней стороны мембраны связаны с углеводными цепями.


Это жидкостно-мозаичная модель строения мембраны была выдвинута в 70-х годах XX века. До этого предполагалась бутербродная модель строения, согласно которой липидный бислой находится внутри, а с внутренней и наружной стороны мембрана покрыта сплошными слоями поверхностных белков. Однако накопление экспериментальных данных опровергло эту гипотезу.

Толщина мембран у разных клеток составляет около 8 нм. Мембраны (даже разные стороны одной) отличаются между собой по процентному соотношению различных видов липидов, белков, ферментативной активности и др. Какие-то мембраны более жидкие и более проницаемые, другие более плотные.

Разрывы клеточной мембраны легко сливаются из-за физико-химических особенностей липидного бислоя. В плоскости мембраны липиды и белки (если только они не закреплены цитоскелетом) перемещаются.

Функции клеточной мембраны

Большинство погруженных в клеточную мембрану белков выполняют ферментативную функцию (являются ферментами). Часто (особенно в мембранах органоидов клетки) ферменты располагаются в определенной последовательности так, что продукты реакции, катализируемые одним ферментом, переходят ко второму, затем третьему и т. д. Образуется конвейер, который стабилизируют поверхностные белки, т. к. не дают ферментам плавать вдоль липидного бислоя.

Клеточная мембрана выполняет отграничивающую (барьерную) от окружающей среды и в то же время транспортную функции. Можно сказать, это ее самое главное назначение. Цитоплазматическая мембрана, обладая прочностью и избирательной проницаемостью, поддерживает постоянство внутреннего состава клетки (ее гомеостаз и целостность).

При этом транспорт веществ происходит различными способами. Транспорт по градиенту концентрации предполагает передвижение веществ из области с их большей концентрацией в область с меньшей (диффузия). Так, например, диффундируют газы (CO 2 , O 2).

Бывает также транспорт против градиента концентрации, но с затратой энергии.

Транспорт бывает пассивным и облегченным (когда ему помогает какой-нибудь переносчик). Пассивная диффузия через клеточную мембрану возможна для жирорастворимых веществ.

Есть особые белки, делающие мембраны проницаемыми для сахаров и других водорастворимых веществ. Такие переносчики соединяются с транспортируемыми молекулами и протаскивают их через мембрану. Так переносится глюкоза внутрь эритроцитов.

Пронизывающие белки, объединяясь, могут образовывать пору для перемещения некоторых веществ через мембрану. Такие переносчики не перемещаются, а образуют в мембране канал и работают аналогично ферментам, связывая определенное вещество. Перенос осуществляется благодаря изменению конформации белка, благодаря чему в мембране образуются каналы. Пример - натрий-калиевый насос.

Транспортная функция клеточной мембраны эукариот также реализуется за счет эндоцитоза (и экзоцитоза). Благодаря этим механизмам в клетку (и из нее) попадают крупные молекулы биополимеров, даже целые клетки. Эндо- и экзоцитоз характерны не для всех клеток эукариот (у прокариот его вообще нет). Так эндоцитоз наблюдается у простейших и низших беспозвоночны; у млекопитающих лейкоциты и макрофаги поглощают вредные вещества и бактерии, т. е. эндоцитоз выполняет защитную функцию для организма.

Эндоцитоз делится на фагоцитоз (цитоплазма обволакивает крупные частицы) и пиноцитоз (захват капелек жидкости с растворенными в ней веществами). Механизм этих процессов приблизительно одинаков. Поглощаемые вещества на поверхности клеток окружаются мембраной. Образуется пузырек (фагоцитарный или пиноцитарный), который затем перемещается внутрь клетки.

Экзоцитоз - это выведение цитоплазматической мембраной веществ из клетки (гормонов, полисахаридов, белков, жиров и др.). Данные вещества заключаются в мембранные пузырьки, которые подходят к клеточной мембране. Обе мембраны сливаются и содержимое оказывается за пределами клетки.

Цитоплазматическая мембрана выполняет рецепторную функцию. Для этого на ее внешней стороне располагаются структуры, способные распознавать химический или физический раздражитель. Часть пронизывающих плазмалемму белков с наружней стороны соединены с полисахаридными цепочками (образуя гликопротеиды). Это своеобразные молекулярные рецепторы, улавливающие гормоны. Когда конкретный гормон связывается со своим рецептором, то изменяет его структуру. Это в свою очередь запускает механизм клеточного ответа. При этом могут открываться каналы, и в клетку могут начать поступать определенные вещества или выводиться из нее.

Рецепторная функция клеточных мембран хорошо изучена на основе действия гормона инсулина. При связывании инсулина с его рецептором-гликопротеидом происходит активация каталитической внутриклеточной части этого белка (фермента аденилатциклазы). Фермент синтезирует из АТФ циклическую АМФ. Уже она активирует или подавляет различные ферменты клеточного метаболизма.

Рецепторная функция цитоплазматической мембраны также включает распознавание соседних однотипных клеток. Такие клетки прикрепляются друг к другу различными межклеточными контактами.

В тканях с помощью межклеточных контактов клетки могут обмениваться между собой информацией с помощью специально синтезируемых низкомолекулярных веществ. Одним из примеров подобного взаимодействия является контактное торможение, когда клетки прекращают рост, получив информацию, что свободное пространство занято.

Межклеточные контакты бывают простыми (мембраны разных клеток прилегают друг к другу), замковыми (впячивания мембраны одной клетки в другую), десмосомы (когда мембраны соединены пучками поперечных волокон, проникающих в цитоплазму). Кроме того, есть вариант межклеточных контактов за счет медиаторов (посредников) - синапсы. В них сигнал передается не только химическим, но и электрическим способом. Синапсами передаются сигналы между нервными клетками, а также от нервных к мышечным.

    Отграничительная (барьерная )- отделяют клеточное содержимое от внешней среды;

    Регулируют обмен между клеткой и средой;

    Делят клетки на отсеки, или компартменты, предназначенные для тех или иных специализированных метаболических путей (разделительная );

    Является местом протекания некоторых химических реакций (световые реакции фотосинтеза в хлоропластах, окислительное фосфорилирование при дыхании в митохондриях);

    Обеспечивают связь между клетками в тканях многоклеточных организмов;

    Транспортная - осуществляет трансмембранный транспорт.

    Рецепторная - являются местом локализации рецепторных участков, распознающих внешние стимулы.

Транспорт веществ через мембрану – одна из ведущих функций мембраны, обеспечивающая обмен веществ между клеткой и внешней средой. В зависимости от затрат энергии для переноса веществ различают:

    пассивный транспорт, или облегченная диффузия;

    активный (избирательный) транспорт при участии АТФ и ферментов.

    транспорт в мембранной упаковке. Выделяют эндоцитоз (в клетку) и экзоцитоз (из клетки) – механизмы, которые осуществляют транспорт через мембрану крупных частиц и макромолекул. При эндоцитозе плазматическая мембрана образует впячивание, края ее сливаются, и в цитоплазму отшнуровывается везикула. От цитоплазмы везикула отграничена одиночной мембраной, которая является частью наружной цитоплазматической мембраны. Различают фагоцитоз и пиноцитоз. Фагоцитоз – поглощение крупных частиц, достаточно твердых. Например, фагоцитоз лимфоцитов, простейших и др. Пиноцитоз – процесс захвата и поглощения капелек жидкости с растворенными в ней веществами.

Экзоцитоз – процесс выведения различных веществ из клетки. При экзоцитозе мембрана везикулы, или вакуоли сливается с наружной цитоплазматической мембраной. Содержимое везикулы выводится за поверхность клетки, а мембрана включается в состав наружной цитоплазматической мембраны.

В основе пассивного транспорта незаряженных молекул лежит разность концентраций водорода и зарядов, т.е. электрохимический градиент. Вещества будут перемещаться из области с более высоким градиентом в область с более низким. Скорость транспорта зависит от разницы градиентов.

    Простая диффузия – транспорт веществ непосредственно через липидный бислой. Характерна для газов, неполярных или малых незаряженных полярных молекул, растворимых в жирах. Вода быстро проникает через бислой, т.к. ее молекула мала и электрически нейтральна. Диффузию воды через мембраны называют осмосом.

    Диффузия через мембранные каналы – транспорт заряженных молекул и ионов (Na, K, Ca, Cl), проникающих через мембрану, благодаря наличию в ней особых каналообразующих белков, формирующих водяные поры.

    Облегченная диффузия – транспорт веществ с помощью специальных транспортных белков. Каждый белок отвечает за строго определенную молекулу или группу родственных молекул, взаимодействует с ней и перемещает сквозь мембрану. Например, сахара, аминокислоты, нуклеотиды и другие полярные молекулы.

Активный транспорт осуществляется белками – переносчиками (АТФ-аза) против электрохимического градиента, с затратой энергии. Источником ее служат молекулы АТФ. Например, натрий – калиевый насос.

Концентрация калия внутри клетки значительно выше, чем вне ее, а натрия – наоборот. Поэтому катионы калия и натрия через водяные поры мембраны пассивно диффундируют по градиенту концентрации. Это объясняется тем, что проницаемость мембраны для ионов калия выше, чем для ионов натрия. Соответственно калий быстрее диффундирует из клетки, чем натрий – в клетку. Однако, для нормальной жизнедеятельности клетки необходимо определенное соотношение ионов 3 калия и 2 натрия. Поэтому в мембране существует натрий-калиевый насос, активно перекачивающий натрий из клетки, а калий в клетку. Этот насос представляет собой трансмембранный белок мембраны, способный к конформационным перестройкам. Поэтому он может присоединять к себе как ионы калия, так и ионы натрия (антипорт). Процесс энергоемкий:

    С внутренней стороны мембраны к белку-насосу поступают ионы натрия и молекула АТФ, а с наружной – ионы калия.

    Ионы натрия соединяются с молекулой белка, и белок приобретает АТФ-азную активность, т.е. способность вызывать гидролиз АТФ, который сопровождается выделением энергии, приводящей в движение насос.

    Освободившийся при гидролизе АТФ фосфат присоединяется к белку, т.е. фосфорилирует белок.

    Фосфорилирование вызывает конформационные изменения белка, он оказывается неспособным удержать ионы натрия. Они высвобождаются и выходят за пределы клетки.

    Новая конформация белка способствует присоединению к нему ионов калия.

    Присоединение ионов калия вызывает дефосфорилирование белка. Он опять меняет свою конформацию.

    Изменение конформации белка приводит к высвобождению ионов калия внутри клетки.

    Белок вновь готов присоединять к себе ионы натрия.

За один цикл работы насос выкачивает из клетки 3 иона натрия и закачивает 2 иона калия.

Цитоплазма – обязательный компонент клетки, заключенный между поверхностным аппаратом клетки и ядром. Это сложный гетерогенный структурный комплекс, состоящий из:

    гиалоплазмы

    органелл (постоянных компонентов цитоплазмы)

    включений – временных компонентов цитоплазмы.

Цитоплазматический матрикс (гиалоплазма) это внутреннее содержимое клетки – бесцветный, густой и прозрачный коллоидный раствор. Компоненты цитоплазматического матрикса осуществляют процессы биосинтеза в клетке, содержат ферменты, необходимые для образования энергии, в основном за счет анаэробного гликолиза.

Основные свойства цитоплазматического матрикса.

    Определяет коллоидные свойства клетки. Вместе с внутриклеточными мембранами вакуолярной системы его можно рассматривать как высоко гетерогенную или многофазную коллоидную систему.

    Обеспечивает изменение вязкости цитоплазмы, переход из геля (более густого) в золь (более жидкий), которое возникает под действием внешних и внутренних факторов.

    Обеспечивает циклоз, амебовидное движение, деление клетки и движение пигмента в хроматофорах.

    Определяет полярность расположения внутриклеточных компонентов.

    Обеспечивает механические свойства клеток – эластичность, способность к слиянию, ригидность.

Органеллы – постоянные клеточные структуры, обеспечивающие выполнение клеткой специфических функций. В зависимости от особенностей строения различают:

    мембранные органоиды – имеют мембранное строение. Могут быть одномембранными (ЭПС, аппарат Гольджи, лизосомы, вакуоли растительных клеток). Двумембранными (митохондрии, пластиды, ядро).

    Немембранные органеллы – не имеют мембранного строения (хромосомы, рибосомы, клеточный центр, цитоскелет).

Органоиды общего назначения – свойственны всем клеткам: ядро, митохондрии, клеточный центр, аппарат Гольджи, рибосомы, ЭПС, лизосомы. Если органоиды характерны для определенных типов клеток, их называют специальными органоидами (например, миофибриллы, сокращающие мышечное волокно).

Эндоплазматическая сеть – единая непрерывная структура, мембрана которой образует множество впячиваний и складок, которые выглядят как канальцы, микровакуоли и крупные цистерны. Мембраны ЭПС, с одной стороны связаны с клеточной цитоплазматической мембраной, а с другой – с наружной оболочкой ядерной мембраны.

Существует две разновидности ЭПС – шероховатая и гладкая.

У шероховатой, или гранулярной ЭПС, цистерны и канальцы связаны с рибосомами. является наружной стороной мембраны.У гладкой, или агранулярной ЭПС связь с рибосомами отсутствует. Это внутренняя сторона мембраны.

error: