Никелирование стали в домашних условиях. Химическое никелирование, серебрение и золочение

Никелирование - нанесение на поверхность изделий никелевого покрытия (толщиной, как правило, от 1-2 до 40-50 мкм).

Никелирование металлов в домащних условиях вполне осуществимый процесс.

Предмет перед никелированием должен быть подготовлен. Обработайте его наждачной бумагой, чтобы удалить оксидную пленку, протрите щеткой, как следует промойте водой, обезжирьте в горячем содовом растворе и промойте еще раз.

Есть два способа никелирования: электролитический и химический.

Электролитическое никелирование металлов в домашних условиях

Перед никелированием выполните предварительное металлического предмета.

Приготовьте электролит (30 г сульфата никеля, 3,5 г хлорида никеля и 3 г борной кислоты на 100 мл воды) и налейте этот электролит в емкость. Для никелирования нужны никелевые электроды - аноды. Опустите их в электролит. Между ними на проволочке подвесьте деталь. Те проволочки, которые идут от никелевых пластинок, соедините вместе и подключите к положительному полюсу источника тока, а деталь - к отрицательному; включите в цепь реостат, чтобы регулировать ток, и миллиамперметр (тестер). Источник постоянного тока с напряжением не более 6 В.

Включите ток, примерно, на двадцать минут. Выньте деталь, промойте и просушите ее. Она покрыта сероватым матовым слоем никеля. Чтобы покрытие приобрело привычный блеск, его надо отполировать.

Недостатки электролитического никелирования - неравномерность осаждения никеля на рельефной поверхности и невозможность покрытия узких и глубоких отверстий, полостей и т.п.

Химическое никелирование

Помимо гальванического способа можно пользоваться еще следующим, весьма несложным способом для покрытия полированной стали или железа тонким, но весьма прочным слоем никеля.

Берут 10%-ный раствор чистого хлористого цинка и постепенно добавляют к раствору сернокислого никеля, пока жидкость не окрасится в ярко-зеленый цвет, затем ее медленно нагревают до кипения, лучше всего в фарфоровом сосуде. Могущая при этом появиться муть не оказывает никакого влияния на никелирование, которое производится следующим образом: когда вышеупомянутая жидкость будет доведена до кипения, в нее опускают предмет, подлежащий никелированию, причем последний предварительно должен быть тщательно очищен и обезжирен. Предмет кипятят в растворе около часа, добавляя время от времени дистиллированной воды по мере ее выпаривания. Если во время кипения будет замечено, что цвет жидкости вместо ярко-зеленого стал слабо-зеленым, то добавляют понемногу сернокислый никель до получения первоначального цвета.

По истечении означенного времени предмет вынимают из раствора, промывают в воде, в которой распущено небольшое количество мела, и тщательно просушивают. Полированное железо или сталь, покрытые указанным способом никелем, весьма прочно держат это покрытие.

Свойства и области применения покрытия . Основой процесса химического никелирования является реакция восстановления никеля из водных растворов его солей гипофосфитом натрия. Промышленное применение получили способы осаждения никеля из щелочных и кислых растворов. Осажденное покрытие имеет полублестящий металлический вид, мелкокристаллическую структуру и является сплавом никеля с фосфором. Содержание фосфора в осадке зависит от состава раствора и колеблется от 4-6% для щелочных до 8-10% для кислых растворов.

В соответствии с содержанием фосфора изменяются и физические константы никельфосфорного осадка. Удельный вес его равен 7,82-7,88 г/см 3 , температура плавления 890-1200°, удельное электрическое сопротивление составляет 0,60 ом·мм 2 /м. После термообработки при 300-400° твердость никельфосфорного покрытия возрастает до 900-1000 кГ/мм 2 . При этом многократно возрастает и прочность сцепления.

Указанные свойства никельфосфорного покрытия определяют и его области применения.

Его целесообразно применять для покрытия деталей сложного профиля, внутренней поверхности трубок и змеевиков, для равномерного покрытия деталей с весьма точными размерами, для повышения износостойкости трущихся поверхностей и деталей, подвергающихся температурным воздействиям, например, для покрытия пресс-форм.

Никельфосфорному покрытию подвергаются детали из черных металлов, меди, алюминия и никеля.

Этот метод непригоден для осаждения никеля на таких металлах или покрытиях, как свинец, цинк, кадмий и олово.

Осаждение никеля из щелочных растворов . Щелочные растворы характеризуются высокой устойчивостью, простотой корректировки, отсутствием склонности к бурному и мгновенному выпадению порошкообразного никеля (явление саморазряда) и возможностью их длительной эксплуатации без замены.

Скорость осаждения никеля составляет 8-10 мк/час. Процесс идет с интенсивным выделением водорода на поверхности Деталей.

Составление раствора заключается в растворении каждого из компонентов в отдельности, после чего их сливают вместе в рабочую ванну, за исключением гипофосфита натрия. Его приливают лишь тогда, когда раствор нагрет до рабочей температуры и детали подготовлены к покрытию.

Подготовка поверхности стальных деталей к покрытию не имеет специфических особенностей.

После подогрева раствора до рабочей температуры его корректируют 25-процентным раствором аммиака до устойчивого синего цвета, приливают раствор гипофосфита натрия, завешивают детали и приступают к покрытию без предварительной проработки. Корректировку раствора производят главным образом аммиаком и гипофосфитом натрия. При большом объеме ванны никелирования и высокой удельной загрузке деталей корректировку раствора аммиаком осуществляют непосредственно от баллона с газообразным аммиаком, с непрерывной подачей газа к дну ванны посредством резиновой трубки.

Раствор гипофосфита натрия для удобства корректировки готовят с концентрацией 400-500 г/л.

Раствор хлористого никеля обычно готовят для корректировки совместно с хлористым аммонием и лимоннокислым натрием. Для этой цели наиболее целесообразно пользоваться раствором, содержащим 150 г/л хлористого никеля, 150 г/л хлористого аммония и 50 г/л лимоннокислого натрия.

Удельный расход гипофосфита натрия на 1 дм 2 поверхности покрытия, при толщине слоя 10 мк, составляет около 4,5 г, а никеля, в пересчете на металл, - около 0,9 г.

Основные неполадки при химическом осаждении никеля из щелочных растворов приведены в табл. 8.

Осаждение никеля из кислых растворов . В отличие от щелочных кислые растворы характеризуются большим разнообразием добавок к растворам солей никеля и гипофосфита. Так, для этой цели могут применяться уксуснокислый натрий, янтарная, винная и молочная кислоты, трилон Б и прочие органические соединения. Из числа многих составов ниже приведен раствор со следующим составом и режимом осаждения:


Величину рН следует корректировать 2-процентным раствором едкого натра. Скорость осаждения никеля составляет 8-10 мк/час.

Перегрев раствора выше 95° может привести к саморазряду никеля с мгновенным выпадением темного губчатого осадка и выплескиванием раствора из ванны.

Корректировку раствора по концентрации входящих в него компонентов производят лишь до накопления в нем 55 г/л фосфита натрия NaH 2 PО 3 , после чего из раствора может выпадать фосфит никеля. По достижении указанной концентрации фосфита никелевый раствор сливают и заменяют новым.

Термообработка . В тех случаях, когда никель наносят с целью увеличения поверхностной твердости и износостойкости, детали подвергают термообработке. При высоких температурах никельфосфорный осадок образует химическое соединение, что обусловливает резкое повышение его твердости.

Изменение микротвердости в зависимости от температуры нагрева приведено на фиг. 13. Как видно из диаграммы, наибольшее повышение твердости имеет место в диапазоне температур 400-500°. При выборе температурного режима следует учитывать, что для ряда сталей, прошедших закалку или нормализацию, высокие температуры не всегда допустимы. Кроме того, термообработка, проводящаяся в воздушной среде, вызывает появление цветов побежалости на поверхности деталей, переходящих от золотисто-желтого цвета до фиолетового. По этим причинам температуру нагрева часто ограничивают в пределах 350-380°. Необходимо также, чтобы никелированные поверхности перед укладкой в печь были чистыми, так как всякие загрязнения выявляются после термообработки весьма интенсивно и удаление их возможно лишь полировкой. Продолжительность нагрева в 40-60 мин. является достаточной.

Оборудование и оснастка . Основной задачей при изготовлении оборудования для химического никелирования является выбор футеровки ванн, устойчивой к действию кислот и щелочей и теплопроводной. Для опытных работ и для покрытия мелких деталей используют фарфоровые и стальные эмалированные ванны.

При покрытии крупных изделий в ваннах емкостью 50-100 л и более применяются эмалированные баки с эмалями, стойкими в крепкой азотной кислоте. Некоторые заводы применяют стальные цилиндрические ванны, футерованные обмазкой, состоящей из клея № 88 и порошкообразной окиси хрома взятых в равных весовых количествах. Окись хрома может быть заменена наждачными микропорошками. Покрытие производят в 5-6 слоев с промежуточной воздушной сушкой.

На Кировском заводе для этой цели успешно применяют футеровку цилиндрических ванн съемными пластикатовыми чехлами. При необходимости очистки ванн растворы выкачивают насосом, а чехлы извлекают и обрабатывают в азотной кислоте. В качестве материала для подвесок и корзин следует применять углеродистую сталь. Изоляцию отдельных участков деталей и подвесок производят перхлорвиниловыми эмалями или пластикатом.

Для нагревания раствора следует применять электрические нагреватели с передачей тепла через водяную рубашку. Термообработку мелких деталей производят в термостатах. Для крупных изделий используют шахтные печи с автоматическим регулированием температуры.

Никелирование нержавеющих и кислотоупорных сталей . Никелирование производят для повышения поверхностной твердости и износостойкости, а также для защиты от коррозии в тех агрессивных средах, в которых эти стали неустойчивы.

Для прочности сцепления никельфосфорного слоя с поверхностью высоколегированных сталей решающее значение имеет способ подготовки к покрытию. Так, для нержавеющих сталей марки 1×13 и ей подобных подготовка поверхности заключается в ее анодной обработке в щелочных растворах. Детали монтируют на подвесках из углеродистой стали, применяя, если это необходимо, внутренние катоды, завешивают в ванну с 10-15-процентным раствором каустической соды и производят их анодную обработку при температуре электролита 60-70° и анодной плотности тока 5-10 а/дм 2 в течение 5-10 мин. до образования равномерного коричневого налета без металлических просветов. Затем детали промывают в холодной проточной воде, декапируют в соляной кислоте (уд. веса 1,19), разбавленной вдвое, при температуре 15-25° в течение 5-10 сек. После промывки в холодной проточной воде детали завешивают в ванну химического никелирования в щелочном растворе и покрывают по обычному режиму до заданной толщины слоя.

Для деталей из кислотоупорной стали типа IX18H9T анодная обработка должна производиться в хромовокислом электролите со следующим составом и режимом процесса:


После анодной обработки детали промывают в холодной проточной воде, декапируют в соляной кислоте, как это указано для нержавеющей стали, и завешивают в ванну никелирования.

Никелирование цветных металлов . Для осаждения никеля на ранее осажденный слой никеля детали обезжиривают, а затем декапируют в 20-30-процентном растворе соляной кислоты в течение 1 мин., после чего завешивают в ванну для химического никелирования. Детали из меди и ее сплавов никелируют в контакте с более электроотрицательным металлом, например с железом или с алюминием, используя для этой цели проволоку или подвески из этих металлов. В некоторых случаях для возникновения реакции осаждения достаточно создать кратковременное касание железного прута к поверхности медной детали.

Для никелирования алюминия и его сплавов детали травят в щелочи, осветляют в азотной кислоте, как это делается перед, всеми видами покрытий, и подвергают двукратной цинкатной обработке в растворе, содержащем 500 г/л едкого натра и 100 г/л окиси цинка, при температуре 15-25°. Первое погружение длится 30 сек., после чего осадок контактного цинка стравливают в разбавленной азотной кислоте, а второе погружение 10 сек., после чего детали промывают в холодной проточной воде и никелируют в ванне с щелочным никельфосфорным раствором. Полученное покрытие весьма непрочно связано с алюминием, и для повышения прочности сцепления детали прогревают, погружая их в смазочное масло при температуре 220-250° на 1-2 часа.

После термообработки детали обезжиривают растворителями и по мере необходимости протирают, полируют или подвергают другим видам механической обработки.

Никелирование металлокерамики и керамики . Технологический процесс никелирования ферритов заключается в следующих операциях: детали обезжиривают в 20-процентном растворе кальцинированной соды, промывают горячей дистиллированной водой и травят в течение 10-15 мин. в спиртовом растворе соляной кислоты с соотношением компонентов 1:1. Затем детали снова промывают горячей дистиллированной водой с одновременной очисткой шлама волосяными щетками. На покрываемые поверхности деталей кисточкой наносят раствор хлористого палладия с концентрацией его 0,5-1,0 г/л и рН 3,54:0,1. После воздушной сушки нанесение хлористого палладия повторяют еще раз, просушивают и погружают для предварительного никелирования в ванну с кислым раствором, содержащим 30 г/л хлористого никеля, 25 г/л гипофосфита натрия и 15 г/л янтарнокислого натрия. Для этой операции необходимо температуру раствора поддерживать в пределах 96-98° и рН 4,5-4,8. Затем детали промывают в дистиллированной горячей воде и никелируют в том же растворе, но при температуре 90°, до получения слоя толщиной 20-25 мк. После этого детали кипятят в дистиллированной воде, меднят в пирофосфатном электролите до получения слоя 1-2 мк, после чего подвергают бескислотной пайке. Прочность сцепления никельфосфорного покрытия с ферритной основой составляет 60-70 кГ/см 2 .

Кроме того, химическому никелированию подвергаются различные виды керамики, например ультрафарфор, кварц, стеатит, пьезокерамика, тиконд, термоконд и пр.

Технология никелирования составляется из следующих операций: детали обезжиривают спиртом, промывают в горячей воде и сушат.

После этого для деталей из тиконда, термоконда и кварца, производят сенсибилизацию их поверхности раствором, содержащим 10 г/л хлористого олова SnCl 2 и 40 мл/л соляной кислоты. Эта операция производится кисточкой или путем Натирания Деревянной шайбой, смоченной раствором, или же погружением деталей в раствор на 1-2 мин. Затем поверхность деталей активируют в растворе хлористого палладия PdCl 2 ·2Н 2 О.

Для ультрафарфора применяют подогретый раствор с концентрацией PdCl 2 ·2H 2 O 3-6 г/л и с длительностью погружения 1 сек. Для тиконда, термоконда и кварца концентрация снижается до 2-3 г/л с увеличением выдержки от 1 до 3 мин., после чего детали погружают в раствор, содержащий гипофосфит кальция Са(Н 2 РO 2) 2 в количестве 30 г/л, без подогрева, на 2-3 мин.

Детали из ультрафарфора с активированной поверхностью завешивают на 10-30 сек. в ванну предварительного никелирования со щелочным раствором, после чего детали промывают и снова завешивают в ту же ванну для наращивания слоя заданной толщины.

Детали из тиконда, термоконда и кварца после обработки в гипофосфите кальция никелируют в кислых растворах.

Химическое осаждение никеля из карбонильных соединений . При нагревании паров тетракарбонила никеля Ni(CO) 4 при температуре 280°±5 происходит реакция термического разложения карбонильных соединений с осаждением металлического никеля. Процесс осаждения происходит в герметически закрытом контейнере при атмосферном давлении. Газовая среда состоит из 20-25% (по объему) тетракарбонила никеля и 80-75% закиси углерода СO. Примесь кислорода в газе допустима не свыше 0,4%. Для равномерности осаждения следует создавать циркуляцию газа со скоростью подачи 0,01-0,02 м/сек и реверсированием направления подачи через каждые 30-40 сек. . Подготовка деталей к покрытию заключается в удалении окислов и жировых загрязнений. Скорость осаждения никеля составляет 5-10 мк/мин. Осажденный никель имеет матовую поверхность, темно-серый оттенок, мелкокристаллическую структуру, твердость 240-270 по Виккерсу и относительно малую пористость.

Прочность сцепления покрытия с металлом изделий весьма низка и для ее повышения до удовлетворительных величин необходима термообработка при 600-700° в течение 30-40 мин.

Никелирование изделий из металлов позволяет не только защитить их поверхности от коррозии, но и создать на них блестящее покрытие. Такие изделия широко применяются при изготовлении сантехники, автомобильных запчастей, медицинских инструментов и т. д. В связи с этим многие люди задаются вопросом, можно ли выполнить никелирование стали в домашних условиях?

Технология никелирования металлов

Никелирование осуществляется путем нанесения на металлический предмет тонкого слоя никелевого покрытия. Покрыть никелем можно изделия из различных металлов, таких как:

  • сталь;
  • медь;
  • титан;
  • алюминий.




Существуют металлы, которые нельзя никелировать:

  • олово;
  • свинец;
  • кадмий;
  • сурьма.




Никелевое покрытие обеспечивает защиту изделия от воздействия влаги и различных агрессивных веществ. Часто его наносят в качестве слоя-основы перед хромированием деталей. После нанесения тонкой пленки никеля, напыления из серебра, золота и других металлов держатся более прочно.

В домашних условиях применяются способы, не требующие использования специализированного оборудования. Благодаря этому, никелирование стали, меди, алюминия в бытовых условиях доступно практически каждому человеку. Чтобы получить равномерное покрытие, необходимо предварительно подготовить деталь.

Как подготовить изделие к никелированию?

Подготовка изделия довольно трудоемкий процесс. Следует полностью исключить наличие коррозии, окислений и т. п. Подготовка проводится в несколько этапов.

Обработка пескоструйным аппаратом

Данный вид обработки можно выполнять как специализированным пескоструйным аппаратом, так и самодельным. Во время обработки нужно постараться убрать как можно больше посторонних наслоений с поверхности заготовки. Особое внимание следует обратить на труднодоступные места. Они должны быть очищены так же, как и другие участки поверхности.

Шлифовка

Чтобы никелевое покрытие получилось равномерным, нужно максимально выровнять поверхность. Шлифовка дает возможность очистить предмет от оксидной пленки. Для выполнения этого этапа используется наждачная бумага, а также различные инструменты и приспособления, предназначенные для шлифовки.

Совет: не стоит пренебрегать шлифовкой заготовок, неправильная подготовка может привести к отслоению покрытия.

Устранение жировых загрязнений

После того, как процесс шлифовки окончен, следует смыть образовавшиеся загрязнения под проточной водой. Затем потребуется провести обезжиривание заготовки. Для этого можно использовать как готовые, так и самодельные растворители. После нанесения растворителя деталь нужно еще раз промыть водой и тщательно просушить.

Внимание: при выборе растворителя необходимо учитывать степень его воздействия на металл, из которого выполнено изделие. Запрещается применять обезжиривающие растворы, вступающие в химическую реакцию с поверхностью.

Омеднение

Никелирование изделия лучше проводить с предварительным омеднением заготовки. Этот этап не является обязательным, но никелирование стали и других металлов будет более качественным, если покрытие наносится на тонкий слой меди.

Для омеднения детали необходимо поместить ее в стеклянную емкость с водным электролитом, состоящим из медного купороса и серной кислоты. Предмет подвешивается на проводе таким образом, чтобы он не касался стенок и дна емкости. По обе стороны от заготовки размещаются медные пластины, являющиеся электродами. После этого к электродам и заготовке подключается источник постоянного тока. Степень омеднения прямо зависит от времени проведения процесса.

Способы нанесения никелевого покрытия

Никелирование изделия в домашних условиях можно выполнить двумя способами: химическим и электролитическим.

Электролитический метод

Нанесение покрытия с использованием электролита называется гальваническим никелированием. Сначала потребуется подготовить водный раствор (электролит). Для этого необходимы следующие компоненты:

  • сернокислый никель – 70 г;
  • сернокислый магний – 15 г;
  • поваренная соль – 2.5 г;
  • сернокислый натрий – 25 г;
  • борная кислота – 10г;
  • вода – 500г.






Каждый из компонентов нужно отдельно растворить в воде и профильтровать. Полученные растворы смешивают и заливают в стеклянную емкость. Для гальванического никелирования в сосуд с электролитом помещают никелевые электроды. Чтобы покрытие на заготовке было равномерным, со всех сторон устанавливают не менее двух электродов.

Подготовленную заготовку помещают в сосуд между электродами таким образом, чтобы она не касалась стен и дна емкости. Электроды соединяют между собой медными проводниками, и подключают к плюсовому контакту источника постоянного тока. Токопроводящий провод подключают к минусовому выводу.

В процессе никелирования стали напряжение питания не должно превышать 6 Вольт. Следует контролировать плотность тока, она не должна превышать 1,2 А. Процесс занимает около 30–40 минут. По его окончании, предмет нужно промыть проточной водой и тщательно просушить. Нанесенное покрытие должно получиться матовым и гладким. Чтобы поверхность изделия приобрела блеск, потребуется выполнить ее полировку.

Химический метод

Никелирование стали и других металлов химическим способом отличается от гальванического прочностью покрытия. При помощи химического никелирования можно легко нанести вещество даже на самые труднодоступные места.

В эмалированную посуду наливают воду и растворяют в ней янтарно-кислый натрий и хлористый никель. Затем раствор нагревают до температуры 90 градусов. По достижению требуемой температуры добавляется гипофосфит натрия. Изделие аккуратно подвешивается над емкостью с раствором. Количество жидкости рассчитывается исходя из того, что в 1 литре раствора можно покрыть поверхность площадью 2дм 2 .

Никелирование контролируется визуально: когда деталь равномерно покроется пленкой, процесс завершается. По окончании, деталь нужно промыть в растворе, изготовленном из воды и небольшого количества мела. После этого осуществляют сушку и полировку детали.

Как увеличить срок службы покрытия?

Полученное покрытие имеет пористую структуру. Поэтому металл изделия подвержен коррозии. Чтобы снизить риск ее возникновения, слой никеля покрывают смазочными составами. После их нанесения предмет погружают в емкость с рыбьим жиром. Спустя 24 часа, его излишки убирают при помощи растворителя.

Если изделие имеет крупные габариты, и погрузить его в емкость невозможно, то его поверхность просто натирают рыбьим жиром. Данную процедуру потребуется проводить дважды, с промежутком времени около 12 часов. Через 48 часов после обработки остатки жира нужно удалить.

Выполнить никелирование стали в домашних условиях можно двумя способами. Данный процесс является несложным, но требует тщательной подготовки и предельной аккуратности при выполнении. Необходимо приобрести качественные компоненты для приготовления раствора, заранее подготовить рабочую зону, емкости, инструменты и устройства.

В процессе работы важно соблюдать меры безопасности: защитить глаза и кожные покровы от попадания химических веществ, обеспечить достаточную вентиляцию помещения, предотвратить возможность воспламенения смеси и электрической установки.

Никель является металлом подгруппы железа, который получил в гальванотехнике наиболее широкое применение.

По сравнению с меднением, латунированием, серебрением и др. никелирование получило промышленное применение значительно позднее, но уже с конца XIX столетия этот процесс стал наиболее распространенным методом «облагораживания» поверхности металлических изделий. Лишь в двадцатые годы текущего столетия широкое применение получил другой процесс - хромирование, который, казалось, вытеснит никелирование. Однако оба эти процесса - никелирование и хромирование для защитно-декоративных целей применяются комбинированно, т. е. изделия сперва никелируют и затем покрывают тонким слоем хрома (десятые доли микрона). Роль никелевого покрытия при этом не умаляется, напротив к нему предъявляются повышенные требования.

Широкое распространение никелирования в гальванотехнике объясняется ценными физико-химическими, свойствами электролитически осажденного никеля. Хотя в ряде напряжений никель стоит выше водорода, вследствие сильно выраженной склонности к пассивированию, однако он оказывается достаточно стойким против атмосферного воздуха, щелочей и некоторых кислот. По отношению к железу никель имеет менее электроотрицательный потенциал, следовательно, основной металл - железо - защищается никелем от коррозии лишь при отсутствии пор в покрытии.

Никелевые покрытия, полученные из растворов простых солей, имеют весьма тонкую структуру, и так как в то же время электролитический никель прекрасно принимает полировку, то покрытия могут быть доведены до зеркального блеска. Это обстоятельство позволяет широко применять никелевые покрытия для декоративных целей. При введении в электролит блескообразователей удается получать в слоях достаточной толщины блестящие никелевые покрытия без полировки. Структура нормальных никелевых осадков чрезвычайно тонка, и ее трудно выявить даже при сильном увеличении.

Чаще всего при никелировании преследуют две цели: защиту основного металла от коррозии и декоративную отделку поверхности. Такие покрытия широко применяют для наружных частей автомобилей, велосипедов, различных аппаратов, приборов, хирургических инструментов, предметов домашнего обихода и т. д.

С электрохимической точки зрения никель может быть охарактеризован как представитель металлов группы железа. В сильнокислой среде осаждение этих металлов вообще невозможно - на катоде выделяется почти один водород. Мало того, даже в растворах, близких к нейтральным, изменение рН влияет на выход по току и свойства металлических осадков.

Явление отслаивания осадка, больше всего присущее никелю, также в сильной степени связано с кислотностью среды. Отсюда и вытекает первейшая забота о соблюдении надлежащей кислотности и регулировании ее при никелировании, так же как выбор надлежащей температуры для правильного ведения процесса.

Первые электролиты для никелирования готовили на основе двойной соли NiSO 4 (NH 4) 2 SO 4 ·6H 2 O. Эти электролиты были впервые исследованы и разработаны профессором Гарвардского университета Исааком Адамсом в 1866 г. По сравнению с современными высокопроизводительными электролитами с высокой концентрацией никелевой соли электролиты с двойной солью допускают плотность тока, не превышающую 0,3-0,4 А/дм 2 . Растворимость двойной никелевой соли при комнатной температуре не превышает 60-90 г/л, в то время как семиводный сульфат никеля при комнатной температуре растворяется в количестве 270-300 г/л. Содержание металлического никеля в двойной соли 14,87%, а в простой (сернокислой) соли 20,9%.

Процесс никелирования весьма чувствителен к примесям в электролите и в анодах. Совершенно очевидно, что малорастворимую в воде соль легче освободить в процессе кристаллизации и промывки от вредных примесей, например сульфатов меди, железа, цинка и др., чем более растворимую простую соль. В значительной степени по этой причине электролиты на основе двойной соли имели доминирующее применение во второй половине XIX и в начале XX столетия.

Борная кислота, которая в настоящее время рассматривается как весьма существенный компонент для буферирования электролита никелирования и электролитического рафинирования никеля, была впервые предложена в конце XIX - начале XX в.

Хлориды были предложены для активирования никелевых анодов в начале XX столетия. К настоящему времени в патентной и журнальной литературе предложено большое разнообразие электролитов и режимов для никелирования, по-видимому, больше, чем по какому-либо другому процессу электроосаждения металлов. Однако без преувеличения можно сказать, что большая часть современных электролитов для никелирования представляет собой разновидность предложенного в 1913 г. профессором Висконзинского университета Уоттсом на основании детального исследования влияния отдельных компонентов и режима электролита. Несколько позднее в результате усовершенствования им было установлено, что в концентрированных по никелю электролитах, при повышенной температуре и интенсивном перемешивании (1000 об/мин) можно получать удовлетворительные в толстых слоях никелевые покрытия при плотности тока, превышающей 100 А/дм 2 (для изделий простой формы). Эти электролиты состоят из трех основных компонентов: сульфата никеля, хлорида никеля и борной кислоты. Принципиально возможна замена хлорида никеля хлоридом натрия, но, по некоторым данным, такая замена несколько снижает допустимую катодную плотность тока (возможно из-за уменьшения общей концентрации никеля в электролите). Электролит Уоттса имеет следующий состав, г/л:
240 - 340 NiSO 4 · 7H 2 O, 30-60 NiCl 2 · 6H 2 O, 30 - 40 H 3 ВO 3 .

Из других электролитов, которые в последнее время все больше привлекают к себе внимание исследователей и находят промышленное применение, следует назвать фторборатные, позволяющие применять повышенную плотность тока и сульфаматные, обеспечивающие возможность получения никелевых покрытий с меньшими внутренними напряжениями.

В начале тридцатых годов текущего столетия, и в особенности после второй мировой войны, внимание исследователей было приковано к разработке таких блескообразователей, которые позволяют получать блестящие никелевые покрытия в слоях достаточной толщины не только на отполированной до блеска поверхности основного металла, но и на матовой поверхности.

Разряд ионов никеля, как и других металлов подгруппы железа, сопровождается значительной химической поляризацией и выделение этих металлов на катоде начинается при значениях потенциалов, которые намного отрицательнее соответствующих стандартных потенциалов.

Выяснению причин этой повышенной поляризации посвящено много исследований и было предложено несколько далеко не совпадающих объяснений. По одним данным, катодная поляризация при электроосаждении металлов группы железа резко выражена лишь в момент начала выделения их, при дальнейшем повышении плотности тока потенциалы меняются незначительно. С повышением температуры катодная поляризация (в момент начала выделения) резко снижается. Так, в момент начала выделения никеля при температуре 15° С катодная поляризация равна 0,33 В, а при 95° С 0,05 В; для железа катодная поляризация снижается с 0,22 В при 15° С до нуля при 70° С, а для кобальта с 0,25 В при 15° С до 0,05 В при 95° С.

Высокую катодную поляризацию в момент начала выделения металлов группы железа объясняли выделением этих металлов в метастабильной форме и необходимостью затраты дополнительной энергии для перехода их в устойчивое состояние. Такое объяснение не является общепризнанным, имеются и другие взгляды на причины большой катодной поляризации, при которой происходит выделение металлов группы железа, и связанную с поляризацией мелкокристаллическую структуру.

Другие последователи приписывали особую роль водородной пленке, образующейся в результате совместного разряда ионов водорода, затрудняющей процесс агрегации мелких кристаллов и приводящей к образованию мелкодисперсных осадков металлов группы железа, а также защелачиванию прикатодного слоя и связанным с этим выпадением коллоидных гидроокисей и основных солей, которые могут соосаждаться с металлами и затруднять рост кристаллов.

Некоторые исходили из того, что большая поляризация металлов группы железа связана с большой энергией активации при разряде сильно гидратированных ионов, расчеты других показали, что энергия дегидратации металлов группы железа примерно такая же, как энергия дегидратации таких двухвалентных ионов металлов как медь, цинк, кадмий, разряд ионов которых протекает с незначительной катодной поляризацией, примерно в 10 раз меньшей, чем при электроосаждении железа, кобальта, никеля. Повышенную поляризацию металлов группы железа объяснили и сейчас объясняют адсорбцией чужеродных частиц; поляризация заметно снижалась при непрерывной зачистке катодной поверхности.

Этим не исчерпывается обзор различных взглядов на причины повышенной поляризации при электроосаждении металлов группы железа. Можно, однако, принять, что за исключением области малых концентраций и высоких плотностей тока, кинетика этих процессов может быть описана уравнением теории замедленного разряда.

Вследствие большой катодной поляризации при сравнительно небольшом перенапряжении водорода процессы электроосаждения металлов группы железа чрезвычайно чувствительны к концентрации ионов водорода в электролите и к температуре. Допустимая катодная плотность тока тем выше, чем выше температура и концентрация ионов водорода (чем ниже водородный показатель).

Установить в гараже аппаратуру для электрохимического покрытия металлами других металлов и диэлектриков (трансформатор, выпрямитель, измерительные приборы, ванна и т. п.) довольно проблематично.

Сейчас применяется метод химического покрытия металлов и диэлектриков (пластмасс, стекла, фарфора и т. п.) другими металлами.

Процесс химического покрытия отличается своей простотой. Действительно, для того чтобы покрыть металлическую деталь, например, никелем, не нужно городить сложную установку. Достаточно располагать источником огня (газ, примус и т.п.), эмалированной посудой и подходящими химикатами. Час, два- и детали покрыты плотным и блестящим слоем никеля.

В этой статье мы рассмотрим только: никелирование , серебрение и золочение металлов. Однако существует много рецептов химического покрытия металлов и диэлектриков медью, кадмием, оловом, кобальтом, бором, двойными и тройными сплавами.

В основу процесса химического никелирования положена реакция восстановления никеля из водных растворов его солей гипофосфитом натрия.

Плёнка никелевого покрытия получается блестящая или полублестящая. Структура покрытия - аморфная, из сплава никеля и фосфора. Плёнка никеля без термообработки слабо держится на поверхности основного металла, хотя ее твердость близка к твердости хромового покрытия.

Термическая обработка детали с никелевым покрытием, полученным химическим путем, в значительной степени увеличивает сцепление пленки никеля с основным металлом. Одновременно растет и твердость никеля, достигающая твердости хрома.

Термическая обработка детали с никелевым покрытием производится при температуре около 400°С в течение часа. При термической обработке закаленных стальных деталей с никелевым покрытием необходимо учитывать, при какой температуре эти детали отпускались, и не превышать ее. В этом случае термическую обработку производят при температуре 270- 300 °С с выдержкой до 3 ч.

Растворы для химического никелирования могут быть щелочными (рН- выше 6,5) и кислыми (рН- от 4 до 6,5).

Щелочные растворы. Их применяют при нанесении покрытий на коррозионностойкую сталь, алюминий, магний и диэлектрики. Покрытия, осаждаемые из щелочных растворов, имеют менее блестящую поверхность, чем полученные из кислых растворов. Но зато покрытия из щелочных растворов более прочно связаны с основой, чем из кислого.

У щелочных растворов есть еще один существенный недостаток- явление саморазряда. Оно наступает при перегреве раствора. Это мгновенное выпадение губчатой массы никеля из раствора, сопровождающееся выбросом кипящего раствора из ванны!

Регулировку температуры при отсутствии термометра можно вести по интенсивности газовыделения. Если газ выделяется не интенсивно, то можно быть уверенным, что саморазряда не будет.

Кислые растворы

Они находят применение при нанесении покрытий на детали из черных металлов, меди, латуни, особенно когда требуется высокая твердость, износостойкость и коррозионно защитные свойства поверхности, покрытой никелем.

Для справки. Воду для никелирования (и при нанесении других покрытий) берут дистиллированную (можно использовать конденсат из бытовых холодильников). Химреактивы должны применяться как минимум чистые (обозначение на этикетке - Ч).

Подготовка детали. Перед нанесением на основной металл каких-либо металлических пленок необходимо осуществить ряд подготовительных операций. Отполированную деталь обезжиривают, травят и декапируют.

Обезжиривание. Процесс обезжиривания металлических деталей проводят, как правило, когда эти детали только что обработаны (отшлифованы или отполированы) и на их поверхности нет ржавчины, окалины и других посторонних продуктов.

С помощью обезжиривания с поверхности деталей удаляют масляные и жировые пленки. Для этого применяют водные растворы некоторых химреактивов, хотя для этого можно использовать и органические растворители (трихлорэтилен, пентахлорэтан, растворители № 646 и № 648 и др.).

Обезжиривание в водных растворах проводят в эмалированной посуде. Заливают воду, растворяют в ней химреактивы и ставят на малый огонь. При достижении нужной температуры загружают в раствор детали. В процессе обработки раствор перемешивают. Ниже приводятся составы для обезжиривания (все дано в граммах на литр воды - г/л), а также рабочие температуры растворов и время обработки деталей.

Внимание! От качества проведения подготовительных операций в сильной степени зависит конечный результат всех работ.

Черные металлы обезжиривают в одном из растворов:

  1. Жидкое стекло (канцелярский силикатный клей) - 3-10, едкий натр (калий) - 20- 30, тринатрийфосфат - 25-30. Температура раствора - 70-90 °С, время обработки - 10-30 мин.
  2. Кальцинированная сода - 20, калиевый хромпик - 1. Температура раствора - 80-90°С, время обработки - 10-20 мин.

Медь и ее сплавы обезжиривают в одном из растворов:

  1. Едкий натр - 35, кальцинированная сода - 60, тринатрийфосфат - 15, препарат ОП-7 (или ОП-10). Температура раствора - 60-70 °С, время обработки 10-20 мин.
  2. Едкий натр (калий) - 75, жидкое стекло - 20. Температура раствора - 80-90 °С, время обработки — 40-60 мин.

Алюминий и его сплавы обезжиривают в следующих растворах:

  1. Жидкое стекло - 20-30, кальцинированная сода - 50-60, тринатрийфосфат - 50-60. Температура раствора - 50- 60 °С, время обработки - 3-5 мин.
  2. Кальцинированная сода - 20-25, тринатрийфосфат - 20-25, препарат ОП-7 (или ОП-10) - 5-7. Температура раствора - 70-80 °С, время обработки - 10- 20 мин.

Серебро, никель и их сплавы обезжиривают в растворах:

  1. Жидкое стекло - 50, кальцинированная сода - 20, тринатрийфосфат - 20, препарат ОП-7 (или ОП-10) - 2. Температура раствора - 70-80 °С, время обработки - 5-10 мин.
  2. Жидкое стекло - 25, кальцинированная сода - 5, тринатрийфосфат - 10. Температура раствора - 75-80 °С, время обработки - 15-20 мин.

Травление . Стандартная подготовка деталей под покрытие, обычно состоящая в обезжиривании и декапировании, вполне достаточна для большинства случаев. Однако для деталей, имеющих глухие отверстия, пазухи и т.п., необходимо проводить процесс травления.

Черные металлы травят в растворах:

  1. Серная кислота - 90-130, соляная кислота - 80-100, уротропин - 0,5. Температура раствора - 30-40 °С, время обработки - до 1 ч.
  2. Соляная кислота - 200, уротропин - 0,5. Температура раствора - 30-35 °С, время обработки - 15-20 мин.

Медь и ее сплавы травят в растворах:

  1. Серная кислота - 25-40, хромовый ангидрид - 150-200. Температура раствора - 25 °С, время обработки - 5-10 мин.
  2. Хромовый ангидрид - 350, хлористый натрий - 50. Температура раствора - 18- 25 °С, время обработки - 5-15 мин.

Алюминий и его сплавы травят в растворах:

  1. Едкий натр - 50-100. Температура раствора - 40-60 °С, время обработки - 5-10 с.
  2. Азотная кислота - 35-40. Температура раствора - 18-25 °С, время обработки - 3-5 с.

Декапирование . Этот процесс представляет собой удаление с поверхности металла различных пленок, мешающих осаждению металлов. Декапирование проводят непосредственно перед покрытием основного металла соответствующей пленкой другого металла.

Черные металлы декапируют в следующих растворах:

  1. Серная кислота - 30-50. Температура раствора - 20 °С, время обработки - 20-60 с.
  2. Соляная кислота - 25-45. Температура раствора - 20 °С, время обработки 15- 40 с.

Медь и ее сплавы декапируют в растворах:

  1. Серная кислота - 5. Температура раствора - 18-20 °С, время обработки - 20 с.
  2. Соляная кислота - 10. Температура раствора - 20-25 °С, время обработки - 10-15 с.

Алюминий и его сплавы декапируют в растворах:

  1. Азотная кислота - 10-15. Температура раствора - 20 °С, время обработки - 5-15 с.
  2. Едкий натр - 150, хлористый натрий - 30. Температура раствора - 30-40 °С, время обработки - 5-10 с.

После каждого процесса подготовки деталь промывают в горячей, а затем в холодной воде.

Никелирование меди и ее сплавов

Подготовленную (обезжиренную, протравленную и декапированную) деталь подвешивают в раствор для никелирования. Здесь есть одна тонкость, и если ею пренебречь, то процесс осаждения никеля не пойдет. Деталь должна быть подвешена в раствор на алюминиевой или железной (стальной) проволоке. В крайнем случае при опускании детали в раствор ее необходимо коснуться железным или алюминиевым предметом.

Эти «священнодействия» нужны для того, чтобы дать старт процессу никелирования, так как у меди меньший электроотрицательный потенциал по отношению к никелю. Только присоединение или касание детали более электроотрицательным металлом дает старт процессу.

Приводим состав некоторых известных растворов для химического никелирования меди и ее сплавов (все дано в г/л):

  1. Хлористый никель - 21, гипофосфит натрия - 24, уксуснокислый натрий - 10, сульфид свинца - 15 мг/л. Температура раствора - 97 °С, рН - 5,2, скорость наращивания пленки - 15 мкм/ч.
  2. Хлористый никель - 20, гипофосфит натрия - 27, янтарнокислый натрий - 16. Температура раствора - 95 °С, рН - 5, скорость наращивания - 35 мкм/ч.
  3. Сернокислый никель - 21, гипофосфит натрия - 24, уксуснокислый натрий - 10, малеиновый ангидрид - 1,5. Температура раствора - 83 °С, рН - 5,2, скорость наращивания - 10 мкм/ч.
  4. Сернокислый никель - 23, гипофосфит натрия - 27, малеиновый ангидрид - 1,5, сернокислый аммоний - 50, уксусная кислота - 20 мл/л. Температура раствора - 93 °С, рН - 5,5, скорость наращивания - 20 мкм/ч.

Для приготовления раствора для никелирования нужно растворить все компоненты, кроме гипофосфита натрия, и нагреть его до нужной температуры. Гипофосфит натрия вводится в раствор непосредственно перед завешиванием детали для никелирования. Этот порядок касается всех рецепторов, где имеется гипофосфит натрия.

Раствор для никелирования разводят в любой эмалированной посуде (миска, глубокая сковорода, кастрюлька и т.п.) без повреждений на поверхности эмали. Возможный осадок никеля на стенках посуды легко удаляется азотной кислотой (50%-ный раствор).

Допустимая плотность загрузки ванны - до 2 дм 2 /л.

Никелирование алюминия и его сплавов

Учтите, что для алюминия и его сплавов перед химическим никелированием проводят еще одну обработку (после всех подготовительных операций) - так называемую цинкатную.

Ниже приведены рецепты растворов для цинкатной обработки.

Для алюминия:

  1. Едкий натр - 250, окись цинка - 55. Температура раствора - 20 °С, время обработки - 3-5 с.
  2. Едкий натр - 120, сернокислый цинк 40. Температура раствора - 20 °С, время обработки - 1,2 мин.

Для литейных алюминиевых сплавов (силуминов):

  1. Едкий натр - 10, окись цинка - 5, сегнетова соль (кристаллогидрат) - 10. Температура раствора - 20 °С, время обработки - 2 мин.

Для деформируемых алюминиевых сплавов (дюралей):

  1. Хлорное железо (кристаллогидрат) - 1, едкий натр - 525, окись цинка - 100, сегнетова соль - 10. Температура раствора - 25 °С, время обработки - 30-60 с.

При подготовке растворов для цинкатной обработки поступают следующим образом. Отдельно в половине воды растворяют едкий натр, в другой половине - остальные химреактивы. Затем оба раствора сливают вместе.

После цинкатной обработки деталь промывают в горячей, а затем в холодной воде и завешивают в раствор для никелирования.

Ниже приведены четыре раствора для химического никелирования алюминия и его сплавов :

  1. Хлористый никель - 45, гипофосфит натрия - 20, хлористый аммоний - 45, лимоннокислый натрий - 45. Температура раствора 90 °С, рН - 8,5, скорость наращивания - 20 мкм/ч.
  2. Хлористый никель - 35, гипофосфит натрия - 17, хлористый аммоний - 40, лимоннокислый натрий - 40. Температура раствора - 80 °С, рН - 8, скорость наращивания - 12 мкм/ч.
  3. Сернокислый никель - 20, гипофосфит натрия - 25, уксуснокислый натрий - 40, сернокислый аммоний - 30. Температура раствора - 93 °С, рН - 9, скорость наращивания - 25 мкм/ч.
  4. Сернокислый никель - 27, гипофосфит натрия - 27, пирофосфат натрия - 30, карбонат натрия - 42. Температура раствора - 50 °С, рН - 9,5, скорость наращивания - 15 мкм/ч.

Говоря о химическом никелировании, нельзя не отметить следующее. Никелевое покрытие имеет хорошую смачиваемость припоями, что позволяет получить доброкачественную пайку с помощью мягких припоев. Обладая высокими защитными свойствами, они позволяют получать стойкие к коррозии паяные соединения.

Никелирование стали

Для никелирования стали можно использовать один из следующих рецептов:

  1. Хлористый никель - 45, гипофосфит натрия - 20, хлористый аммоний - 45, уксуснокислый натрий - 45. Температура раствора - 90 °С, рН - 8.5, скорость наращивания - 18 мкм/ч.
  2. Хлористый никель - 30, гипофосфит натрия - 10, хлористый аммоний - 50, лимоннокислый натрий - 100 Температура раствора - 80-85 °С, рН - 8.5, скорость наращивания - 20 мкм/ч.
  3. Сернокислый никель - 25, гипофосфит натрия - 30, янтарнокислый натрий - 15. Температура раствора - 90 °С, рН - 4.5, скорость наращивания - 20 мкм/ч.
  4. Сернокислый никель - 30, гипофосфит натрия - 25, сернокислый аммоний - 30. Температура раствора - 85 °С, рН - 8.5, скорость наращивания - 15 мкм/ч.

Внимание ! Однослойное (толстое!) покрытие никелем на один квадратный сантиметр имеет несколько десятков сквозных пор. Естественно, что на открытом воздухе стальная деталь, покрытая никелем, быстро покроется «сыпью» ржавчины.

Автомобильный бампер, к примеру, покрывают двойным слоем (подслой меди, а сверху - хром) и даже тройным (медь - никель - хром). Но и это не спасает деталь от ржавчины, так как и у тройного покрытия имеется несколько пор на 1 см 2 . Что делать? Выход - в обработке поверхности покрытия специальными составами, закрывающими поры.

  1. Протереть деталь с никелевым (или другим) покрытием кашицей из окиси магния и воды и сразу же опустить ее на 1 - 2 мин в 50%-ный раствор соляной кислоты.
  2. После термообработки, еще не остывшую деталь, опустить в невитаминизированный рыбий жир (лучше старый, непригодный по прямому назначению).
  3. Протереть 2-3 раза отникелированную поверхность детали легко проникающей смазкой.

В последних двух случаях излишки жира (смазки) через сутки удаляют с поверхности бензином.

Обработку рыбьим жиром больших поверхностей проводят так. В жаркую погоду протирают их рыбьим жиром два раза с перерывом в 12-14 ч. Затем через 2 суток излишки жира удаляют бензином.

Эффективность обработки характеризует такой пример. Никелированные рыболовные крючки начинают покрываться ржавчиной сразу же после первой рыбалки в море. Обработанные рыбьим жиром те же крючки не корродируют почти весь летний сезон морской ловли.

При химическом никелировании возможны некоторые неполадки в ходе процесса. Это касается никелирования не только стали, но и меди, алюминия и их сплавов.

Слабое газовыделение (при нормальном ходе процесса по всей поверхности детали идет выделение газа средней интенсивности) есть первый признак малой концентрации в растворе гипофосфита натрия, и его необходимо добавить в раствор.

Просветление раствора (нормальный раствор - синего цвета) показывает на понижение количества хлорного (сернокислого) никеля.

Бурное газовыделение на стенках и дне сосуда и отложение на них никеля (темно-серый налет) объясняются местным перегревом сосуда. Чтобы избежать этого, надо нагревать раствор постепенно. Между сосудом и огнем желательно положить какую-либо металлическую прокладку (круг).

Серый или темный слой никеля на детали образуется при низкой концентрации в растворе третьих составляющих (компонент) - солей, кроме хлористого (сернокислого) никеля и гипофосфита натрия.

При плохой подготовке детали могут появиться вздутия и отслоения пленки никеля.

И, наконец, может быть и такое. Раствор составлен правильно, а процесс не идет. Это верный признак того, что в раствор попали соли других металлов. В этом случае делают другой (новый) раствор, исключая попадание нежелательных примесей.

Никелевое покрытие можно пассивировать - покрыть антикоррозийной (труднорастворимой пленкой). При этом деталь (изделие) длительное время не тускнеет. Пассивирование ведут в 5-8%-ном растворе натриевого хромпика.

Серебрение металлических поверхностей поделок - пожалуй, самый популярный процесс среди умельцев, который они применяют в своей деятельности. Можно привести десятки примеров. Например, восстановление слоя серебра на мельхиоровых столовых приборах, серебрение самоваров и других предметов быта.

Для чеканщиков серебрение вместе с химическим окрашиванием металлических поверхностей - способ увеличения художественной ценности чеканных картин. Представьте себе отчеканенного древнего воина, у которого посеребрена кольчуга и шлем.

Сам процесс химического серебрения можно провести с помощью растворов и паст. Последнее предпочтительнее при обработке больших поверхностей (например, при серебрении самоваров или деталей крупных чеканных картин).

Серебрят обычно латунные и медные поверхности, хотя в принципе можно посеребрить сталь, алюминий, другие металлы и их сплавы.

Опыт показал, что серебряное покрытие лучше смотрится на латунной поверхности,

чем на медной или стальной. Это объясняется тем, что на более темной меди (стали) тонкий слой серебра просвечивает и поверхность выглядит более темной. При слое серебра более 15 мкм это явление не наблюдается. Если медь (сталь) покрыть предварительно тонким слоем никеля, то этого явления тоже не будет.

Вначале рассмотрим процесс получения хлористого серебра , так как оно является основным компонентом почти для всех рецептов серебрения.

В 1 л. воды растворяют 7-8 г. ляписа-карандаша (продается в аптеках, представляет собой смесь азотнокислого серебра и азотнокислого калия, взятых в соотношении 1:2 по массе). Вместо ляписа-карандаша можно взять 5 г. азотнокислого серебра.

К полученному раствору понемногу добавляют 10%-ный раствор хлористого натрия до прекращения выпадения творожистого осадка. Осадок (хлористое серебро) отфильтровывают и тщательно промывают в 5-6 водах. Затем хлористое серебро сушат.

Растворы для серебрения:

  1. Хлористое серебро - 7,5, железистосинеродистый калий (желтая кровяная соль) - 120, углекислый калий - 80. Температура раствора - около 100 °С.
  2. Хлористое серебро - 10, хлористый натрий - 20, виннокислый калий - 20. Температура раствора - кипение.
  3. Хлористое серебро - 20, железистосинеродистый калий - 100, углекислый калий - 100, хлористый натрий - 40. Температура раствора - кипение.
  4. Сначала готовится паста из хлористого серебра - 30 г, виннокаменной кислоты - 250 г, хлористого натрия - 1250 г, и все разводится до густой сметаны. 10-15 г пасты растворяют в 1 л воды. Обработка в кипящем растворе Детали завешивают в раствор на цинковых проволочках.

Все четыре раствора позволяют получить за час слой серебра около 5 мкм.

Внимание ! Растворы с солями серебра нельзя долго хранить, так как при этом могут образовываться взрывчатые компоненты. Это же касается всех жидких паст.

Пасты для серебрения:

  1. В 100 мл воды растворяют 20 г тиосульфита натрия (гипосульфита). В полученный раствор добавляют хлорное серебро до тех пор, пока оно не перестанет растворяться. Раствор фильтруют и добавляют в него отмученный мел (можно - зубной порошок) до консистенции жидкой сметаны. Этой пастой с помощью ватного тампона натирают (серебрят) деталь.
  2. Ляпис-карандаш - 15, лимонная кислота - 55, хлористый аммоний - 30. Каждый компонент перед смешиванием растирают в порошок.
  3. Хлористое серебро - 3, хлористый натрий - 3, углекислый натрий - 6, мел - 2.
  4. Хлористое серебро - 3, хлористый натрий - 8, виннокислый калий - 8, мел - 4.
  5. Азотнокислое серебро - 1, хлористый натрий - 2, мел - 2.

В последних четырех пастах компоненты даны в частях по массе. Применяют их следующим образом. Тонкоизмельченные компоненты смешивают. Мокрым тампоном, припудривая его сухой смесью химреактивов, натирают (серебрят) нужную деталь. Смесь все время добавляют, постоянно увлажняя тампон.

При серебрении алюминия и его сплавов детали сначала цинкуют (см. «Никелирование алюминия и его сплавов»), а затем серебрят в любом составе для серебрения. Однако лучше серебрить алюминий и его сплавы в специальных растворах (все в г/л):

  1. Азотнокислое серебро - 100, фтористый аммоний - 100.
  2. Фтористое серебро - 100, азотнокислый аммоний - 100.

Температура обоих растворов - 80- 100°С.

Покрытия золотом, несмотря на его высокую стоимость, широко применяются благодаря высокой декоративности и коррозионной стойкости.

Во всех растворах детали для золочения подвешивают на цинковых проволочках.

Растворы для золочения (все дано в г/л):

  1. Дицианоаурат калия - 8, двууглекислый натрий - 180. Температура раствора - 75 °С.
  2. Дицианоаурат калия - 5, лимоннокислый аммоний - 20, мочевина - 25, хлористый аммоний - 75. Температура раствора — 95 °С.
  3. Дицианоаурат калия - 3, лимоннокислый натрий (трехзамещенный) - 45, хлористый аммоний - 70, гипофосфит натрия - 8-10. Температура раствора - 80- 85 °С.
  4. Хлорное золото - 3, железосинеродистый калий (красная кровяная соль) - 30, углекислый калий - 30, хлористый натрий - 30 Температура раствора - кипение.
  5. Хлорное золото - 2, пирофосфат натрия - 80. Температура раствора - 90 °С.
  6. Хлорное золото - 1, тринатрийфосфат - 80. Температура раствора - 25-30 °С.
  7. Смешать в равных объемах три состава:

A. Хлористое золото - 37, вода - 1 л.
B. Углекислый натрий - 100 г, вода - 1 л.
C. Формалин (40%) - 50 мл, вода - 1 л.

Температура раствора 25-30 °С.

В растворе 3 гипофосфит натрия вводится последним. Для всех растворов для золочения скорость наращивания пленки - 1-2 мкм/ч. При золочении меди необходимо дать подслой никеля, иначе пленка золота будет темной.

При необходимости получить толстые слои золота (это особенно необходимо при ремонте ювелирных изделий) можно воспользоваться старинным процессом. Он на языке ювелиров называется наводкой, или сортучкой. Процесс прост по исполнению, но вреден для здоровья, так как приходится пользоваться ртутью. Поэтому его проводят или на открытом воздухе или в вытяжном шкафу!

Глиняный тигель обмазывают влажным отмученым мелом. Сушат. В него помещают чистое золото, прокатанное как можно тоньше и свернутое в рулончик. Греют золото до светлого каления, добавляют шестикратное количество ртути (осторожно!). Греют все, постоянно перемешивая. Остужают и выливают в воду. Полученную золотую амальгаму прессуют, удаляя излишнюю ртуть. Хранят амальгаму под слоем воды.

Подготовленную поверхность предмета, подлежащего золочению, покрывают амальгамой. Ее все время размазывают медным шпателем по поверхности предмета. Затем предмет начинают медленно нагревать. Между горелкой и предметом помещают лист асбеста.

Предмет все время поворачивают, чтобы нагрев был равномерным. Образующуюся при нагреве жидкую пленку постоянно размазывают и разглаживают по поверхности кисточкой или ваткой. Сначала поверхность становится белой и матовой. По мере испарения ртути она начинает желтеть.

Надо иметь в виду, что при перегреве детали вся пленка золота может уйти в основной металл!

Сделай сам №4, 97

error: