На что похож параллелепипед. Параллелепипед и куб

В геометрии ключевыми понятиями являются плоскость, точка, прямая и угол. Используя эти термины, можно описать любую геометрическую фигуру. Многогранники обычно описывают через более простые фигуры, которые лежат в одной плоскости, такие как круг, треугольник, квадрат, прямоугольник и т.д. В данной статье мы рассмотрим, что такое параллелепипед, опишем типы параллелепипедов, его свойства, из каких элементов он состоит, а также дадим основные формулы для вычисления площади и объема для каждой разновидности параллелепипеда.

Определение

Параллелепипед в трехмерном пространстве - это призма, все стороны которой являются параллелограммами. Соответственно, она может иметь только три пары параллельных параллелограммов или шесть граней.

Чтобы визуализировать параллелепипед, представьте себе обычный стандартный кирпич. Кирпич - хороший пример прямоугольного параллелепипеда, который может представить себе даже ребенок. Другими примерами могут послужить многоэтажные панельные дома, шкафы, контейнеры для хранения пищевых продуктов соответствующей формы и т.д.

Разновидности фигуры

Существует всего две разновидности параллелепипедов:

  1. Прямоугольные, все боковые грани которых находятся под углом 90 о к основанию и являются прямоугольниками.
  2. Наклонные, боковые грани которых расположены под определенным углом к основанию.

На какие элементы можно разделить эту фигуру?

  • Как и в любой другой геометрической фигуре, в параллелепипеде любые 2 грани с общим ребром зовутся смежными, а те, что его не имеют, являются параллельными (исходя из свойства параллелограмма, имеющего попарно параллельные противоположные стороны).
  • Вершины параллелепипеда, не лежащие на одной грани, зовутся противоположными.
  • Отрезок, соединяющий такие вершины, является диагональю.
  • Длины трех ребер прямоугольного параллелепипеда, соединяющихся в одной вершине, являются его измерениями (а именно, его длиной, шириной и высотой).

Свойства фигуры

  1. Он всегда построен симметрично по отношению к середине диагонали.
  2. Точка пересечения всех диагоналей делит каждую диагональ на два равных отрезка.
  3. Противолежащие грани равные по длине и лежат на параллельных прямых.
  4. Если сложить квадраты всех измерений параллелепипеда, полученное значение будет равно квадрату длины диагонали.

Расчетные формулы

Формулы для каждого частного случая параллелепипеда будут свои.

Для произвольного параллелепипеда верно утверждение, что его объем равен абсолютной величине тройного скалярного произведения векторов трех сторон, исходящих из одной вершины. Однако формулы для вычисления объема произвольного параллелепипеда не существует.

Для прямоугольного параллелепипеда действуют следующие формулы:

  • V=a*b*c;
  • Sб=2*c*(a+b);
  • Sп=2*(a*b+b*c+a*c).
  • V - объем фигуры;
  • Sб - площадь боковой поверхности;
  • Sп - площадь полной поверхности;
  • a - длина;
  • b - ширина;
  • c - высота.

Еще одним частным случаем параллелепипеда, в котором все стороны - квадраты, является куб. Если любую из сторон квадрата обозначить буквой a, то для площади поверхности и объема данной фигуры можно будет использовать следующие формулы:

  • S=6*a*2;
  • V=3*а.

Последняя рассматриваемая нами разновидность параллелепипеда - прямой параллелепипед. В чем разница между прямым параллелепипедом и прямоугольным параллелепипедом, спросите вы. Дело в том, что основанием прямоугольного параллелепипеда может быть любой параллелограмм, а основанием прямого - только прямоугольник. Если обозначить периметр основания, равный сумме длин всех сторон, как Po, а высоту обозначить буквой h, мы имеем право воспользоваться следующими формулами для вычисления объема и площадей полной и боковой поверхностей.

Часто ученики возмущенно спрашивают: «Как мне в жизни это пригодится?». На любую тему каждого предмета. Не становится исключением и тема про объем параллелепипеда. И вот здесь как раз можно сказать: «Пригодится».

Как, например, узнать, поместится ли в почтовую коробку посылка? Конечно, можно методом проб и ошибок выбрать подходящую. А если такой возможности нет? Тогда на выручку придут вычисления. Зная вместимость коробки, можно рассчитать объем посылки (хотя бы приблизительно) и ответить на поставленный вопрос.

Параллелепипед и его виды

Если дословно перевести его название с древнегреческого, то получится, что это фигура, состоящая из параллельных плоскостей. Существуют такие равносильные определения параллелепипеда:

  • призма с основанием в виде параллелограмма;
  • многогранник, каждая грань которого - параллелограмм.

Его виды выделяются в зависимости от того, какая фигура лежит в его основании и как направлены боковые ребра. В общем случае говорят о наклонном параллелепипеде , у которого основание и все грани — параллелограммы. Если у предыдущего вида боковые грани станут прямоугольниками, то его нужно будет называть уже прямым . А у прямоугольного и основание тоже имеет углы по 90º.

Причем последний в геометрии стараются изображать так, чтобы было заметно, что все ребра параллельны. Здесь, кстати, наблюдается основное отличие математиков от художников. Последним важно передать тело с соблюдением закона перспективы. И в этом случае параллельность ребер совсем незаметна.

О введенных обозначениях

В приведенных ниже формулах справедливы обозначения, указанные в таблице.

Формулы для наклонного параллелепипеда

Первая и вторая для площадей:

Третья для того, чтобы вычислить объем параллелепипеда:

Так как основание - параллелограмм, то для расчета его площади нужно будет воспользоваться соответствующими выражениями.

Формулы для прямоугольного параллелепипеда

Аналогично первому пункту - две формулы для площадей:

И еще одна для объема:

Первая задача

Условие. Дан прямоугольный параллелепипед, объем которого требуется найти. Известна диагональ — 18 см - и то, что она образует углы в 30 и 45 градусов с плоскостью боковой грани и боковым ребром соответственно.

Решение. Чтобы ответить на вопрос задачи, потребуется узнать все стороны в трех прямоугольных треугольниках. Они дадут необходимые значения ребер, по которым нужно сосчитать объем.

Сначала нужно выяснить, где находится угол в 30º. Для этого нужно провести диагональ боковой грани из той же вершины, откуда чертилась главная диагональ параллелограмма. Угол между ними и будет тем, что нужен.

Первый треугольник, который даст одно из значений сторон основания, будет следующим. В нем содержатся искомая сторона и две проведенные диагонали. Он прямоугольный. Теперь потребуется воспользоваться отношением противолежащего катета (стороны основания) и гипотенузы (диагонали). Оно равно синусу 30º. То есть неизвестная сторона основания будет определяться как диагональ, умноженная на синус 30º или ½. Пусть она будет обозначена буквой «а».

Вторым будет треугольник, содержащий известную диагональ и ребро, с которым она образует 45º. Он тоже прямоугольный, и можно опять воспользоваться отношением катета к гипотенузе. Другими словами, бокового ребра к диагонали. Оно равно косинусу 45º. То есть «с» вычисляется как произведение диагонали на косинус 45º.

с = 18 * 1/√2 = 9 √2 (см).

В этом же треугольнике требуется найти другой катет. Это необходимо для того, чтобы потом сосчитать третью неизвестную - «в». Пусть она будет обозначена буквой «х». Ее легко вычислить по теореме Пифагора:

х = √(18 2 - (9√2) 2) = 9√2 (см).

Теперь нужно рассмотреть еще один прямоугольный треугольник. Он содержит уже известные стороны «с», «х» и ту, что нужно сосчитать, «в»:

в = √((9√2) 2 - 9 2 = 9 (см).

Все три величины известны. Можно воспользоваться формулой для объема и сосчитать его:

V = 9 * 9 * 9√2 = 729√2 (см 3).

Ответ: объем параллелепипеда равен 729√2 см 3 .

Вторая задача

Условие. Требуется найти объем параллелепипеда. В нем известны стороны параллелограмма, который лежит в основании, 3 и 6 см, а также его острый угол — 45º. Боковое ребро имеет наклон к основанию в 30º и равно 4 см.

Решение. Для ответа на вопрос задачи нужно взять формулу, которая была записана для объема наклонного параллелепипеда. Но в ней неизвестны обе величины.

Площадь основания, то есть параллелограмма, будет определена по формуле, в которой нужно перемножить известные стороны и синус острого угла между ними.

S о = 3 * 6 sin 45º = 18 * (√2)/2 = 9 √2 (см 2).

Вторая неизвестная величина — это высота. Ее можно провести из любой из четырех вершин над основанием. Ее найти можно из прямоугольного треугольника, в котором высота является катетом, а боковое ребро — гипотенузой. При этом угол в 30º лежит напротив неизвестной высоты. Значит, можно воспользоваться отношением катета к гипотенузе.

н = 4 * sin 30º = 4 * 1/2 = 2.

Теперь все значения известны и можно вычислить объем:

V = 9 √2 * 2 = 18 √2 (см 3).

Ответ: объем равен 18 √2 см 3 .

Третья задача

Условие. Найти объем параллелепипеда, если известно, что он прямой. Стороны его основания образуют параллелограмм и равны 2 и 3 см. Острый угол между ними 60º. Меньшая диагональ параллелепипеда равна большей диагонали основания.

Решение. Для того чтобы узнать объем параллелепипеда, воспользуемся формулой с площадью основания и высотой. Обе величины неизвестны, но их несложно вычислить. Первая из них высота.

Поскольку меньшая диагональ параллелепипеда совпадает по размеру с большей основания, то их можно обозначить одной буквой d. Больший угол параллелограмма равен 120º, поскольку с острым он образует 180º. Пусть вторая диагональ основания будет обозначена буквой «х». Теперь для двух диагоналей основания можно записать теоремы косинусов :

d 2 = а 2 + в 2 - 2ав cos 120º,

х 2 = а 2 + в 2 - 2ав cos 60º.

Находить значения без квадратов не имеет смысла, так как потом они будут снова возведены во вторую степень. После подстановки данных получается:

d 2 = 2 2 + 3 2 - 2 * 2 * 3 cos 120º = 4 + 9 + 12 * ½ = 19,

х 2 = а 2 + в 2 - 2ав cos 60º = 4 + 9 - 12 * ½ = 7.

Теперь высота, она же боковое ребро параллелепипеда, окажется катетом в треугольнике. Гипотенузой будет известная диагональ тела, а вторым катетом — «х». Можно записать Теорему Пифагора:

н 2 = d 2 - х 2 = 19 - 7 = 12.

Отсюда: н = √12 = 2√3 (см).

Теперь вторая неизвестная величина — площадь основания. Ее можно сосчитать по формуле, упомянутой во второй задаче.

S о = 2 * 3 sin 60º = 6 * √3/2 = 3√3 (см 2).

Объединив все в формулу объема, получаем:

V = 3√3 * 2√3 = 18 (см 3).

Ответ: V = 18 см 3 .

Четвертая задача

Условие. Требуется узнать объем параллелепипеда, отвечающего таким условиям: основание — квадрат со стороной 5 см; боковые грани являются ромбами; одна из вершин, находящихся над основанием, равноудалена от всех вершин, лежащих в основании.

Решение. Сначала нужно разобраться с условием. С первым пунктом про квадрат вопросов нет. Второй, про ромбы, дает понять, что параллелепипед наклонный. Причем все его ребра равны 5 см, поскольку стороны у ромба одинаковые. А из третьего становится ясно, что три диагонали, проведенные из нее, равны. Это две, которые лежат на боковых гранях, а последняя внутри параллелепипеда. И эти диагонали равны ребру, то есть тоже имеют длину 5 см.

Для определения объема будет нужна формула, записанная для наклонного параллелепипеда. В ней опять нет известных величин. Однако площадь основания вычислить легко, потому что это квадрат.

S о = 5 2 = 25 (см 2).

Немного сложнее обстоит дело с высотой. Она будет таковой в трех фигурах: параллелепипеде, четырехугольной пирамиде и равнобедренном треугольнике. Последним обстоятельством и нужно воспользоваться.

Поскольку она высота, то является катетом в прямоугольном треугольнике. Гипотенузой в нем будет известное ребро, а второй катет равен половине диагонали квадрата (высота - она же и медиана). А диагональ основания найти просто:

d = √(2 * 5 2) = 5√2 (см).

Высоту нужно будет сосчитать как разность второй степени ребра и квадрата половины диагонали и не забыть потом извлечь квадратный корень :

н = √ (5 2 - (5/2 * √2) 2) = √(25 - 25/2) = √(25/2) = 2,5 √2 (см).

V = 25 * 2,5 √2 = 62,5 √2 (см 3).

Ответ: 62,5 √2 (см 3).

Определение

Многогранником будем называть замкнутую поверхность, составленную из многоугольников и ограничивающую некоторую часть пространства.

Отрезки, являющиеся сторонами этих многоугольников, называются ребрами многогранника, а сами многоугольники – гранями . Вершины многоугольников называются вершинами многогранника.

Будем рассматривать только выпуклые многогранники (это такой многогранник, который находится по одну сторону от каждой плоскости, содержащей его грань).

Многоугольники, из которых составлен многогранник, образуют его поверхность. Часть пространства, которую ограничивает данный многогранник, называется его внутренностью.

Определение: призма

Рассмотрим два равных многоугольника \(A_1A_2A_3...A_n\) и \(B_1B_2B_3...B_n\) , находящихся в параллельных плоскостях так, что отрезки \(A_1B_1, \ A_2B_2, ..., A_nB_n\) параллельны. Многогранник, образованный многоугольниками \(A_1A_2A_3...A_n\) и \(B_1B_2B_3...B_n\) , а также параллелограммами \(A_1B_1B_2A_2, \ A_2B_2B_3A_3, ...\) , называется (\(n\) -угольной) призмой .

Многоугольники \(A_1A_2A_3...A_n\) и \(B_1B_2B_3...B_n\) называются основаниями призмы, параллелограммы \(A_1B_1B_2A_2, \ A_2B_2B_3A_3, ...\) – боковыми гранями, отрезки \(A_1B_1, \ A_2B_2, \ ..., A_nB_n\) – боковыми ребрами.
Таким образом, боковые ребра призмы параллельны и равны между собой.

Рассмотрим пример - призма \(A_1A_2A_3A_4A_5B_1B_2B_3B_4B_5\) , в основании которой лежит выпуклый пятиугольник.

Высота призмы – это перпендикуляр, опущенный из любой точки одного основания к плоскости другого основания.

Если боковые ребра не перпендикулярны основанию, то такая призма называется наклонной (рис. 1), в противном случае – прямой . У прямой призмы боковые ребра являются высотами, а боковые грани – равными прямоугольниками.

Если в основании прямой призмы лежит правильный многоугольник, то призма называется правильной .

Определение: понятие объема

Единица измерения объема – единичный куб (куб размерами \(1\times1\times1\) ед\(^3\) , где ед - некоторая единица измерения).

Можно сказать, что объем многогранника – это величина пространства, которую ограничивает этот многогранник. Иначе: это величина, числовое значение которой показывает, сколько раз единичный куб и его части вмещаются в данный многогранник.

Объем имеет те же свойства, что и площадь:

1. Объемы равных фигур равны.

2. Если многогранник составлен из нескольких непересекающихся многогранников, то его объем равен сумме объемов этих многогранников.

3. Объем – величина неотрицательная.

4. Объем измеряется в см\(^3\) (кубические сантиметры), м\(^3\) (кубические метры) и т.д.

Теорема

1. Площадь боковой поверхности призмы равна произведению периметра основания на высоту призмы.
Площадь боковой поверхности - сумма площадей боковых граней призмы.

2. Объем призмы равен произведению площади основания на высоту призмы: \

Определение: параллелепипед

Параллелепипед – это призма, в основании которой лежит параллелограмм.

Все грани параллелепипеда (их \(6\) : \(4\) боковые грани и \(2\) основания) представляют собой параллелограммы, причем противоположные грани (параллельные друг другу) представляют собой равные параллелограммы (рис. 2).


Диагональ параллелепипеда – это отрезок, соединяющий две вершины параллелепипеда, не лежащие в одной грани (их \(8\) : \(AC_1, \ A_1C, \ BD_1, \ B_1D\) и т.д.).

Прямоугольный параллелепипед - это прямой параллелепипед, в основании которого лежит прямоугольник.
Т.к. это прямой параллелепипед, то боковые грани представляют собой прямоугольники. Значит, вообще все грани прямоугольного параллелепипеда – прямоугольники.

Все диагонали прямоугольного параллелепипеда равны (это следует из равенства треугольников \(\triangle ACC_1=\triangle AA_1C=\triangle BDD_1=\triangle BB_1D\) и т.д.).

Замечание

Таким образом, параллелепипед обладает всеми свойствами призмы.

Теорема

Площадь боковой поверхности прямоугольного параллелепипеда равна \

Площадь полной поверхности прямоугольного параллелепипеда равна \

Теорема

Объем прямоугольного параллелепипеда равен произведению трех его ребер, выходящих из одной вершины (три измерения прямоугольного параллелепипеда): \


Доказательство

Т.к. у прямоугольного параллелепипеда боковые ребра перпендикулярны основанию, то они являются и его высотами, то есть \(h=AA_1=c\) Т.к. в основании лежит прямоугольник, то \(S_{\text{осн}}=AB\cdot AD=ab\) . Отсюда и следует данная формула.

Теорема

Диагональ \(d\) прямоугольного параллелепипеда ищется по формуле (где \(a,b,c\) - измерения параллелепипеда) \

Доказательство

Рассмотрим рис. 3. Т.к. в основании лежит прямоугольник, то \(\triangle ABD\) – прямоугольный, следовательно, по теореме Пифагора \(BD^2=AB^2+AD^2=a^2+b^2\) .

Т.к. все боковые ребра перпендикулярны основаниям, то \(BB_1\perp (ABC) \Rightarrow BB_1\) перпендикулярно любой прямой в этой плоскости, т.е. \(BB_1\perp BD\) . Значит, \(\triangle BB_1D\) – прямоугольный. Тогда по теореме Пифагора \(B_1D=BB_1^2+BD^2=a^2+b^2+c^2\) , чтд.

Определение: куб

Куб - это прямоугольный параллелепипед, все грани которого – равные квадраты.


Таким образом, три измерения равны между собой: \(a=b=c\) . Значит, верны следующие

Теоремы

1. Объем куба с ребром \(a\) равен \(V_{\text{куба}}=a^3\) .

2. Диагональ куба ищется по формуле \(d=a\sqrt3\) .

3. Площадь полной поверхности куба \(S_{\text{полн.пов-ти куба}}=6a^2\) .

Цели урока:

1. Образовательные:

Ввести понятие параллелепипеда и его видов;
- сформулировать (используя аналогию с параллелограммом и прямоугольником) и доказать свойства параллелепипеда и прямоугольного параллелепипеда;
- повторить вопросы, связанные с параллельностью и перпендикулярностью в пространстве.

2. Развивающие:

Продолжить развитие у учащихся таких познавательных процессов, как восприятие, осмысление, мышление, внимание, память;
- способствовать развитию у учащихся элементов творческой деятельности как качеств мышления (интуиция, пространственное мышление);
- формировать у учащихся умение делать выводы, в том числе – по аналогии, что помогает осознать внутрипредметные связи в геометрии.

3. Воспитательные:

Способствовать воспитанию организованности, привычки к систематическому труду;
- способствовать формированию эстетических навыков при оформлении записей, выполнения чертежей.

Тип урока: урок-изучение нового материала (2 часа).

Структура урока:

1. Организационный момент.
2. Актуализация знаний.
3. Изучение нового материала.
4. Подведение итогов и постановка домашнего задания.

Оборудование: плакаты (слайды) с доказательствами, модели различных геометрических тел, в том числе – все виды параллелепипедов, графопроектор.

Ход урока.

1. Организационный момент.

2. Актуализация знаний.

Сообщение темы урока, формулировка вместе с учащимися цели и задач, показ практической значимости изучения темы, повторение ранее изученных вопросов, связанных с данной темой.

3. Изучение нового материала.

3.1. Параллелепипед и его виды.

Демонстрируются модели параллелепипедов с выявлением их особенностей, помогающих сформулировать определение параллелепипеда, используя понятие призмы.

Определение:

Параллелепипедом называется призма, основанием которой является параллелограмм.

Выполняется чертёж параллелепипеда (рисунок 1), перечисляются элементы параллелепипеда как частного случая призмы. Демонстрируется слайд 1.

Схематическая запись определения:

Формулируются выводы из определения:

1) Если ABCDA 1 B 1 C 1 D 1 – призма и ABCD – параллелограмм, то ABCDA 1 B 1 C 1 D 1 – параллелепипед .

2) Если ABCDA 1 B 1 C 1 D 1 – параллелепипед , то ABCDA 1 B 1 C 1 D 1 – призма и ABCD – параллелограмм.

3) Если ABCDA 1 B 1 C 1 D 1 – не призма или ABCD – не параллелограмм, то
ABCDA 1 B 1 C 1 D 1 – не параллелепипед .

4) . Если ABCDA 1 B 1 C 1 D 1 – не параллелепипед , то ABCDA 1 B 1 C 1 D 1 – не призма или ABCD – не параллелограмм.

Далее рассматриваются частные случаи параллелепипеда с построением схемы классификации (см. рис.3), демонстрируются модели и выделяются характеристические свойства прямого и прямоугольного параллелепипедов, формулируются их определения.

Определение:

Параллелепипед называется прямым, если его боковые рёбра перпендикулярны к основанию.

Определение:

Параллелепипед называется прямоугольным , если его боковые рёбра перпендикулярны к основанию, а основанием является прямоугольник (см. рисунок 2).

После записи определений в схематичном виде формулируются выводы из них.

3.2. Свойства параллелепипедов.

Поиск планиметрических фигур, пространственными аналогами которых являются параллелепипед и прямоугольный параллелепипед (параллелограмм и прямоугольник). В данном случае имеем дело с визуальным сходством фигур. Используя правило вывода по аналогии, заполняются таблицы.

Правило вывода по аналогии:

1. Выбрать среди ранее изученных фигур фигуру, аналогичную данной.
2. Сформулировать свойство выбранной фигуры.
3. Сформулировать аналогичное свойство исходной фигуры.
4. Доказать или опровергнуть сформулированное утверждение.

После формулировки свойств проводится доказательство каждого из них по следующей схеме:

  • обсуждение плана доказательства;
  • демонстрация слайда с доказательством (слайды 2 – 6);
  • оформление учащимися доказательства в тетрадях.

3.3 Куб и его свойства.

Определение: Куб – это прямоугольный параллелепипед, у которого все три измерения равны.

По аналогии с параллелепипедом учащиеся самостоятельно делают схематическую запись определения, выводят следствия из него и формулируют свойства куба.

4. Подведение итогов и постановка домашнего задания.

Домашнее задание:

  1. Используя конспект урока, по учебнику геометрии для 10-11 классов, Л.С. Атанасян и др., изучить гл.1, §4, п.13, гл.2, §3, п.24.
  2. Доказать или опровергнуть свойство параллелепипеда, п.2 таблицы.
  3. Ответить на контрольные вопросы.

Контрольные вопросы.

1. Известно, что только две боковые грани параллелепипеда перпендикулярны основанию. Какого вида параллелепипед?

2. Сколько боковых граней прямоугольной формы может иметь параллелепипед?

3. Возможен ли параллелепипед, у которого только одна боковая грань:

1) перпендикулярна основанию;
2) имеет форму прямоугольника.

4. В прямом параллелепипеде все диагонали равны. Является ли он прямоугольным?

5. Верно ли, что в прямом параллелепипеде диагональные сечения перпендикулярны плоскостям основания?

6. Сформулируйте теорему, обратную теореме о квадрате диагонали прямоугольного параллелепипеда.

7. Какие дополнительные признаки отличают куб от прямоугольного параллелепипеда?

8. Будет ли кубом параллелепипед, в котором равны все рёбра при одной из вершин?

9. Сформулируйте теорему о квадрате диагонали прямоугольного параллелепипеда для случая куба.

error: