Марганец (Mn). Mn — Марганец

Долгое время одно из соединений этого элемента, а именно его двуокись (известна под названием пиролюзит) считалось разновидностью минерала магнитный железняк. Лишь в 1774 году один из шведских химиков выяснил, что в пиролюзите есть неизученный металл. В результате нагревания этого минерала с углем удалось получить тот самый неизвестный металл. Вначале его называли манганум, позже появилось современное название - марганец. Химический элемент обладает многими интересными свойствами, речь о которых пойдет далее.

Расположен в побочной подгруппе седьмой группы периодической таблицы (важно: все элементы побочных подгрупп - металлы). Электронная формула 1s2 2s2 2p6 3s2 3p6 4s2 3d5 (типичная формула d-элемента). Марганец как свободное вещество имеет серебристо-белый цвет. Из-за химической активности в природе встречается лишь в виде соединений, таких как окислы, фосфат и карбонат. Вещество тугоплавкое, температура плавления составляет 1244 градуса по шкале Цельсия.

Интересно! В природе встречается только один изотоп химического элемента, имеющий атомную массу 55. Остальные изотопы получены искусственным путем, и наиболее устойчив радиоактивный изотоп с атомной массой 53 (период полураспада примерно такой же, как у урана).

Степень окисления марганца

У него шесть разных степеней окисления. В нулевой степени окисления элемент способен образовывать комплексные соединения с органическими лигандами (например, P(C5H5)3), а также неорганическими лигандами:

  • окисью углерода (декакарбонил димарганца),
  • азотом,
  • трифторидом фосфора,
  • окисью азота.

Степень окисления +2 типична для солей марганца. Важно: у этих соединений сугубо восстановительные свойства. Наиболее устойчивые соединения, имеющие степень окисления +3, - оксид Mn2O3, а также гидрат этого оксида Mn(OH)3. В +4 наиболее устойчивы MnO2 и амфотерный оксид-гидроксид MnO(OH)2.

Степень окисления марганца +6 типична для существующей только в водном растворе марганцеватой кислоты и ее солей. Степень окисления +7 типична для существующей только в водном растворе марганцевой кислоты, ее ангидрида, а также солей - перманганатов (аналогия с перхлоратами) - сильных окислителей. Интересно, что при восстановлении перманганата калия (в быту называется марганцовкой) возможны три разные реакции:

  • В присутствии серной кислоты анион MnO4- восстанавливается до Mn2+.
  • Если среда нейтральная, ион MnO4- восстанавливается до MnO(OH)2 или MnO2.
  • В присутствии щелочи анион MnO4- восстанавливается до манганат-иона MnO42-.

Марганец как химический элемент

Химические свойства

В обычных условиях малоактивен. Причина - появляющаяся при воздействии кислорода воздуха оксидная пленка. Если же порошок металла слегка нагреть, он сгорает, превращаясь в MnO2.

При нагревании взаимодействует с водой, вытесняя водород. В результате реакции получается практически нерастворимый гидрат закиси Mn(OH)2. Это вещество препятствует дальнейшему взаимодействию с водой.

Интересно! Водород растворим в марганце, и при повышении температуры растворимость увеличивается (получается раствор газа в металле).

При очень сильном нагревании (температура выше 1200 градусов по шкале Цельсия) взаимодействует с азотом, при этом получаются нитриды. Эти соединения могут иметь различный состав, что типично для так называемых бертоллидов. Взаимодействует с бором, фосфором, кремнием, а в расплавленном виде - с углеродом. Последняя реакция протекает при восстановлении марганца коксом.

При взаимодействии с разбавленной серной и соляной кислотами получается соль и выделяется водород. А вот взаимодействие с крепкой серной кислотой иное: продукты реакции - соль, вода и двуокись серы (вначале серная кислота восстанавливается в сернистую; но из-за неустойчивости сернистая кислота распадается на диоксид серы и воду).

При реакции с разбавленной азотной кислотой получается нитрат, вода, окись азота.

Образует шесть оксидов:

  • закись, или MnO,
  • окись, или Mn2O3,
  • закись-окись Mn3O4,
  • двуокись, или MnO2,
  • марганцеватый ангидрид MnO3,
  • марганцевый ангидрид Mn2O7.

Интересно! Закись под воздействием кислорода воздуха постепенно превращается в окись. Ангидрид марганцеватой кислоты не выделен в свободном виде.

Закись-окись - соединение с так называемой дробной степенью окисления. При растворении в кислотах образуются соли двухвалентного марганца (соли с катионом Mn3+ неустойчивы и восстанавливаются до соединений с катионом Mn2+).

Двуокись, окись, закись-окись - наиболее устойчивые оксиды. Марганцевый ангидрид неустойчив. Прослеживаются аналогии с другими химическими элементами:

  • Mn2O3 и Mn3O4 - основные оксиды, и по свойствам похожи на аналогичные соединения железа;
  • MnO2 - амфотерный оксид, по свойствам похож на оксиды алюминия и трехвалентного хрома;
  • Mn2O7 - кислотный оксид, по свойствам весьма похож на высший оксид хлора.

Несложно заметить и аналогию с хлоратами и перхлоратами. Манганаты, подобно хлоратам, получаются косвенным путем. А вот перманганаты можно получить как прямым путем, то есть при взаимодействии ангидрида и оксида/гидроксида металла в присутствии воды, так и косвенным.

В аналитической химии катион Mn2+ попал в пятую аналитическую группу. Есть несколько реакций, позволяющих обнаружить этот катион:

  • При взаимодействии с сульфидом аммония выпадает осадок MnS, его цвет - телесный; при добавлении минеральных кислот наблюдается растворение осадка.
  • При реакции с щелочами получается белый осадок Mn(OH)2; однако при взаимодействии с кислородом воздуха цвет осадка меняется с белого на бурый - получается Mn(OH)3.
  • Если к солям с катионом Mn2+ добавить перекись водорода и раствор щелочи, выпадает темно-бурый осадок MnO(OH)2.
  • При добавлении к солям с катионом Mn2+ окислителя (двуокись свинца, висмутат натрия) и крепкий раствор азотной кислоты, раствор окрашивается в малиновый цвет - это значит, что Mn2+ окислился до HMnO4.

Химические свойства

Валентности марганца

Элемент находится в седьмой группе. Типичные марганца – II, III, IV, VI, VII.

Нулевая валентность типична для свободного вещества. Двухвалентные соединения - соли с катионом Mn2+, трехвалентные – оксид и гидроксид, четырехвалентные – двуокись, а также оксид-гидроксид. Шести- и семивалентные соединения - соли с анионами MnO42- и MnO4-.

Как получить и из чего получают марганец? Из марганцевых и железо-марганцевых руд, а также из растворов солей. Известно три разных способа получения марганца:

  • восстановление коксом,
  • алюмотермия,
  • электролиз.

В первом случае в качестве восстановителя используется кокс, а также окись углерода. Восстанавливается металл из руды, где есть примесь оксидов железа. В результате получается как ферромарганец (сплав с железом), так и карбид (что такое карбид? это соединение металла с углеродом).

Для получения более чистого вещества используется один из способов металлотермии - алюмотермия. Сначала прокаливается пиролюзит, при этом получается Mn2O3. Затем полученный оксид смешивают с порошком алюминия. В ходе реакции выделяется много теплоты, в результате получающийся металл плавится, а оксид алюминия покрывает его шлаковой «шапкой».

Марганец - металл средней активности и стоит в ряду Бекетова левее водорода и правее алюминия. Это значит, что при электролизе водных растворов солей с катионом Mn2+ на катоде восстанавливается катион металла (при электролизе весьма разбавленного раствора на катоде восстанавливается и вода). При электролизе водного раствора MnCl2 протекают реакции:

MnCl2 Mn2+ + 2Cl-

Катод (отрицательно заряженный электрод): Mn2+ + 2e Mn0

Анод (положительно заряженный электрод): 2Cl- — 2e 2Cl0 Cl2

Итоговое уравнение реакции:

MnCl2 (эл-з) Mn + Cl2

При электролизе получается наиболее чистый металлический марганец.

Полезное видео: марганец и его соединения

Применение

Применение марганца довольно широко. Используется как сам металл, так и его различные соединения. В свободном виде используется в металлургии для разных целей:

  • как «раскислитель» при плавке стали (связывается кислород, и образуется Mn2O3);
  • в качестве легирующего элемента: получается прочная сталь с высокими показателями износостойкости и ударопрочности;
  • для выплавки так называемой броневой марки стали;
  • как компонент бронзы и латуни;
  • для создания манганина, сплава с медью и никелем. Из этого сплава делают различные электротехнические устройства, например реостаты

Для изготовления гальванических элементов Zn-Mn используется MnO2. В электротехнике применяются MnTe и MnAs.

Применение марганца

Перманганат калия, часто называемый марганцовкой, широко применяется как в быту (для лечебных ванночек), так и в промышленности и лабораториях. Малиновая окраска перманганата обесцвечивается при пропускании через раствор ненасыщенных углеводородов с двойными и тройными связями. При сильном нагревании перманганаты разлагаются. При этом получаются манганаты, MnO2, а также кислород. Это один из способов получить химически чистый кислород в лабораторных условиях.

Получить соли марганцеватой кислоты можно лишь косвенным путем. Для этого MnO2 смешивают с твердой щелочью и в присутствии кислорода нагревают. Другой способ получения твердых манганатов – прокаливание перманганатов.

Растворы манганатов имеют красивую темно-зеленую окраску. Однако эти растворы неустойчивы и подвергаются реакции диспропорционирования: темно-зеленая окраска меняется на малиновую, также выпадает бурый осадок. В результате реакции получается перманганат и MnO2.

Диоксид марганца применяется в лаборатории как катализатор при разложении хлората калия (бертолетовой соли), а также для получения чистого хлора. Интересно, что в результате взаимодействия MnO2 с хлороводородом получается промежуточный продукт – крайне неустойчивое соединение MnCl4, распадающееся на MnCl2 и хлор. Нейтральные или подкисленные растворы солей с катионом Mn2+ имеют бледно-розовую окраску (Mn2+ создает комплекс с 6 молекулами воды).

Полезное видео: марганец — элемент жизни

Вывод

Такова краткая характеристика марганца и его химические свойства. Это серебристо-белый металл средней активности, взаимодействует с водой лишь при нагревании, в зависимости от степени окисления проявляет как металлические, так и неметаллические свойства. Его соединения используются в промышленности, в быту и в лабораториях для получения чистого кислорода и хлора.

Этот элемент в виде пиролюзита (диоксид марганца, MnO 2) использовался доисторическими пещерными художниками пещеры Ласко, во Франции, ещё около 30 000 лет назад. В более поздние времена в древнем Египте производители стекла использовали минералы, содержащие этот металл для удаления бледно-зеленоватого оттенка натурального стекла.

Отличные руды были найдены в регионе Магнезия, что в северной Греции, к югу от Македонии, и именно тогда началась путаница с названием. Различные руды из региона, которые включали как магний, так и марганец просто назывались магнезией. В XVII веке термин магнезия альба или белая магнезия была принята для магниевых минералов, в то время как название чёрная магнезия использовалась для более тёмных оксидов марганца.

Кстати, знаменитые магнитные минералы, обнаруженные в этом регионе, были названы камнем магнезии, который, в конце концов, стал сегодняшним магнитом. Путаница продолжалась ещё некоторое время пока в конце XVIII века группа шведских химиков пришла к выводу, что марганец является отдельным элементом. В 1774 году, член группы, представил эти выводы в Стокгольмскую академию, а в том же году Юхан Готлиб Ган, стал первым человеком, который получил чистый марганец и доказал, что это отдельный элемент .

Марганец - химический элемент, характеристики марганца

Это тяжёлый, серебристо-белый металл, который на открытом воздухе медленно темнеет. Твёрдый, и более хрупкий, чем железо, он имеет удельный вес 7,21 и температуру плавления 1244 °C. Химический символ Mn, атомный вес 54,938, атомный номер 25. В составе формул читается как марганец, например, KMnO 4 - калий марганец о четыре. Это очень распространённый элемент в горных породах, его количество оценивается как 0,085% от массы земной коры.

Существует более 300 различных минералов , содержащих этот элемент. Крупные земные месторождения находятся в Австралии, Габоне, Южной Африке, Бразилии и России. Но ещё больше находиться на океанском дне в основном на глубине от 4 до 6 километров, поэтому его добыча там не является коммерчески жизнеспособной.

Минералы окисленного железа (гематит, магнетит, лимонит и сидерит) содержат 30% этого элемента. Другим потенциальным источником являются глина и красные грязевые отложения, в которых есть узелки с содержанием до 25%. Наиболее чистый марганец получают путём электролиза водных растворов.

Марганец и хлор находятся в VII группе периодической таблицы, но хлор - в главной подгруппе, а марганец - в побочной, к которой относятся ещё технеций Тс и рений Ке - полные электронные аналоги. Марганец Мп, технеций Тс и рений Ке - полные электронные аналоги с конфигурацией валентных электронов.

Этот элемент присутствует в небольших количествах и в сельскохозяйственных почвах. Во многих сплавах меди, алюминия, магния, никеля различное его процентное содержание, даёт им конкретные физические и технологические свойства:

  • устойчивость к износу;
  • теплоустойчивость;
  • устойчивость к коррозии;
  • плавкость;
  • электрическое сопротивление и т. д.

Валентности марганца

Степени окисления марганца от 0 до +7. В двухвалентной степени окисления марганец имеет отчётливо металлический характер и высокую склонность к образованию сложных связей. При четырехвалентном окислении преобладает промежуточный характер между металлическими и неметаллическими свойствами, в то время как шестивалентный и семивалентный обладают неметаллическими свойствами.

Оксиды:

Формула. Цвет

Биохимия и фармакология

Марганец является элементом, широко распространённым в природе, он присутствует в большинстве тканей растений и животных. Самые высокие концентрации находятся:

  • в апельсиновой корке;
  • в винограде;
  • в ягодах;
  • в спарже;
  • в ракообразных;
  • в брюхоногих;
  • в двустворчатых.

Одни из наиболее важных реакций в биологии, фотосинтезе , полностью зависят от этого элемента. Это звёздный игрок в реакционном центре фотосистемы II, где молекулы воды превращаются в кислород. Без него невозможен фотосинтез .

Он является важным элементом во всех известных живых организмах. Например, фермент, ответственный за превращение молекул воды в кислород во время фотосинтеза, содержит четыре атома марганца.

Средний человеческий организм содержит около 12 миллиграммов этого металла. Мы получаем около 4 миллиграммов каждый день из таких продуктов, как орехи, отруби, злаки, чай и петрушка. Этот элемент делает кости скелета более прочными. Он также важен для усвоения витамина B1.

Польза и вредные свойства

Этот микроэлемент , имеет большое биологическое значение: он действует в качестве катализатора в биосинтезе порфиринов, а затем гемоглобина у животных и хлорофилла в зелёных растениях. Его присутствие также является необходимым условием для активности различных митохондриальных ферментных систем, некоторых ферментов метаболизма липидов и окислительных процессов фосфорилирования.

Пары или питьевая вода, загрязнённая солями этого металла, приводит к ирритативным изменениям дыхательных путей, хронической интоксикации с прогрессирующей и необратимой тенденцией, характеризующейся поражением базальных ганглиев центральной нервной системы, а затем нарушению экстрапирамидного типа аналогичного болезни Паркинсона.

Такое отравление часто имеет профессиональный характер. Ему подвержены рабочих занятые на обработке этого металла и его производных, а также работники химической и металлургической промышленности. В медицине, его используют в форме перманганата калия как вяжущее, местное антисептическое средство, а также в качестве антидота ядов природы алкалоидов (морфин, кодеин, атропин и т. д.).

Некоторые почвы имеют низкий уровень этого элемента, поэтому его добавляют к удобрениям и дают в качестве пищевой добавки для пасущихся животных.

Марганец: применение

В виде чистого металла, за исключением ограниченного использования в области электротехники, этот элемент не имеет других практических применений, в то же время широко используется для приготовления сплавов, производства стали и пр.

Когда Генри Бессемер изобрёл процесс производства стали в 1856 году, его сталь разрушалась из-за горячей прокатки. Проблема была решена в том же году, когда было обнаружено, что добавление небольших количеств этого элемента к расплавленному железу решает эту проблему. Сегодня фактически около 90% всего марганца используется для производства стали.

Mn — Марганец

МАРГАНЕЦ (лат. Manganum), Mn, химический элемент с атомным номером 25, атомная масса 54,9380. Химический символ элемента Mn произносится так же, как и название самого элемента. Природный марганец состоит только из нуклида 55 Mn. Конфигурация двух внешних электронных слоев атома марганца 3s 2 p 6 d 5 4s 2 . В периодической системе Д. И. Менделеева марганец входит в группу VIIВ, к которой относятся также технеций и рений, и располагается в 4-м периоде. Образует соединения в степенях окисления от +2 (валентность II) до +7 (валентность VII), наиболее устойчивы степени окисления +2 и +7. У марганца, как и у многих других переходных металлов, известны также соединения, содержащие атомы марганца в степени окисления 0.

Радиус нейтрального атома марганца 0,130 нм, радиус иона Mn 2+ — 0,080-0,104 нм, иона Mn 7+ — 0,039-0,060 нм. Энергии последовательной ионизации атома марганца 7,435, 15,64, 33,7, 51,2, 72,4 эВ. По шкале Полинга электроотрицательность марганца 1,55; марганец принадлежит к числу переходных металлов.

Марганец в компактном виде — твердый серебристо-белый металл.

Физические и химические свойства: марганец твердый хрупкий металл. Известны четыре кубические модификации металлического марганца. При температурах от комнатной и до 710°C устойчив a-Mn, параметр решетки а = 0,89125 нм, плотность 7,44 кг/дм 3 . В интервале температур 710-1090°C существует b-Mn, параметр решетки а = 0,6300 нм; при температурах 1090-1137°C — g-Mn, параметр решетки а = 0,38550 нм. Наконец, при температуре от 1137°C и до температуры плавления (1244°C) устойчив d-Mn с параметром решетки а = 0,30750 нм. Модификации a, b, и d хрупкие, g-Mn пластичен. Температура кипения марганца около 2080°C.

На воздухе марганец окисляется, в результате чего его поверхность покрывается плотной оксидной пленкой, которая предохраняет металл от дальнейшего окисления. При прокаливании на воздухе выше 800°C марганец покрывается окалиной, состоящей из внешнего слоя Mn 3 O 4 и внутреннего слоя состава MnO.

Марганец образует несколько оксидов: MnO, Mn 3 O 4 , Mn 2 O 3 , MnO 2 и Mn 2 O 7 . Все они, кроме Mn 2 O 7 , представляющего собой при комнатной температуре маслянистую зеленую жидкость с температурой плавления 5,9°C, твердые кристаллические вещества.

Монооксид марганца MnO образуется при разложении солей двухвалентного марганца (карбоната и других) при температуре около 300°C в инертной атмосфере:

MnCO 3 = MnO + CO 2

Этот оксид обладает полупроводниковыми свойствами. При разложении MnOОН можно получить Mn 2 O 3 . Этот же оксид марганца образуется при нагревании MnO 2 на воздухе при температуре примерно 600°C:

4MnO 2 = 2Mn 2 O 3 + O 2

Оксид Mn 2 O 3 восстанавливается водородом до MnO, а под действием разбавленных серной и азотной кислот переходит в диоксид марганца MnO 2 .

Если MnO 2 прокаливать при температуре около 950°C, то наблюдается отщепление кислорода и образование оксида марганца состава Mn 3 O 4:

3MnO 2 = Mn 3 O 4 + O 2

Этот оксид можно представить как MnO·Mn 2 О 3 , и по свойствам Mn 3 О 4 соответствует смеси этих оксидов.

Диоксид марганца MnO 2 — наиболее распространенное природное соединение марганца в природе, существующее в нескольких полиморфных формах. Так называемая b-модификация MnO 2 — это уже упоминавшийся минерал пиролюзит. Ромбическая модификация диоксида марганца, g-MnO 2 также встречается в природе. Это — минерал рамсделит (другое название — полианит).

Диоксид марганца нестехиометричен, в его решетке всегда наблюдается дефицит кислорода. Если оксиды марганца, отвечающие его более низким степеням окисления, чем +4, — основные, то диоксид марганца обладает амфотерными свойствами. При 170°C MnO 2 можно восстановить водородом до MnO.

Если к перманганату калия KMnO 4 добавить концентрированную серную кислоту, то образуется кислотный оксид Mn 2 O 7 , обладающий сильными окислительными свойствами:

2KMnO 4 + 2H 2 SO 4 = 2KHSO 4 + Mn 2 O 7 + H 2 O.

Mn 2 O 7 — кислотный оксид, ему отвечает сильная, не существующая в свободном состоянии марганцовая кислота НMnO 4 .

При взаимодействии марганца с галогенами образуются дигалогениды MnHal 2 . В случае фтора возможно также образование фторидов состава MnF 3 и MnF 4 , а в случае хлора — также трихлорида MnCl 3 . Реакции марганца с серой приводят к образованию сульфидов составов MnS (существует в трех полиморфных формах) и MnS 2 . Известна целая группа нитридов марганца: MnN 6 , Mn 5 N 2 , Mn 4 N, MnN, Mn 6 N 5 , Mn 3 N 2 .

С фосфором марганец образует фосфиды составов MnР, MnP 3 , Mn 2 P, Mn 3 P, Mn 3 P 2 и Mn 4 P. Известно несколько карбидов и силицидов марганца.

С холодной водой марганец реагирует очень медленно, но при нагревании скорость реакции значительно возрастает, образуется Mn(OH) 2 и выделяется водород. При взаимодействии марганца с кислотами образуются соли марганца (II):

Mn + 2HCl = MnCl 2 + H 2 .

Из растворов солей Mn 2+ можно осадить плохо растворимое в воде основание средней силы Mn(OH) 2:

Mn(NO 3) 2 + 2NaOH = Mn(OH) 2 + 2NaNO 3

Марганцу отвечает несколько кислот, из которых наиболее важны сильные неустойчивые марганцоватая кислота H 2 MnO 4 и марганцовая кислота HMnO 4 , соли которых — соответственно, манганаты (например, манганат натрия Na 2 MnO 4) и перманганаты (например, перманганат калия KMnO 4).

Манганаты (известны манганаты только щелочных металлов и бария) могут проявлять свойства как окислителей (чаще)

2NaI + Na 2 MnO 4 + 2H 2 O = MnO 2 + I 2 + 4NaOH,

так и восстановителей

2K 2 MnO 4 + Cl 2 = 2KMnO 4 + 2KCl.

В водных растворах манганаты диспропорционируют на соединения марганца (+4) и марганца (+7):

3K 2 MnO 4 + 3Н 2 О = 2KMnO 4 + MnO 2 ·Н 2 О + 4КОН.

При этом окраска раствора из зеленой переходит в синюю, затем в фиолетовую и малиновую. За способность изменять окраску своих растворов К. Шееле назвал манганат калия минеральным хамелеоном.

Перманганаты — сильные окислители. Например, перманганат калия KMnO 4 в кислой среде окисляет сернистый газ SO 2 до сульфата:

2KMnO 4 + 5SO 2 +2H 2 O = K 2 SO 4 + 2MnSO 4 + 2H 2 SO 4 .

При давлении около 10 МПа безводный MnCl 2 в присутствии металлоорганических соединений реагирует с оксидом углерода (II) CO с образованием биядерного карбонила Mn 2 (CO) 10 .

История открытия: один из основных материалов марганца — пиролюзит — был известен в древности как черная магнезия и использовался при варке стекла для его осветления. Его считали разновидностью магнитного железняка, а тот факт, что он не притягивается магнитом, Плиний Старший объяснил женским полом черной магнезии, к которому магнит «равнодушен». В 1774 г. шведский химик К. Шееле показал, что в руде содержится неизвестный металл. Он послал образцы руды своему другу химику Ю. Гану, который, нагревая в печке пиролюзит с углем, получил металлический марганец. В начале 19 в. для него было принято название «манганум» (от немецкого Manganerz — марганцевая руда).

Нахождение в природе: в земной коре содержание марганца составляет около 0,1 % по массе. В свободном виде марганец не встречается. Из руд наиболее распространены пиролюзит MnO 2 (содержит 63,2 % марганца), манганит MnO 2 ·Mn(OH) 2 (62,5 % марганца), браунит Mn 2 O 3 (69,5 % марганца), родохрозит MnCo 3 (47,8 % марганца), псиломелан mMnO·MnO 2 ·nH 2 O (45-60% марганца) и ряд других. Марганец содержат железо-марганцевые конкреции, которые в больших количествах (сотни миллиардов тонн) находятся на дне Тихого, Атлантического и Индийского океанов. В морской воде содержится около 1,0·10 –8 % марганца. Промышленного значения эти запасы марганца пока не имеют из-за сложности подъема конкреций на поверхность.

Получение: промышленное получение марганца начинается с добычи и обогащения руд. Если используют карбонатную руду марганца, то ее предварительно подвергают обжигу. В некоторых случаях руду далее подвергают сернокислотному выщелачиванию. Затем обычно марганец в полученном концентрате восстанавливают с помощью кокса (карботермическое восстановление). Иногда в качестве восстановителя используют алюминий или кремний. Для практических целей чаще всего используют ферромарганец, полученный в доменном процессе при восстановлении руд железа и марганца коксом. В ферромарганце содержание углерода составляет 6-8 % по массе.

Чистый марганец получают электролизом водных растворов сульфата марганца MnSO 4 , который проводят в присутствии сульфата аммония (NH 4) 2 SO 4 .

Применение: более 90% производимого марганца идет в черную металлургию. Марганец используют как добавку к сталям для их раскисления, десульфурации (при этом происходит удаление из стали нежелательных примесей — кислорода, серы и других), а также для легирования сталей, т. е. улучшения их механических и коррозионных свойств. Марганец применяется также в медных, алюминиевых и магниевых сплавах. Покрытия из марганца на металлических поверхностях обеспечивают их антикоррозионную защиту. Для нанесения тонких покрытий из марганца используют легко летучий и термически нестабильный биядерный декакарбонил Mn 2 (CO) 10 .

Соединения марганца (карбонат, оксиды и другие) используют при производстве ферритных материалов, они служат катализаторами многих химических реакций, входят в состав микроудобрений.

Биологическая роль: марганец — микроэлемент , постоянно присутствующий в живых организмах и необходимый для их нормальной жизнедеятельности. Содержание марганца в растениях составляет 10 –4 -10 –2 %, в животных 10 –3 -10 –5 %, некоторые растения (водяной орех, ряска, диатомовые водоросли) и животные (муравьи, устрицы, ряд ракообразных) способны концентрировать марганец. В организме среднего человека (масса тела 70 кг) содержится 12 мг марганца. Марганец необходим животным и растениям для нормального роста и размножения. Он активирует ряд ферментов, участвует в процессах дыхания, фотосинтеза, влияет на проветривание и минеральный обмен.

Одним из самых важных для металлургии металлов является марганец. Кроме того, он вообще достаточно необычный элемент, с которым связаны интересные факты. Важный для живых организмов, нужный при получении многих сплавов, химических веществ. Марганец - фото которого можно увидеть ниже. Именно его свойства и характеристики рассмотрим в данной статье.

Характеристика химического элемента

Если говорить о марганце как об элементе то в первую очередь следует охарактеризовать его положение в ней.

  1. Располагается в четвертом большом периоде, седьмой группе, побочной подгруппе.
  2. Порядковый номер - 25. Марганец - химический элемент, атомов которого равен +25. Количество электронов такое же, нейтронов - 30.
  3. Значение атомной массы - 54,938.
  4. Обозначение химического элемента марганца - Mn.
  5. Латинское название - manganese.

Располагается между хромом и железом, чем объясняется его сходство с ними в физических и химических характеристиках.

Марганец - химический элемент: переходный металл

Если рассмотреть электронную конфигурацию приведенного атома, то ее формула будет иметь вид: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 5 . Становится очевидно, что рассматриваемый нами элемент - это из d-семейства. Пять электронов на 3d-подуровне говорят о стабильности атома, что и проявляется в его химических свойствах.

Как металл марганец является восстановителем, однако большая часть его соединений способна проявлять и достаточно сильные окислительные способности. Это связано с различными степенями окисления и валентностями, которыми обладает данный элемент. В этом заключается особенность всех металлов данного семейства.

Таким образом, марганец - химический элемент, располагающийся среди других атомов и имеющий свои особенные характеристики. Рассмотрим, какие это свойства, более подробно.

Марганец - химический элемент. Степень окисления

Мы уже привели электронную формулу атома. Согласно ей, данный элемент способен проявлять несколько положительных степеней окисления. Это:

Валентность атома равна IV. Самыми устойчивыми являются те соединения, в которых у марганца проявляются значения +2, +4, +6. Высшая степень окисления позволяет выступать соединениям в роли сильнейших окислителей. Например: KMnO 4 , Mn 2 O 7 .

Соединения с +2 являются восстановителями, гидроксид марганца (II) обладает амфотерными свойствами, с преобладанием основных. Промежуточные показатели степеней окисления образуют амфотерные соединения.

История открытия

Марганец - химический элемент, который был открыт не сразу, а постепенно и разными учеными. Однако его соединениями люди пользовались с древних времен. Оксид марганца (IV) применялся для выплавки стекла. Один итальянец констатировал тот факт, что добавка этого соединения при химическом производстве стекол окрашивает их цвет в фиолетовый. Наряду с этим, это же вещество помогает устранить мутность в цветных стеклах.

Позже в Австрии ученый Кайм сумел получил кусочек металлического марганца, воздействуя высокой температурой на пюролизит (оксид марганца (IV)), поташ и уголь. Однако данный образец имел много примесей, устранить которые ему не удалось, поэтому открытие не состоялось.

Еще позже другой ученый также синтезировал смесь, в которой значительная доля приходилась на чистый металл. Это был Бергман, до этого открывший элемент никель. Однако и ему довести дело до конца было не суждено.

Марганец - химический элемент, получить и выделить который в виде простого вещества впервые удалось Карлу Шееле в 1774 году. Однако сделал он это совместно с И. Ганом, который завершил процесс выплавки кусочка металла. Но даже им не удалось полностью избавить его от примесей и получить 100% выход продукта.

Тем не менее именно это время стало открытием данного атома. Эти же ученые предприняли попытку дать название, как первооткрыватели. Ими был выбран термин манганезиум. Однако после открытия магния началась путаница, и название марганца было изменено на современное (Х. Дэвид, 1908 год).

Так как марганец - химический элемент, свойства которого являются весьма ценными для многих металлургических процессов, со временем появилась необходимость все же найти способ получения его в максимально чистом виде. Данная проблема решалась учеными всего мира, но сумела разрешиться лишь в 1919 году благодаря работам Р. Агладзе - советского ученого-химика. Именно он нашел способ, которым можно из сульфатов и хлоридов марганца электролизным путем получить чистый металл с содержанием вещества 99,98%. Теперь этот метод применяется во всем мире.

Нахождение в природе

Марганец - химический элемент, фото простого вещества которого можно увидеть ниже. В природе существует масса изотопов этого атома, количество нейтронов в которых сильно колеблется. Так, массовые числа меняются в пределах от 44 до 69. Однако единственным стабильным изотопом является элемент со значением 55 Mn, все остальные имеют либо ничтожно короткий период полураспада, либо существует в слишком малых количествах.

Так как марганец - химический элемент, степень окисления которого весьма различна, то и соединений в природе он образует также много. В чистом виде данный элемент вообще не встречается. В минералах и рудах постоянный сосед его - железо. Всего можно обозначить несколько самых главных горных пород, в состав которых входит марганец.

  1. Пиролюзит. Формула соединения: MnO 2 *nH 2 O.
  2. Псиломелан, молекула MnO2*mMnO*nH2O.
  3. Манганит, формула MnO*OH.
  4. Браунит встречается реже, чем остальные. Формула Mn 2 O 3 .
  5. Гаусманит, формула Mn*Mn 2 O 4.
  6. Родонит Mn 2 (SiO 3) 2 .
  7. Карбонатные руды марганца.
  8. Малиновый шпат или родохрозит - MnCO 3 .
  9. Пурпурит - Mn 3 PO 4 .

Помимо этого, можно обозначить еще несколько минералов, в состав которых также входит рассматриваемый элемент. Это:

  • кальцит;
  • сидерит;
  • глинистые минералы;
  • халцедон;
  • опал;
  • песчано-алевритовые соединения.

Помимо горных и осадочных пород, минералов, марганец - химический элемент, который входит в состав следующих объектов:

  1. Растительные организмы. Самыми крупными накопителями этого элемента являются: водяной орех, ряска, диатомовые водоросли.
  2. Ржавчинные грибы.
  3. Некоторые виды бактерий.
  4. Следующие животные: рыжие муравьи, ракообразные, моллюски.
  5. Люди - суточная потребность примерно 3-5 мг.
  6. Воды Мирового океана содержат 0,3% этого элемента.
  7. Общее содержание в земной коре 0,1% по массе.

В целом это 14 по распространенности элемент из всех на нашей планете. Среди тяжелых металлов он второй после железа.

Физические свойства

С точки зрения свойств марганца, как простого вещества, можно выделить несколько основных физических характеристик для него.

  1. В виде простого вещества представляет собой достаточно твердый металл (по шкале Мооса показатель равен 4). Цвет - серебристо-белый, на воздухе покрывается защитной оксидной пленкой, на разрезе блестит.
  2. Температура плавления составляет 1246 0 С.
  3. Кипения - 2061 0 С.
  4. Проводниковые свойства хорошие, является парамагнетиком.
  5. Плотность металла составляет 7,44 г/см 3 .
  6. Существует в виде четырех полиморфных модификаций (α, β, γ, σ), различающихся строением и формой кристаллической решетки и плотностью упаковки атомов. Также отличается их температура плавления.

В металлургии применяются три основные формы марганца: β, γ, σ. Альфа реже, так как она слишком хрупкая по своим свойствам.

Химические свойства

С точки зрения химии, марганец - химический элемент, заряд иона которого сильно колеблется от +2 до +7. Это накладывает свой отпечаток и на его активность. В свободном виде на воздухе марганец очень слабо реагирует с водой, растворяется в разбавленных кислотах. Однако стоит лишь увеличить температуру, как активность металла резко возрастает.

Так, он способен взаимодействовать с:

  • азотом;
  • углеродом;
  • галогенами;
  • кремнием;
  • фосфором;
  • серой и прочими неметаллами.

При нагревании без доступа воздуха металл легко переходит в парообразное состояние. В зависимости от степени окисления, которую проявляет марганец, его соединения могут быть как восстановителями, так и окислителями. Некоторые проявляют амфотерные свойства. Так, основные характерны для соединений, в которых он +2. Амфотерные - +4, а кислотные и сильные окислительные в высшем значении +7.

Несмотря на то что марганец - это переходный металл, комплексные соединения для него немногочисленны. Это связано с устойчивой электронной конфигурацией атома, ведь 3d-подуровень его содержит 5 электронов.

Способы получения

Существует три основных способа, которыми в промышленности получают марганец (химический элемент). Как читается на латыни название, мы уже обозначали - manganum. Если перевести его на русский, то это будет "да, действительно проясняю, обесцвечиваю". Таким своим названием марганец обязан проявляемым свойствам, известным с самой древности.

Однако, несмотря на известность, получить его в чистом виде для применения сумели лишь в 1919 году. Делается это следующими методами.

  1. Электролизный, выход продукта составляет 99,98%. Таким способом получают марганец в химической промышленности.
  2. Силикотермический, или восстановление при помощи кремния. При данном методе происходит сплавление кремния и оксида марганца (IV), в результате чего формируется чистый металл. Выход составляет около 68%, так как побочно идет соединение марганца с кремнием в силицид. Данный способ применяют в металлургической промышленности.
  3. Алюминотермический метод - восстановление при помощи алюминия. Также не дает слишком высокого выхода продукта, марганец образуется загрязненный примесями.

Производство данного металла имеет важное значение для многих процессов, осуществляемых в металлургии. Даже небольшая добавка марганца способна сильно повлиять на свойства сплавов. Доказано, что в нем растворяются многие металлы, заполняя собой его кристаллическую решетку.

По добыче и производству данного элемента Россия занимает первое место в мире. Также этот процесс осуществляется в таких странах, как:

  • Китай.
  • Казахстан.
  • Грузия.
  • Украина.

Использование в промышленности

Марганец - химический элемент, применение которого важно не только в металлургии. но и в других областях. Помимо металла в чистом виде, большое значение имеют и различные соединения данного атома. Обозначим основные из них.

  1. Существует несколько видов сплавов, которые, благодаря марганцу, имеют уникальные свойства. Так, например, настолько прочная и износостойкая, что ее используют для выплавки деталей экскаваторов, камнеперерабатывающих машин, дробилок, шаровых мельниц, броневых деталей.
  2. Диоксид марганца - обязательный окислительный элемент гальваники, его используют при создании деполяризаторов.
  3. Многие соединения марганца нужны для осуществления органических синтезов различных веществ.
  4. Перманганат калия (или марганцовка) применяется в медицине в качестве сильного обеззараживающего средства.
  5. Данный элемент входит в состав бронзы, латуни, образует собственный сплав с медью, который служит для изготовления турбин самолетов, лопастей и прочих деталей.

Биологическая роль

Суточная потребность в марганце для человека составляет 3-5 мг. Дефицит данного элемента приводит к угнетению нервной системы, нарушению сна и беспокойству, головокружению. Роль его до конца еще не изучена, однако ясно, что, прежде всего, он оказывает влияние на:

  • рост;
  • деятельность половых желез;
  • работу гормонов;
  • образование крови.

Данный элемент присутствует во всех растениях, животных, человеке, что доказывает его немаловажную биологическую роль.

Марганец - химический элемент, интересные факты о котором могут произвести впечатление на любого человека, а также заставить понять, насколько он важен. Приведем самые основные из них, которые нашли свой отпечаток в истории данного металла.

  1. В тяжелые времена гражданской войны в СССР одним из первых экспортных продуктов была руда, содержащая большое количество марганца.
  2. Если диоксид марганца сплавить с и селитрой, а затем продукт растворить в воде, то начнутся удивительные превращения. Сначала раствор окрасится в зеленый цвет, затем окраска сменится на синий, после - фиолетовый. Наконец, станет малиновой и постепенно выпадет бурый осадок. Если же смесь встряхнуть, то снова восстановится зеленый цвет и все произойдет заново. Именно за это марганцовка и получила свое название, которое переводится, как "минеральный хамелеон".
  3. Если в землю вносить удобрения, содержащие марганец, то у растений повысится производительность и возрастет скорость фотосинтеза. Озимая пшеница будет лучше формировать зерна.
  4. Самая большая глыба минерала марганца родонита весила 47 тонн и была найдена на Урале.
  5. Существует тройной сплав, который называется манганин. Он состоит из таких элементов, как медь, марганец и никель. Его уникальность в том, что он обладает большим электрическим сопротивлением, которое не зависит от температуры, но находится под влиянием давления.

Конечно, это не все, что можно сказать об этом металле. Марганец - химический элемент, интересные факты о котором достаточно разнообразны. Особенно если говорить о тех свойствах, которыми он наделяет различные сплавы.

(эВ)

Электронная конфигурация 3d 5 4s 2 Химические свойства Ковалентный радиус 117 пм Радиус иона (+7e) 46 (+2e) 80 пм Электроотрицательность
(по Полингу) 1,55 Электродный потенциал 0 Степени окисления 7, 6, 5, 4, 3, 2, 0, −1 Термодинамические свойства простого вещества Плотность 7,21 /см ³ Молярная теплоёмкость 26,3 Дж /( ·моль) Теплопроводность (7,8) Вт /( ·) Температура плавления 1 517 Теплота плавления (13,4) кДж /моль Температура кипения 2 235 Теплота испарения 221 кДж /моль Молярный объём 7,39 см ³/моль Кристаллическая решётка простого вещества Структура решётки кубическая Параметры решётки 8,890 Отношение c/a — Температура Дебая 400
Mn 25
54,93805
3d 5 4s 2
Марганец

Ма́рганец —элемент побочной подгруппы седьмой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева, атомный номер 25. Обозначается символом Mn (лат. Manganum, ма́нганум, в составе формул по-русски читается как марганец, например, KMnO4 — калий марганец о четыре; но нередко читают и как манган). Простое вещество марганец (CAS-номер: 7439-96-5) — металл серебристо-белого цвета. Известны пять аллотропных модификаций марганца — четыре с кубической и одна с тетрагональной кристаллической решёткой.

История и распространённость в природе

Марганец — 14-й элемент по распространённости на Земле , а после железа — второй тяжёлый металл, содержащийся в земной коре (0,03 % от общего числа атомов земной коры). Сопутствует железу во многих его рудах , однако встречаются и самостоятельные месторождения марганца. В чиатурском месторождении (район Кутаиси) сосредоточено до 40 % марганцевых руд. Марганец, рассеянный в горных породах вымывается водой и уносится в Мировой океан. При этом его содержание в морской воде незначительно (10 −7 —10 −6 %), а в глубоких местах океана его концентрация возрастает до 0,3 % вследствие окисления растворённым в воде кислородом с образованием нерастворимого в воде оксида марганца, который в гидратированной форме (MnO 2 ·x H 2 O) и опускается в нижние слои океана, формируя так называемые железо-марганцевые конкреции на дне, в которых количество марганца может достигать 45 % (также в них имеются примеси меди , никеля , кобальта). Такие конкреции могут стать в будущем источником марганца для промышленности.

В России является остродефицитным сырьём, известны месторождения: «Усинское» в Кемеровской области, «Полуночное» в Свердловской, «Порожинское» в Красноярском крае, «Южно-Хинганское» в Еврейской автономной области, «Рогачёво-Тайнинская» площадь и «Северо-Тайнинское» поле на Новой Земле.

Марганцевые руды

Минералы марганца

  • пиролюзит MnO 2 ·x H 2 O, самый распространённый минерал (содержит 63,2 % марганца);
  • манганит (бурая манганцевая руда) MnO(OH) (62,5 % марганца);
  • браунит 3Mn 2 O 3 ·Mn O 3 (69,5 % марганца);
  • гаусманит (Mn II Mn 2 III)O 4
  • родохрозит (марганцевый шпат, малиновый шпат) MnCO 3 (47,8 % марганца);
  • псиломелан m MnO . MnO 2 . n H 2 O (45-60 % марганца);
  • пурпурит (Mn 3+ ), 36,65 % марганца.

Получение

2MnO 2 + 4KOH + O 2 → 2K 2 MnO 4 + 2H 2 O

Раствор манганата имеет тёмно-зелёный цвет. При подкислении протекает реакция:

3K 2 MnO 4 + 3H 2 SO 4 → 3K 2 SO 4 + 2HMnO 4 + MnO(OH) 2 ↓ + H 2 O

Раствор окрашивается в малиновый цвет из-за появления аниона MnO 4 − и из него выпадает коричневый осадок гидроксида марганца (IV).

Марганцевая кислота очень сильная, но неустойчивая, её невозможно сконцентрировать более, чем до 20 %. Сама кислота и её соли (перманганаты) — сильные окислители. Например, перманганат калия в зависимости от раствора окисляет различные вещества, восстанавливаясь до соединений марганца разной степени окисления. В кислой среде — до соединений марганца (II), в нейтральной — до соединений марганца (IV), в сильно щелочной — до соединений марганца (VI).

При прокаливании перманганаты разлагаются с выделением кислорода (один из лабораторных способов получения чистого кислорода). Реакция идёт по уравнению (на примере перманганата калия):

2KMnO 4 →(t) K 2 MnO 4 + MnO 2 + O 2

Под действием сильных окислителей ион Mn 2+ переходит в ион MnO 4 − :

2Mn 2 SO 4 + 5PbO 2 + 6HNO 3 → 2HMnO 4 + 2PbSO 4 + 3Pb(NO 3) 2 + 2H 2 O

Эта реакция используется для качественного определения Mn 2+ (см. в разделе «Определение методами химического анализа»).

При подщелачивании растворов солей Mn (II) из них выпадает осадок гидроксида марганца (II), быстро буреющий на воздухе в результате окислления. Подробное описание реакции см. в разделе «Определение методами химического анализа».

Соли MnCl 3 , Mn 2 (SO 4) 3 неустойчивы. Гидроксиды Mn(OH) 2 и Mn(OH) 3 имеют основной характер, MnO(OH) 2 — амфотерный. Хлорид марганца (IV) MnCl 4 очень неустойчив, разлагается при нагревании, чем пользуются для получения хлора :

MnO 2 + 4HCl →(t) MnCl 2 + Cl 2 + 2H 2 O

Применение в промышленности

Марганец в виде ферромарганца применяется для «раскисления» стали при её плавке, то есть для удаления из неё кислорода. Кроме того, он связывает серу , что также улучшает свойства сталей. Введение до 12-13 % Mn в сталь(так называемая Сталь Гадфильда), иногда в сочетании с другими легирующими металлами, сильно упрочняет сталь, делает её твердой и сопротивляющейся износу и ударам(эта сталь резко упрочняется и становится тверже при ударах). Такая сталь используется для изготовления шаровых мельниц, землеройных и камнедробильных машин, броневых элементов и т. д. В «зеркальный чугун» вводится до 20 % Mn.

Марганец вводят в бронзы и латуни.

Значительное количество диоксида марганца потребляется при производством марганцево-цинковых гальванических элементов, MnO 2 используется в таких элементах в качестве окислителя-деполяризатора .

Соединения марганца также широко используются как в тонком органическом синтезе (MnO 2 и KMnO 4 в качестве окислителей), так и промышленном органическом синтезе (компоненты катализаторов окисления углеводородов, например, в производстве терефталевой кислоты окислением p-ксилола , окисление парафинов в высшие жирные кислоты).

Цены на металлический марганец в слитках чистотой 95 % в 2006 году составили в среднем 2,5 долл/кг.

Арсенид марганца обладает гигантским магнитокалорическим эффектом (усиливающимся под давлением). Теллурид марганца перспективный термоэлектрический материал(термо-э.д.с 500 мкВ/К).

Определение методами химического анализа

Марганец принадлежит к пятой аналитической группе катионов.

Специфические реакции, используемые в аналитической химии для обнаружения катионов Mn 2+ следующие:

1. Едкие щёлочи с солями марганца (II) дают белый осадок гидроксида марганца (II):

MnSO 4 +2KOH→Mn(OH) 2 ↓+K 2 SO 4 Mn 2+ +2OH − →Mn(OH) 2 ↓

Осадок на воздухе меняет цвет на бурый из-за окисления кислородом воздуха.

Выполнение реакции. К двум каплям раствора соли марганца добавляют две капли раствора щёлочи. Наблюдают изменение цвета осадка.

2. Пероксид водорода в присутствии щёлочи окисляет соли марганца (II) до тёмно-бурого соединения марганца (IV):

MnSO 4 +H 2 O 2 +2NaOH→MnO(OH) 2 ↓+Na 2 SO 4 +H 2 O Mn 2+ +H 2 O 2 +2OH − →MnO(OH) 2 ↓+H 2 O

Выполнение реакции. К двум каплям раствора соли марганца добавляют четыре капли раствора щёлочи и две капли раствора H 2 O 2 .

3. Диоксид свинца PbO 2 в присутствии концентрированной азотной кислоты при нагревании окисляет Mn 2+ до MnO 4 − с образованием марганцевой кислоты малинового цвета:

2MnSO 4 +5PbO 2 +6HNO 3 →2HMnO 4 +2PbSO 4 ↓+3Pb(NO 3) 2 +2H 2 O 2Mn 2+ +5PbO 2 +4H + →2MnO 4 − +5Pb 2+ +2H 2 O

Эта реакция дает отрицательный результат в присутствии восстановителей, например хлороводородной кислоты и её солей, так как они взаимодействуют с диоксидом свинца, а также с образовавшейся марганцевой кислотой. При больших количествах марганца эта реакция не удаётся, так как избыток ионов Mn 2+ восстанавливает образующуюся марганцевую кислоту HMnO 4 до MnO(OH) 2 и вместо малиновой окраски появляется бурый осадок. Вместо диоксида свинца для окисления Mn 2+ в MnO 4 − могут быть использованы другие окислители, например персульфат аммония (NH 4) 2 S 2 O 8 в присутствии катализатора — ионов Ag + или висмутата натрия NaBiO 3:

2MnSO 4 +5NaBiO 3 +16HNO 3 →2HMnO 4 +5Bi(NO 3) 3 +NaNO 3 +2Na 2 SO 4 +7H 2 O

Выполнение реакции. В пробирку вносят стеклянным шпателем немного PbO 2 , а затем 5 капель концентрированной азотной кислоты HNO 3 и нагревают смесь на кипящей водяной бане. В нагретую смесь добавляют 1 каплю раствора сульфата марганца (II) MnSO 4 и снова нагревают 10—15 мин, встряхивая время от времени содержимое пробирки. Дают избытку диоксида свинца осесть и наблюдают малиновую окраску образовавшейся марганцевой кислоты.

При окислении висмутатом натрия реакцию проводят следующим образом. В пробирку помещают 1—2 капли раствора сульфата марганца (II) и 4 капли 6 н. HNO 3 , добавляют несколько крупинок висмутата натрия и встряхивают. Наблюдают появление малиновой окраски раствора.

4. Сульфид аммония (NH 4) 2 S осаждает из раствора солей марганца сульфид марганца (II), окрашенный в телесный цвет:

MnSO 4 +(NH 4) 2 S→MnS↓+(NH 4) 2 SO 4 Mn 2+ +S 2- →MnS↓

Осадок легко растворяется в разбавленных минеральных кислотах и даже в уксусной кислоте.

Выполнение реакции. В пробирку помещают 2 капли раствора соли марганца (II) и добавляют 2 капли раствора сульфида аммония.

Биологическая роль и содержание в живых организмах

Марганец содержится в организмах всех растений и животных, хотя его содержание обычно очень мало, порядка тысячных долей процента, он оказывает значительное влияние на жизнедеятельность, то есть является микроэлементом. Марганец оказывает влияние на рост, образование крови и функции половых желёз. Особо богаты марганцем листья свёклы — до 0,03 %, а также большие его количества содержатся в организмах рыжих муравьёв — до 0,05 %. Некоторые бактерии содержат до нескольких процентов марганца.

Соединения марганца

Отравление марганцем

error: