Умножение скобки на скобку правило. Калькулятор онлайн.Упрощение многочлена.Умножение многочленов

Скобки используются для указания на порядок выполнения действий в числовых и буквенных выражениях, а также в выражениях с переменными. От выражения со скобками удобно перейти к тождественно равному выражению без скобок. Этот прием носит название раскрытия скобок.

Раскрыть скобки означает избавить выражение от этих скобок.

Отдельного внимания заслуживает еще один момент, который касается особенностей записи решений при раскрытии скобок. Мы можем записать начальное выражение со скобками и полученный после раскрытия скобок результат как равенство. Например, после раскрытия скобок вместо выражения
3−(5−7) мы получаем выражение 3−5+7. Оба этих выражения мы можем записать в виде равенства 3−(5−7)=3−5+7.

И еще один важный момент. В математике для сокращения записей принято не писать знак плюс, если он стоит в выражении или в скобках первым. Например, если мы складываем два положительных числа, к примеру, семь и три, то пишем не +7+3, а просто 7+3, несмотря на то, что семерка тоже положительное число. Аналогично если вы видите, например, выражение (5+x) – знайте, что и перед скобкой стоит плюс, который не пишут, и перед пятеркой стоит плюс +(+5+x).

Правило раскрытия скобок при сложении

При раскрытии скобок, если перед скобками стоит плюс, то этот плюс опускается вместе со скобками.

Пример. Раскрыть скобки в выражении 2 + (7 + 3) Перед скобками плюс, значит знаки перед числами в скобках не меняем.

2 + (7 + 3) = 2 + 7 + 3

Правило раскрытия скобок при вычитании

Если перед скобками стоит минус, то этот минус опускается вместе со скобками, но слагаемые, которые были в скобках, меняют свой знак на противоположный. Отсутствие знака перед первым слагаемым в скобках подразумевает знак +.

Пример. Раскрыть скобки в выражении 2 − (7 + 3)

Перед скобками стоит минус, значит нужно поменять знаки перед числами из скобок. В скобках перед цифрой 7 знака нет, это значит, что семерка положительная, считается, что перед ней знак +.

2 − (7 + 3) = 2 − (+ 7 + 3)

При раскрытии скобок убираем из примера минус, который был перед скобками, и сами скобки 2 − (+ 7 + 3) , а знаки, которые были в скобках, меняем на противоположные.

2 − (+ 7 + 3) = 2 − 7 − 3

Раскрытие скобок при умножении

Если перед скобками стоит знак умножения, то каждое число, стоящее внутри скобок, умножается на множитель, стоящий перед скобками. При этом умножение минуса на минус дает плюс, а умножение минуса на плюс, как и умножение плюса на минус дает минус.

Таким образом, сскобки в произведениях раскрываются в соответствии с распределительным свойством умножения.

Пример. 2 · (9 - 7) = 2 · 9 - 2 · 7

При умножении скобки на скобку, каждый член первой скобки перемножается с каждым членом второй скобки.

(2 + 3) · (4 + 5) = 2 · 4 + 2 · 5 + 3 · 4 + 3 · 5

На самом деле, нет необходимости запоминать все правила, достаточно помнить только одно, вот это: c(a−b)=ca−cb. Почему? Потому что если в него вместо c подставить единицу, получится правило (a−b)=a−b. А если подставить минус единицу, получим правило −(a−b)=−a+b. Ну, а если вместо c подставить другую скобку – можно получить последнее правило.

Раскрываем скобки при делении

Если после скобок стоит знак деления, то каждое число, стоящее внутри скобок, делится на делитель, стоящий после скобок, и наоборот.

Пример. (9 + 6) : 3=9: 3 + 6: 3

Как раскрыть вложенные скобки

Если в выражении присутствуют вложенные скобки, то их раскрывают по порядку, начиная с внешних или внутренних.

При этом важно при раскрытии одной из скобок не трогать остальные скобки, просто переписывая их как есть.

Пример. 12 - (a + (6 - b) - 3) = 12 - a - (6 - b) + 3 = 12 - a - 6 + b + 3 = 9 - a + b

В данной статье мы подробно рассмотрим основные правила такой важной темы курса математики, как раскрытие скобок. Знать правила раскрытия скобок нужно для того, чтобы верно решать уравнения, в которых они используются.

Как правильно раскрывать скобки при сложении

Раскрываем скобки, перед которыми стоит знак « + »

Эта самый простой случай, ибо если перед скобками стоит знак сложения, при раскрытии скобок знаки внутри них не меняются. Пример:

(9 + 3) + (1 - 6 + 9) = 9 + 3 + 1 - 6 + 9 = 16.

Как раскрыть скобки, перед которыми стоит знак « - »

В данном случае нужно переписать все слагаемые без скобок, но при этом сменить все знаки внутри них на противоположные. Знаки меняются только у слагаемых из тех скобок, перед которыми стоял знак « - ». Пример:

(9 + 3) - (1 - 6 + 9) = 9 + 3 - 1 + 6 - 9 = 8.

Как раскрыть скобки при умножении

Перед скобками стоит число-множитель

В данном случае нужно умножить каждое слагаемое на множитель и раскрыть скобки, не меняя знаков. Если множитель имеет знак « - », то при перемножении знаки слагаемых меняются на противоположные. Пример:

3 * (1 - 6 + 9) = 3 * 1 - 3 * 6 + 3 * 9 = 3 - 18 + 27 = 12.

Как раскрыть две скобки со знаком умножения между ними

В данном случае нужно каждое слагаемое из первых скобок перемножить с каждым слагаемым из вторых скобок и затем сложить полученные результаты. Пример:

(9 + 3) * (1 - 6 + 9) = 9 * 1 + 9 * (- 6) + 9 * 9 + 3 * 1 + 3 * (- 6) + 3 * 9 = 9 - 54 + 81 + 3 - 18 + 27 = 48.

Как раскрыть скобки в квадрате

В случае, если сумма или разность двух слагаемых возведена в квадрат, скобки следует раскрывать по следующей формуле:

(х + у) ^ 2 = х ^ 2 + 2 * х * у + у ^ 2.

В случае с минусом внутри скобок формула не меняется. Пример:

(9 + 3) ^ 2 = 9 ^ 2 + 2 * 9 * 3 + 3 ^ 2 = 144.

Как раскрыть скобки в другой степени

Если сумма или разность слагаемых возводится, например, в 3 или 4-ю степень, то нужно просто разбить степень скобки на «квадраты». Степени одинаковых множителей складываются, а при делении из степени делимого вычитается степень делителя. Пример:

(9 + 3) ^ 3 = ((9 + 3) ^ 2) * (9 + 3) = (9 ^ 2 + 2 * 9 * 3 + 3 ^ 2) * 12 = 1728.

Как раскрыть 3 скобки

Бывают уравнения, в которых перемножаются сразу 3 скобки. В таком случае нужно сначала перемножить между собой слагаемые первых двух скобок, и затем сумму этого перемножения умножить на слагаемые третьей скобки. Пример:

(1 + 2) * (3 + 4) * (5 - 6) = (3 + 4 + 6 + 8) * (5 - 6) = - 21.

Данные правила раскрытия скобок одинаково распространяются для решения как линейных, так и тригонометрических уравнений.

Раскрытие скобок является одним из видов преобразования выражения. В этом разделе мы опишем правила раскрытия скобок, а также рассмотрим наиболее часто встречающиеся примеры задач.

Yandex.RTB R-A-339285-1

Что называется раскрытием скобок?

Скобки используются для указания на порядок выполнения действий в числовых и буквенных выражениях, а также в выражениях с переменными. От выражения со скобками удобно перейти к тождественно равному выражению без скобок. Например, заменить выражение 2 · (3 + 4) на выражение вида 2 · 3 + 2 · 4 без скобок. Этот прием носит название раскрытия скобок.

Определение 1

Под раскрытием скобок подразумевают приемы избавления от скобок и рассматривают его обычно в отношении выражений, которые могут содержать:

  • знаки « + » или « - » перед скобками, в которые заключены суммы или разности;
  • произведение числа, буквы или нескольких букв и суммы или разности, которая помещена в скобки.

Так мы привыкли рассматривать процесс раскрытия скобок в курсе школьной программы. Однако никто не мешает нам посмотреть на это действие шире. Мы можем назвать раскрытием скобок переход от выражения, которое содержит отрицательные числа в скобках, к выражению, не имеющему скобок. К примеру, мы можем перейти от 5 + (− 3) − (− 7) к 5 − 3 + 7 . Фактически, это тоже раскрытие скобок.

Точно также мы можем заменить произведение выражений в скобках вида (a + b) · (c + d) на сумму a · c + a · d + b · c + b · d . Такой прием также не противоречит смыслу раскрытия скобок.

Вот еще один пример. Мы можем допустить, что в выражениях вместо чисел и переменных могут быть использованы любые выражения. Например, выражению x 2 · 1 a - x + sin (b) будет соответствовать выражение без скобок вида x 2 · 1 a - x 2 · x + x 2 · sin (b) .

Отдельного внимания заслуживать еще один момент, который касается особенностей записи решений при раскрытии скобок. Мы можем записать начальное выражение со скобками и полученный после раскрытия скобок результат как равенство. Например, после раскрытия скобок вместо выражения 3 − (5 − 7) мы получаем выражение 3 − 5 + 7 . Оба этих выражения мы можем записать в виде равенства 3 − (5 − 7) = 3 − 5 + 7 .

Проведение действий с громоздкими выражениями может потребовать записи промежуточных результатов. Тогда решение будет иметь вид цепочки равенств. Например, 5 − (3 − (2 − 1)) = 5 − (3 − 2 + 1) = 5 − 3 + 2 − 1 или 5 − (3 − (2 − 1)) = 5 − 3 + (2 − 1) = 5 − 3 + 2 − 1 .

Правила раскрытия скобок, примеры

Приступим к рассмотрению правил раскрытия скобок.

У одиночных чисел в скобках

Отрицательные числа в скобках часто встречаются в выражениях. Например, (− 4) и 3 + (− 4) . Положительные числа в скобках тоже имеют место быть.

Сформулируем правило раскрытия скобок, в которых заключены одиночные положительные числа. Предположим, что а – это любое положительное число. Тогда (а) мы можем заменить на а, + (а) на + а, - (а) на – а. Если вместо а взять конкретное число, то согласно правилу: число (5) запишется как 5 , выражение 3 + (5) без скобок примет вид 3 + 5 , так как + (5) заменяется на + 5 , а выражение 3 + (− 5) эквивалентно выражению 3 − 5 , так как + (− 5) заменяется на − 5 .

Положительные числа обычно записываются без использования скобок, так как скобки в этом случае излишни.

Теперь рассмотрим правило раскрытия скобок, внутри которых содержится одиночное отрицательное число. + (− a) мы заменяем на − a , − (− a) заменяется на + a . Если выражение начинается с отрицательного числа (− a) , которое записано в скобках, то скобки опускаются и вместо (− a) остается − a .

Приведем примеры: (− 5) можно записать как − 5 , (− 3) + 0 , 5 принимает вид − 3 + 0 , 5 , 4 + (− 3) превращается в 4 − 3 , а − (− 4) − (− 3) после раскрытия скобок принимает вид 4 + 3 , так как − (− 4) и − (− 3) заменяется на + 4 и + 3 .

Следует понимать, что записать выражение 3 · (− 5) как 3 · − 5 нельзя. Об этом речь пойдет в следующих пунктах.

Давайте посмотрим, на чем основываются правила раскрытия скобок.

Согласно правилу разность a − b равна a + (− b) . На основе свойств действий с числами мы можем составить цепочку равенств (a + (− b)) + b = a + ((− b) + b) = a + 0 = a , которая будет справедлива. Эта цепочка равенств в силу смысла вычитания доказывает, что выражение a + (− b) - это разность a − b .

Основываясь на свойствах противоположных чисел и правил вычитания отрицательных чисел мы можем утверждать, что − (− a) = a , a − (− b) = a + b .

Встречаются выражения, которые составляются из числа, знаков минуса и нескольких пар скобок. Использование приведенных выше правил позволяет последовательно избавляться от скобок, продвигаясь от внутренних скобок к наружным или в обратном направлении. Примером такого выражения может быть − (− ((− (5)))) . Раскроем скобки, продвигаясь изнутри наружу: − (− ((− (5)))) = − (− ((− 5))) = − (− (− 5)) = − (5) = − 5 . Также этот пример можно разобрать и в обратном направлении: − (− ((− (5)))) = ((− (5))) = (− (5)) = − (5) = − 5 .

Под a и b можно понимать не только числа, но также произвольные числовые или буквенные выражения со знаком « + » впереди, которые не являются суммами или разностями. Во всех этих случаях можно применять правила точно также, как мы делали это в отношении одиночных чисел в скобках.

К примеру, после раскрытия скобок выражение − (− 2 · x) − (x 2) + (− 1 x) − (2 · x · y 2: z) примет вид 2 · x − x 2 − 1 x − 2 · x · y 2: z . Как мы это сделали? Мы знаем, что − (− 2 · x) есть + 2 · x , а так как это выражение стоит вначале, то + 2 · x можно записать как 2 · x , − (x 2) = − x 2 , + (− 1 x) = − 1 x и − (2 · x · y 2: z) = − 2 · x · y 2: z .

В произведениях двух чисел

Начнем с правила раскрытия скобок в произведении двух чисел.

Предположим, что a и b – это два положительных числа. В этом случае произведение двух отрицательных чисел − a и − b вида (− a) · (− b) мы можем заменить на (a · b) , а произведения двух чисел с противоположными знаками вида (− a) · b и a · (− b) заменить на (− a · b) . Умножение минуса на минус дает плюс, а умножение минуса на плюс, как и умножение плюса на минус дает минус.

Верность первой части записанного правила подтверждается правилом умножения отрицательных чисел. Для подтверждения второй части правила мы можем использовать правила умножения чисел с разными знаками.

Рассмотрим несколько примеров.

Пример 1

Рассмотрим алгоритм раскрытия скобок в произведении двух отрицательных чисел - 4 3 5 и - 2 , вида (- 2) · - 4 3 5 . Для этого заменим исходное выражение на 2 · 4 3 5 . Раскроем скобки и получим 2 · 4 3 5 .

А если мы возьмем частное отрицательных чисел (− 4) : (− 2) , то запись после раскрытия скобок будет иметь вид 4: 2

На месте отрицательных чисел − a и − b могут быть любые выражения со знаком минус впереди, которые не являются суммами или разностями. К примеру, это могут быть произведения, частные, дроби, степени, корни, логарифмы, тригонометрические функции и т.п.

Раскроем скобки в выражении - 3 · x x 2 + 1 · x · (- ln 5) . Согласно правилу, мы можем произвести следующие преобразования: - 3 · x x 2 + 1 · x · (- ln 5) = - 3 · x x 2 + 1 · x · ln 5 = 3 · x x 2 + 1 · x · ln 5 .

Выражение (− 3) · 2 можно преобразовать в выражение (− 3 · 2) . После этого можно раскрыть скобки: − 3 · 2 .

2 3 · - 4 5 = - 2 3 · 4 5 = - 2 3 · 4 5

Деление чисел с разными знаками также может потребовать предварительного раскрытия скобок: (− 5) : 2 = (− 5: 2) = − 5: 2 и 2 3 4: (- 3 , 5) = - 2 3 4: 3 , 5 = - 2 3 4: 3 , 5 .

Правило может быть использовано для выполнения умножения и деления выражений с разными знаками. Приведем два примера.

1 x + 1: x - 3 = - 1 x + 1: x - 3 = - 1 x + 1: x - 3

sin (x) · (- x 2) = (- sin (x) · x 2) = - sin (x) · x 2

В произведениях трех и большего количества чисел

Перейдем к произведенимя и частным, которые содержат большее количество чисел. Для раскрытия скобок здесь будет действовать следующее правило. При четном количестве отрицательных чисел можно опустить скобки, заменив числа противоположными. После этого необходимо заключить полученное выражение в новые скобки. При нечетном количестве отрицательных чисел, опустив скобки, заменить числа на противоположные. После этого полученное выражение необходимо взять в новые скобки и поставить перед ним знак минус.

Пример 2

Для примера, возьмем выражение 5 · (− 3) · (− 2) , которое представляет собой произведение трех чисел. Отрицательных чисел два, следовательно, мы можем записать выражение как (5 · 3 · 2) и затем окончательно раскрыть скобки, получив выражение 5 · 3 · 2 .

В произведении (− 2 , 5) · (− 3) : (− 2) · 4: (− 1 , 25) : (− 1) пять чисел являются отрицательными. поэтому (− 2 , 5) · (− 3) : (− 2) · 4: (− 1 , 25) : (− 1) = (− 2 , 5 · 3: 2 · 4: 1 , 25: 1) . Окончательно раскрыв скобки, получаем −2,5·3:2·4:1,25:1 .

Обосновать приведенное выше правило можно следующим образом. Во-первых, такие выражения мы можем переписать как произведение, заменив умножением на обратное число деление. Представляем каждое отрицательное число как произведение множительного числа и - 1 или - 1 заменяем на (− 1) · a .

Используя переместительное свойство умножения меняем местами множители и переносим все множители, равные − 1 , в начало выражения. Произведение четного числа минус единиц равно 1 , а нечетного – равно − 1 , что позволяет нам использовать знак минус.

Если бы мы не использовали правило, то цепочка действий по раскрытию скобок в выражении - 2 3: (- 2) · 4: - 6 7 выглядела бы следующим образом:

2 3: (- 2) · 4: - 6 7 = - 2 3 · - 1 2 · 4 · - 7 6 = = (- 1) · 2 3 · (- 1) · 1 2 · 4 · (- 1) · 7 6 = = (- 1) · (- 1) · (- 1) · 2 3 · 1 2 · 4 · 7 6 = (- 1) · 2 3 · 1 2 · 4 · 7 6 = = - 2 3 · 1 2 · 4 · 7 6

Приведенное выше правило может быть использовано при раскрытии скобок в выражениях, которые представляют собой произведения и частные со знаком минус, не являющихся суммами или разностями. Возьмем для примера выражение

x 2 · (- x) : (- 1 x) · x - 3: 2 .

Его можно привести к выражению без скобок x 2 · x: 1 x · x - 3: 2 .

Раскрытие скобок, перед которыми стоит знак +

Рассмотрим правило, которое можно применить для раскрытия скобок, перед которыми стоит знак плюс, а «содержимое» этих скобок не умножается и не делится на какое-либо число или выражение.

Согласно правилу скобки вместе со стоящим перед ними знаком опускаются, при этом знаки всех слагаемых в скобках сохраняются. Если перед первым слагаемым в скобках не стоит никакого знака, то нужно поставить знак плюс.

Пример 3

Для примера приведем выражение (12 − 3 , 5) − 7 . Опустив скобки, мы сохраняем знаки слагаемых в скобках и ставим перед первым слагаемым знак плюс. Запись будет иметь вид (12 − 3 , 5) − 7 = + 12 − 3 , 5 − 7 . В приведенном примере знак перед первым слагаемым ставить не обязательно, так как + 12 − 3 , 5 − 7 = 12 − 3 , 5 − 7 .

Пример 4

Рассмотрим еще один пример. Возьмем выражение x + 2 a - 3 x 2 + 1 - x 2 - 4 + 1 x и проведем с ним действия x + 2 a - 3 x 2 + 1 - x 2 - 4 + 1 x = = x + 2 a - 3 x 2 + 1 - x 2 - 4 + 1 x

Вот еще один пример раскрытия скобок:

Пример 5

2 + x 2 + 1 x - x · y · z + 2 · x - 1 + (- 1 + x - x 2) = = 2 + x 2 + 1 x - x · y · z + 2 · x - 1 - 1 + x + x 2

Как раскрываются скобки, перед которыми стоит знак минус

Рассмотрим случаи, когда перед скобками стоит знак минус, и которые не не умножаются (или делятся) на какое-либо число или выражение. Согласно правилу раскрытия скобок, перед которыми стоит знак « - », скобки со знаком « - » опускаются, при этом знаки всех слагаемых внутри скобок меняются на противоположные.

Пример 6

К примеру:

1 2 = 1 2 , - 1 x + 1 = - 1 x + 1 , - (- x 2) = x 2

Выражения с переменными могут быть преобразованы с использованием того же правила:

X + x 3 - 3 - - 2 · x 2 + 3 · x 3 · x + 1 x - 1 - x + 2 ,

получаем x - x 3 - 3 + 2 · x 2 - 3 · x 3 · x + 1 x - 1 - x + 2 .

Раскрытие скобок при умножении числа на скобку, выражения на скобку

Здесь мы рассмотрим случаи, когда нужно раскрыть скобки, которые умножаются или делятся на какое-либо число или выражение. Тут применимы формулы вида (a 1 ± a 2 ± … ± a n) · b = (a 1 · b ± a 2 · b ± … ± a n · b) или b · (a 1 ± a 2 ± … ± a n) = (b · a 1 ± b · a 2 ± … ± b · a n) , где a 1 , a 2 , … , a n и b – некоторые числа или выражения.

Пример 7

Например, проведем раскрытие скобок в выражении (3 − 7) · 2 . Согласно правилу, мы можем провести следующие преобразования: (3 − 7) · 2 = (3 · 2 − 7 · 2) . Получаем 3 · 2 − 7 · 2 .

Раскрыв скобки в выражении 3 · x 2 · 1 - x + 1 x + 2 , получаем 3 x 2 · 1 - 3 · x 2 · x + 3 · x 2 · 1 x + 2 .

Умножение скобки на скобку

Рассмотрим произведение двух скобок вида (a 1 + a 2) · (b 1 + b 2) . Это поможет нам получить правило для раскрытия скобок при проведении умножения скобки на скобку.

Для того, чтобы решить приведенный пример, обозначим выражение (b 1 + b 2) как b . Это позволит нам использовать правило умножения скобки на выражение. Получим (a 1 + a 2) · (b 1 + b 2) = (a 1 + a 2) · b = (a 1 · b + a 2 · b) = a 1 · b + a 2 · b . Выполнив обратную замену b на (b 1 + b 2) , снова применим правило умножения выражения на скобку: a 1 · b + a 2 · b = = a 1 · (b 1 + b 2) + a 2 · (b 1 + b 2) = = (a 1 · b 1 + a 1 · b 2) + (a 2 · b 1 + a 2 · b 2) = = a 1 · b 1 + a 1 · b 2 + a 2 · b 1 + a 2 · b 2

Благодаря ряду несложных приемов мы можем прийти к сумме произведений каждого из слагаемых из первой скобки на каждое из слагаемых из второй скобки. Правило можно распространить на любое количество слагаемых внутри скобок.

Сформулируем правила умножения скобки на скобку: чтобы перемножить между собой две суммы, необходимо каждое из слагаемых первой суммы перемножить на каждое из слагаемых второй суммы и сложить полученные результаты.

Формула будет иметь вид:

(a 1 + a 2 + . . . + a m) · (b 1 + b 2 + . . . + b n) = = a 1 b 1 + a 1 b 2 + . . . + a 1 b n + + a 2 b 1 + a 2 b 2 + . . . + a 2 b n + + . . . + + a m b 1 + a m b 1 + . . . a m b n

Проведем раскрытие скобок в выражении (1 + x) · (x 2 + x + 6) Оно представляет собой произведение двух сумм. Запишем решение: (1 + x) · (x 2 + x + 6) = = (1 · x 2 + 1 · x + 1 · 6 + x · x 2 + x · x + x · 6) = = 1 · x 2 + 1 · x + 1 · 6 + x · x 2 + x · x + x · 6

Отдельно стоит остановиться на тех случаях, когда в скобках присутствует знак минус наряду со знаками плюс. Для примера возьмем выражение (1 − x) · (3 · x · y − 2 · x · y 3) .

Сначала представим выражения в скобках в виде сумм: (1 + (− x)) · (3 · x · y + (− 2 · x · y 3)) . Теперь мы можем применить правило: (1 + (− x)) · (3 · x · y + (− 2 · x · y 3)) = = (1 · 3 · x · y + 1 · (− 2 · x · y 3) + (− x) · 3 · x · y + (− x) · (− 2 · x · y 3))

Раскроем скобки: 1 · 3 · x · y − 1 · 2 · x · y 3 − x · 3 · x · y + x · 2 · x · y 3 .

Раскрытие скобок в произведениях нескольких скобок и выражений

При наличии в выражении трех и более выражений в скобках, раскрывать скобки необходимо последовательно. Начать преобразование необходимо с того, что два первых множителя берут в скобки. Внутри этих скобок мы можем проводить преобразования согласно правилам, рассмотренным выше. Например, скобки в выражении (2 + 4) · 3 · (5 + 7 · 8) .

В выражении содержится сразу три множителя (2 + 4) , 3 и (5 + 7 · 8) . Будем раскрывать скобки последовательно. Заключим первые два множителя еще в одни скобки, которые для наглядности сделаем красными: (2 + 4) · 3 · (5 + 7 · 8) = ((2 + 4) · 3) · (5 + 7 · 8) .

В соответствии с правилом умножения скобки на число мы можем провести следующие действия: ((2 + 4) · 3) · (5 + 7 · 8) = (2 · 3 + 4 · 3) · (5 + 7 · 8) .

Умножаем скобку на скобку: (2 · 3 + 4 · 3) · (5 + 7 · 8) = 2 · 3 · 5 + 2 · 3 · 7 · 8 + 4 · 3 · 5 + 4 · 3 · 7 · 8 .

Скобка в натуральной степени

Степени, основаниями которых являются некоторые выражения, записанные в скобках, с натуральными показателями можно рассматривать как произведение нескольких скобок. При этом по правилам из двух предыдущих пунктов их можно записать без этих скобок.

Рассмотрим процесс преобразования выражения (a + b + c) 2 . Его можно записать в виде произведения двух скобок (a + b + c) · (a + b + c) . Произведем умножение скобки на скобку и получим a · a + a · b + a · c + b · a + b · b + b · c + c · a + c · b + c · c .

Разберем еще один пример:

Пример 8

1 x + 2 3 = 1 x + 2 · 1 x + 2 · 1 x + 2 = = 1 x · 1 x + 1 x · 2 + 2 · 1 x + 2 · 2 · 1 x + 2 = = 1 x · 1 x · 1 x + 1 x · 2 · 1 x + 2 · 1 x · 1 x + 2 · 2 · 1 x + 1 x · 1 x · 2 + + 1 x 2 · 2 + 2 · 1 x · 2 + 2 · 2 · 2

Деление скобки на число и скобки на скобку

Деление скобки на число предполагает, что необходимо разделить на число все заключенные в скобки слагаемые. Например, (x 2 - x) : 4 = x 2: 4 - x: 4 .

Деление можно предварительно заменить умножением, после чего можно воспользоваться подходящим правилом раскрытия скобок в произведении. Это же правило применимо и при делении скобки на скобку.

Например, нам необходимо раскрыть скобки в выражении (x + 2) : 2 3 . Для этого сначала заменим деление умножением на обратное число (x + 2) : 2 3 = (x + 2) · 2 3 . Умножим скобку на число (x + 2) · 2 3 = x · 2 3 + 2 · 2 3 .

Вот еще один пример деления на скобку:

Пример 9

1 x + x + 1: (x + 2) .

Заменим деление умножением: 1 x + x + 1 · 1 x + 2 .

Выполним умножение: 1 x + x + 1 · 1 x + 2 = 1 x · 1 x + 2 + x · 1 x + 2 + 1 · 1 x + 2 .

Порядок раскрытия скобок

Теперь рассмотрим порядок применения правил, разобранных выше в выражениях общего вида, т.е. в выражениях, которые содержат суммы с разностями, произведения с частными, скобки в натуральной степени.

Порядок выполнения действий:

  • первым делом необходимо выполнить возведение скобок в натуральную степень;
  • на втором этапе производится раскрытие скобок в произведениях и частных;
  • заключительным шагом будет раскрытие скобок в суммах и разностях.

Рассмотрим порядок выполнения действий на примере выражения (− 5) + 3 · (− 2) : (− 4) − 6 · (− 7) . Намнем преобразование с выражений 3 · (− 2) : (− 4) и 6 · (− 7) , которые должны принять вид (3 · 2: 4) и (− 6 · 7) . При подстановке полученных результатов в исходное выражение получаем: (− 5) + 3 · (− 2) : (− 4) − 6 · (− 7) = (− 5) + (3 · 2: 4) − (− 6 · 7) . Раскрываем скобки: − 5 + 3 · 2: 4 + 6 · 7 .

Имея дело с выражениями, которые содержат скобки в скобках, удобно проводить преобразования, продвигаясь изнутри наружу.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

То части уравнения находится выражение в скобках. Чтобы раскрыть скобки, посмотрите на знак перед скобками. Если стоит знак плюс, при раскрывании скобок в записи выражения ничего не поменяется: просто уберите скобки. Если стоит знак минус, при раскрытии скобок необходимо поменять все знаки , стоящем изначально в скобках, на противоположные. Например, -(2х-3)=-2х+3.

Перемножение двух скобок.
Если в уравнении присутствует произведение двух скобок, раскрытие скобок по стандартному правилу. Каждый член первой скобки перемножается с каждым членом второй скобки. Полученные числа суммируются. При этом произведение двух "плюсов" или двух "минусов" дает слагаемому знак "плюс", а если множители имеют разные знаки, то получает знак "минус".
Рассмотрим .
(5х+1)(3х-4)=5х*3х-5х*4+1*3х-1*4=15х^2-20х+3х-4=15х^2-17х-4.

Раскрытием скобок иногда возведение выражения в . Формулы возведения в квадрат и в куб надо знать наизусть и помнить.
(a+b)^2=a^2+2ab+b^2
(a-b)^2=a^2-2ab+b^2
(a+b)^3=a^3+3a^2*b+3ab^2+b^3
(a-b)^3=a^3-3a^2*b+3ab^2-b^3
Формулы возведения выражения больше трех можно при помощи треугольника Паскаля.

Источники:

  • формула раскрытия скобок

Заключенные в скобки математические действия могут содержать переменные и выражения разной степени сложности. Для перемножения таких выражений придется искать решение в общем виде, раскрывая скобки и упрощая полученный результат. Если же в скобках содержатся операции без переменных, только с численными значениями, то раскрывать скобки не обязательно, так как при наличии компьютера его пользователю доступны весьма значительные вычислительные ресурсы – проще воспользоваться ими, чем упрощать выражение.

Инструкция

Перемножайте последовательно каждое (или уменьшаемое с ), содержащееся в одной скобке, на содержимое всех остальных скобок, если требуется получить результат в общем виде. Например, пусть исходное выражение записано так: (5+x)∗(6-х)∗(x+2). Тогда последовательное перемножение (то есть раскрытие скобок) даст следующий результат: (5+x)∗(6-х)∗(x+2) = (5∗6-5∗х)∗(5∗x+5∗2) + (6∗x-х∗x)∗(x∗x+2∗x) = (5∗6∗5∗x+5∗6∗5∗2) - (5∗х∗5∗x+5∗х∗5∗2) + (6∗x∗x∗x+6∗x∗2∗x) - (х∗x∗x∗x+х∗x∗2∗x) = 5∗6∗5∗x + 5∗6∗5∗2 - 5∗х∗5∗x - 5∗х∗5∗2 + 6∗x∗x∗x + 6∗x∗2∗x - х∗x∗x∗x - х∗x∗2∗x = 150∗x + 300 - 25∗x² - 50∗x + 6∗x³ + 12∗x² - x∗x³ - 2∗x³.

Упрощайте после результат, сокращая выражения. Например, полученное на предыдущем шаге выражение можно упростить таким образом: 150∗x + 300 - 25∗x² - 50∗x + 6∗x³ + 12∗x² - x∗x³ - 2∗x³ = 100∗x + 300 - 13∗x² - 8∗x³ - x∗x³.

Воспользуйтесь калькулятором, если требуется перемножить икс равен 4.75, то есть (5+4.75)∗(6-4.75)∗(4.75+2). Для вычисления этого значения перейдите на сайт поисковика Google или Nigma и введите выражение в поле запроса в его исходном виде (5+4.75)*(6-4.75)*(4.75+2). Google покажет 82.265625 сразу, без нажатия кнопки, а Nigma нуждается в отправке данных на сервер нажатием кнопки.

Если вы хотите включить информацию, связанную с основным текстом, но эта информация не вписывается в основную часть предложения или абзац, вам необходимо взять эту информацию в скобки. Взяв ее в круглые скобки, вы тем самым уменьшаете ее значимость, так что она не отвлекает от основного смысла в тексте.

  • Пример: Дж. Р. Р. Толкин (автор «Властелин колец») и К. С. Льюис (автор «Хроники Нарнии») были постоянными членами литературной дискуссионной группы, известной как «Инклинги».
  • Примечания в скобках. Часто, когда вы пишете прописью численное значение, полезно также указывать это значение в цифрах. Вы можете указать численную форму, поместив ее в скобки.

    • Пример: Она должна заплатить семьсот долларов ($700) за аренду до конца этой недели.
  • Использование цифр или букв при перечислении. Когда вам нужно перечислить ряд информации внутри абзаца или предложения, нумерация каждого пункта может сделать список менее запутанным. Вы должны взять цифры или буквы, используемые для обозначения каждого пункта, в скобки.

    • Пример: Компания ищет кандидата на работу, который (1) дисциплинирован, (2) знает все, что нужно знать о последних тенденциях в редактировании фотографий и улучшения программного обеспечения и (3) имеет, минимум, пять лет профессионального стажа в данной области.
    • Пример: Компания ищет кандидата на работу, который (А) дисциплинирован, (Б) знает все, что нужно знать о последних тенденциях в редактировании фотографий и улучшения программного обеспечения и (В) имеет, минимум, пять лет профессионального стажа в данной области.
  • Обозначение множественного числа. В тексте, вы можете говорить о чем-то в единственном числе, в то же время подразумевая и множественное число. Если заведомо известно, что читатель получит пользу, зная, что вы имеете в виду как множественное, так и единственное число, вы можете обозначить свое намерение, указав в скобках сразу после существительного соответствующее окончание, свойственное данному существительному во множественном числе, если существительное имеет такую форму.

    • Пример: Организаторы фестиваля в этом году надеются на большое количество зрителей, поэтому не забудьте приобрести дополнительный(ые) билет(ы).
  • Обозначение сокращений. При написании названия организации, продукта или других объектов, которые, как правило, имеют общеизвестные сокращения, вам необходимо указать полное имя объекта в первый раз, как вы его упоминаете в тексте. Если далее вы собираетесь обращаться к объекту, используя общеизвестную аббревиатуру, вы должны указать эту аббревиатуру в скобках, так чтобы читатели знали что искать позже.

    • Пример: Сотрудники и волонтеры Лиги Зашиты Животных (ЛЗЖ) надеются уменьшить и, в конечном счете, ликвидировать случаи жестокого обращения с животными и ненадлежащего обращения в рамках сообщества.
  • Упоминание знаменательных дат. Хотя это не всегда необходимо, в определенных контекстах, вам может потребоваться указать дату рождения и/или дату смерти определенного лица, о котором вы упоминаете в тексте. Такие даты нужно заключить в скобки.

    • Пример: Джейн Остин (1775-1817) известна своими литературными работами «Гордость и предубеждение» и «Разум и чувства»
    • Джордж Мартин (д.р. 1948) является человеком, положившим начало популярного сериала «Игра престолов».
  • Использование вводных цитат. В научной литературе, вводные цитаты должны быть включены в текст, когда вы напрямую или косвенно цитируете другую работу. Эти цитаты содержат библиографическую информацию и должны быть заключены в скобки сразу после заимствованной информации.

    • Пример: Исследования показывают, что существует связь между мигренью и клинической депрессией (Смит, 2012).
    • Пример: Исследования показывают, что существует связь между мигренью и клинической депрессией (Смит 32).
    • Для получения дополнительной информации о правильном использовании в тексте вводных цитат смотрите «Как правильно использовать цитаты в тексте».
  • error: