Реакции с этиленом. Первый представитель алкенов — этилен

История открытия этилена

Этилен впервые был получен немецким химиком Иоганном Бехером в 1680 году при действии купоросного масла (H 2 SO 4) на винный (этиловый) спирт (C 2 H 5 OH).

CH 3 -CH 2 -OH+H 2 SO 4 →CH 2 =CH 2 +H 2 O

Вначале его отождествляли с «горючим воздухом», т. е. с водородом. Позднее, в 1795 году этилен подобным же образом получили голландские химики Дейман, Потс-ван-Трусвик, Бонд и Лауеренбург и описали под названием «маслородного газа», так как обнаружили способность этилена присоединять хлор с образованием маслянистой жидкости - хлористого этилена («масло голландских химиков»), (Прохоров,1978).

Изучение свойств этилена, его производных и гомологов началось с середины XIX века. Начало практического использования этих соединений положили классические исследования А.М. Бутлерова и его учеников в области непредельных соединений и особенно создания Бутлеровым теории химического строения. В 1860 году он получил этилен действием меди на йодистый метилен, установив структуру этилена.

В 1901 году Дмитрий Николаевич Нелюбов выращивал горох в лаборатории, В Санкт-Петербурге, но семена давали искривленные, укороченные проростки, у которых верхушка была согнута крючком и не сгибалась. В теплице и на свежем воздухе проростки были ровные, рослые, и верхушка на свету быстро распрямляла крючок. Нелюбов предложил, что фактор, вызывающий физиологический эффект, находится в воздухе лаборатории.

В то время помещения освещали газом. В уличных фонарях горел тот же газ, и давно было замечено, что при аварии в газопроводе стоящие рядом с местом утечки газа деревья преждевременно желтеют и сбрасывают листья.

Осветительный газ содержал разнообразные органические вещества. Чтобы удалить примесь газа, Нелюбов пропускал его через разогретую трубку с оксидом меди. В «очищенном» воздухе проростки гороха развивались нормально. Для того чтобы выяснить, какое именно вещество вызывает ответ проростков, Нелюбов добавлял различные компоненты светильного газа по очереди, и обнаружил, что добавка этилена вызывает:

1) замедление роста в длину и утолщение проростка,

2) «не разгибающуюся» апикальную петельку,

3) Изменение ориентации проростка в пространстве.

Эта физиологическая реакция проростков была названа тройным ответом на этилен. Горох оказался настолько чувствительным к этилену, что его стали использовать в биотестах для определения низких концентрациях этого газа. Вскоре было обнаружено, что этилен вызывает и другие эффекты: листопад, созревание плодов и т.д. Оказалось, что этилен способны синтезировать сами растения, т.е. этилен является фитогормоном (Петушкова,1986).

Физические свойства этилена

Этиле́н - органическое химическое соединение, описываемое формулой С 2 H 4 . Является простейшим алкеном (олефином ).

Этилен – бесцветный газ со слабым сладким запахом плотностью 1,178 кг/м³ (легче воздуха), его вдыхание оказывает наркотическое действие на человека. Этилен растворяется в эфире и ацетоне, значительно меньше - в воде и спирте. При смешении с воздухом образует взрывоопасную смесь

Затвердевает при –169,5°C, плавится при таких же температурных условиях. Кипит этен при –103,8°C. Воспламеняется при нагревании до 540°C. Газ хорошо горит, пламя светящееся, со слабой копотью. Округленная молярная масса вещества - 28 г/моль. Третий и четвертый представители гомологического ряда этена - тоже газообразные вещества. Физические свойства пятого и следующих алкенов отличаются, они являются жидкостями и твердыми телами.

Получение этилена

Основные способы получения этилена:

Дегидрогалогенирование галогенпроизводных алканов под действием спиртовых растворов щелочей

CH 3 -CH 2 -Br + KOH → CH 2 = CH 2 + KBr + H 2 O;

Дегалогенирование дигалогенпроизводных алканов под действием активных металлов

Сl-CH 2 -CH 2 -Cl + Zn → ZnCl 2 + CH 2 = CH 2 ;

Дегидратация этилена при его нагревании с серной кислотой (t >150˚ C) или пропускании его паров над катализатором

CH 3 -CH 2 -OH → CH 2 = CH 2 + H 2 O;

Дегидрирование этана при нагревании (500С) в присутствии катализатора (Ni, Pt, Pd)

CH 3 -CH 3 → CH 2 = CH 2 + H 2 .

Химические свойства этилена

Для этилена характерны реакции, протекающщие по механизму электрофильного, присоединения, реакции радикального замещения, окисления, восстановления, полимеризации.

1. Галогенирование (электрофильное присоединение) - взаимодействие этилена с галогенами, например, с бромом, при котором происходит обесцвечивание бромной воды:

CH 2 = CH 2 + Br 2 = Br-CH 2 -CH 2 Br.

Галогенирование этилена возможно также при нагревании (300С), в этом случае разрыва двойной связи не происходит – реакция протекает по механизму радикального замещения:

CH 2 = CH 2 + Cl 2 → CH 2 = CH-Cl + HCl.

2. Гидрогалогенирование - взаимодействие этилена с галогенводородами (HCl, HBr) с образование галогенпроизводных алканов:

CH 2 = CH 2 + HCl → CH 3 -CH 2 -Cl.

3. Гидратация - взаимодействие этилена с водой в присутствии минеральных кислот (серной, фосфорной) с образованием предельного одноатомного спирта – этанола:

CH 2 = CH 2 + H 2 О → CH 3 -CH 2 -ОН.

Среди реакций электрофильного присоединения выделяют присоединение хлорноватистой кислоты (1), реакции гидрокси- и алкоксимеркурирования (2, 3) (получение ртутьорганических соединений) и гидроборирование (4):

CH 2 = CH 2 + HClO → CH 2 (OH)-CH 2 -Cl (1);

CH 2 = CH 2 + (CH 3 COO) 2 Hg + H 2 O → CH 2 (OH)-CH 2 -Hg-OCOCH 3 + CH 3 COOH (2);

CH 2 = CH 2 + (CH 3 COO) 2 Hg + R-OH → R-CH 2 (OCH 3)-CH 2 -Hg-OCOCH 3 + CH 3 COOH (3);

CH 2 = CH 2 + BH 3 → CH 3 -CH 2 -BH 2 (4).

Реакции нуклеофильного присоединения характерны для производных этилена, содержащих электроноакцепторные заместители. Среди реакций нуклеофильного присоединения особое место занимают реакции присоединения циановодородной кислоты, аммиака, этанола. Например,

2 ON-CH = CH 2 + HCN → 2 ON-CH 2 -CH 2 -CN.

4. окисление. Этилен легко окисляется. Если этилен пропускать через раствор перманганата калия, то он обесцветится. Эта реакция используется для отличия предельных и непредельных соединений. В результате образуется этиленгликоль

3CH 2 = CH 2 + 2KMnO 4 +4H 2 O = 3CH 2 (OH)-CH 2 (OH) +2MnO 2 + 2KOH.

При жестком окислении этилена кипящим раствором перманганата калия в кислой среде происходит полный разрыв связи (σ-связи) с образованием муравьиной кислоты и углекислого газа:

Окисление этилена кислородом при 200С в присутствии CuCl 2 и PdCl 2 приводит к образованию ацетальдегида:

CH 2 = CH 2 +1/2O 2 = CH 3 -CH = O.

5. гидрирование. При восстановлении этилена происходит образование этана, представителя класса алканов. Реакция восстановления (реакция гидрирования) этилена протекает по радикальному механизму. Условием протекания реакции является наличие катализаторов (Ni, Pd, Pt), а также нагревание реакционной смеси:

CH 2 = CH 2 + H 2 = CH 3 -CH 3 .

6. Этилен вступает в реакцию полимеризации . Полимеризация - процесс образования высокомолекулярного соединения – полимера-путем соединения друг с другом с помощью главных валентностей молекул исходного низкомолекулярного вещества – мономера. Полимеризация этилена происходит под действием кислот (катионный механизм) или радикалов (радикальный механизм):

n CH 2 = CH 2 = -(-CH 2 -CH 2 -) n -.

7. Горение:

C 2 H 4 + 3O 2 → 2CO 2 + 2H 2 O

8. Димеризация. Димеризация - процесс образования нового вещества путём соединения двух структурных элементов (молекул, в том числе белков, или частиц) в комплекс (димер), стабилизируемый слабыми и/или ковалентными связями.

2CH 2 =CH 2 →CH 2 =CH-CH 2 -CH 3

Применение

Этилен используют в двух основных категориях: в качестве мономера, из которого построены большие углеродные цепи, и в качестве исходного материала для других двух-углеродных соединений. Полимеризации - это повторяющиеся объединения множества мелких молекул этилена в более крупные. Этот процесс происходит при высоких давлениях и температурах. Области применения этилена многочисленны. Полиэтилен – это полимер, который используется особенно массово в производстве упаковочных пленок, проволочных покрытий и пластиковых бутылок. Еще одно применение этилена в качестве мономера касается формирования линейных α-олефинов. Этилен является исходным материалом для приготовления ряда двух-углеродных соединений, таких как этанол (технический спирт ), окись этилена (антифриз, полиэфирные волокна и пленки) , ацетальдегида и винил хлорида. Кроме этих соединений, этилен с бензолом образует этилбензол, который используется в производстве пластмасс и синтетического каучука. Рассматриваемое вещество является одним из простейших углеводородов. Однако свойства этилена делают его биологически и хозяйственно значимым.

Свойства этилена дают хорошую коммерческую основу для большого количества органических (содержащих углерод и водород) материалов. Одиночные молекулы этилена могут быть соединены вместе для получения полиэтилена (что означает много молекул этилена). Полиэтилен используется для изготовления пластмасс. Кроме того, он может быть использован для изготовления моющих средств и синтетических смазочных материалов , которые представляют собой химические вещества, используемые для уменьшения трения. Применение этилена для получения стиролов актуально в процессе создания резины и защитной упаковки. Кроме того, он используется в обувной промышленности, особенно это касается спортивной обуви, а также при производстве автомобильных покрышек . Применение этилена является коммерчески важным, а сам газ является одним из наиболее часто производимых углеводородов в глобальном масштабе.

Этилен используется в производстве стекла специального назначения для автомобильной промышленности.

С другом двойной связью.


1. Физические свойства

Этилен - бесцветный газ со слабым приятным запахом. Он немного легче воздуха. В воде мало растворим, а в спирте и других органических растворителях растворяется хорошо.

2. Строение

Молекулярная формула С 2 Н 4. Структурная и электронная формулы:


3. Химические свойства

В отличие от метана этилен химически довольно активен. Для него характерны реакции присоединения по месту двойной связи, реакции полимеризации и реакции окисления. При этом один из двойных связей разрывается и на его месте остается простой одинарный связь, а за счет уволенных валентностей происходит присоединение других атомов или атомных групп. Рассмотрим это на примерах некоторых реакций. При пропускании этилена в бромную воду (водный раствор брома) последняя обесцвечивается результате взаимодействия этилена с бромом с образованием дибромэтан (бромистого этилена) C 2 H 4 Br 2:

Как видно из схемы этой реакции, здесь происходит не замещение атомов водорода атомами галогена, как в насыщенных углеводородов, а присоединение атомов брома по месту двойной связи. Этилен легко обесцвечивает также фиолетовый цвет водного раствора манганатом калия KMnO 4 даже при обычной температуре. Сам же этилен при этом окисляется в этиленгликоль C 2 H 4 (OH) 2. Этот процесс можно изобразить следующим уравнением:

  • 2KMnO 4 -> K 2 MnO 4 + MnO 2 + 2O

Реакции взаимодействия этилена с бромом и манганатом калия служат для открытия ненасыщенных углеводородов. Метан и другие насыщенные углеводороды, как уже отмечалось, с манганатом калия не взаимодействуют.

Этилен вступает в реакцию с водородом. Так, когда смесь этилена с водородом нагреть в присутствии катализатора (порошка никеля, платины или палладия), то они сочетаются с образованием этана :

Реакции, при которых происходит присоединение водорода к веществу, называются реакциями гидрирования или гидрогенизации. Реакции гидрогенизации имеют большое практическое значение. их довольно часто используется в промышленности. В отличие от метана этилен горит на воздухе свитящим пламенем, поскольку содержит больше углерода, чем метан. Поэтому не весь углерод сгорает сразу и частицы его сильно раскаляются и светятся. Затем эти частицы углерода сгорают в наружной части пламени:

  • C 2 H 4 + 3O 2 = 2CO 2 + 2H 2 O

С воздухом этилен, как метан, образует взрывчатые смеси.


4. Получение

В природе этилен не встречается, за исключением незначительных примесей в природном газе. В лабораторных условиях этилен обычно получают при действии концентрированной серной кислоты на этиловый спирт при нагревании. Этот процесс можно изобразить следующим суммарным уравнением:

Во время реакции от молекулы спирта вычитаются элементы воды, а уволено две валентности насыщают друг друга с образованием двойной связи между атомами углерода. Для промышленных целей этилен получают в больших количествах из газов крекинга нефти.


5. Применение

В современной промышленности этилен применяется достаточно широко для синтеза этилового спирта и производства важных полимерных материалов (полиэтилен и др.)., А также для синтеза других органических веществ. Очень интересна свойство этилена ускорять созревание многих огородных и садовых плодов (помидоров, дынь, груш, лимонов и т.п.). Используя это, плоды можно транспортировать еще зелеными, а затем доводить их до спелого состояния уже на месте потребления, вводя в воздух складских помещений небольшие количества этилена.

Из этилена производят хлористый винил и поливинилхлорид, бутадиен и синтетические каучуки, оксид этилена и полимеры на его основе, этиленгликоль и т.д..


Примечания

Источники

  • Ф. А. Деркач "Химия" Л. 1968
? в ? Фитогормоны
? в ? Углеводороды

Этилен является простейшим из органических соединений, известных как алкены. Это бесцветный имеющий сладковатый вкус и запах. Природные источники включают природный газ и нефть, он также является естественным гормоном в растениях, в которых он ингибирует рост и способствует созреванию плодов. Применение этилена является распространенным явлением в промышленной органической химии. Он производится путем нагревания природного газа, температура плавления составляет 169,4 °С, кипения - 103, 9 °С.

Этилен: особенности структуры и свойства

Углеводороды представляют собой молекулы, содержащие водород и углерод. Они сильно различаются с точки зрения количества одинарных и двойных связей и структурной ориентации каждого компонента. Одним из простейших, но биологически и экономически выгодных углеводородов является этилен. Он поставляется в газообразном виде, является бесцветным и легковоспламеняющимся. Он состоит из двух двойных скрепленных атомов углерода с атомами водорода. Химическая формула имеет вид C 2 H 4 . Структурная форма молекулы является линейной из-за наличия двойной связи в центре.
Этилен имеет сладковатый мускусный запах, который позволяет легко идентифицировать вещество в воздухе. Это касается газа в чистом виде: запах может исчезать при смешивании с другими химическими веществами.

Схема применения этилена

Этилен используют в двух основных категориях: в качестве мономера, из которого построены большие углеродные цепи, и в качестве исходного материала для других двух-углеродных соединений. Полимеризации - это повторяющиеся объединения множества мелких молекул этилена в более крупные. Этот процесс происходит при высоких давлениях и температурах. Области применения этилена многочисленны. Полиэтилен - это полимер, который используется особенно массово в производстве упаковочных пленок, проволочных покрытий и пластиковых бутылок. Еще одно применение этилена в качестве мономера касается формирования линейных α-олефинов. Этилен является исходным материалом для приготовления ряда двух-углеродных соединений, таких как этанол (технический спирт), (антифриз, и пленки), ацетальдегида и винил хлорида. Кроме этих соединений, этилен с бензолом образует этилбензол, который используется в производстве пластмасс и Рассматриваемое вещество является одним из простейших углеводородов. Однако свойства этилена делают его биологически и хозяйственно значимым.

Коммерческое использование

Свойства этилена дают хорошую коммерческую основу для большого количества органических (содержащих углерод и водород) материалов. Одиночные молекулы этилена могут быть соединены вместе для получения полиэтилена (что означает много молекул этилена). Полиэтилен используется для изготовления пластмасс. Кроме того, он может быть использован для изготовления моющих средств и синтетических смазочных материалов, которые представляют собой химические вещества, используемые для уменьшения трения. Применение этилена для получения стиролов актуально в процессе создания резины и защитной упаковки. Кроме того, он используется в обувной промышленности, особенно это касается спортивной обуви, а также при производстве автомобильных покрышек. Применение этилена является коммерчески важным, а сам газ является одним из наиболее часто производимых углеводородов в глобальном масштабе.

Опасность для здоровья

Этилен представляет опасность для здоровья прежде всего потому, что он является легковоспламеняющимся и взрывоопасным. Он также может действовать как наркотик при низких концентрациях, вызывая тошноту, головокружение, головные боли и потерю координации движения. При более высоких концентрациях он действует как анестетик, вызывая потерю сознания, и другим раздражителям. Все эти негативные моменты могут быть причиной для беспокойства в первую очередь для людей, непосредственно работающих с газом. Количество этилена, с которым большинство людей сталкивается в повседневной жизни, как правило, сравнительно небольшое.

Реакции этилена

1) Окисление. Это добавление кислорода, например, при окислении этилена до окиси этилена. Он используется в производстве этиленгликоля (1,2-этандиола), который применяется в качестве незамерзающей жидкости и в производстве полиэфиров путем конденсационной полимеризации.

2) Галогенирование - реакции с этиленом фтора, хлора, брома, йода.

3) Хлорирование этилена в виде 1,2-дихлорэтана и последующая конверсия 1,2-дихлорэтана в винилхлорид мономер. 1,2-дихлорэтан является полезным органическим растворителем, а также является ценным предшественником в синтезе винилхлорида.

4) Алкилирование - добавление углеводородов по двойной связи, например, синтез этилбензола из этилена и бензола с последующим преобразованием в стирол. Этилбензол является промежуточным для производства стирола, одного из наиболее широко используемых виниловых мономеров. Стирол - мономер, используемый для производства полистирола.

5) Горение этилена. Газ получается путем нагревания и концентрированной серной кислоты.

6) Гидратация - реакция с добавлением воды к двойной связи. Наиболее важным промышленным применением этой реакции является превращение этилена в этанол.

Этилен и горение

Этилен - это газ без цвета, который плохо растворяется в воде. Горение этилена в воздухе сопровождается образованием углекислого газа и воды. В чистом виде газ горит световым диффузионным пламенем. Смешанный с небольшим количеством воздуха, он дает пламя, состоящее из трех отдельных слоев - внутреннего сердечника - несгоревшего газа, сине-зеленого слоя и внешнего конуса, где частично окисленный продукт из предварительно перемешанного слоя сгорают в диффузионном пламени. Результирующее пламя показывает сложную серию реакций, а если к газовой смеси добавляется больше воздуха, постепенно диффузионный слой исчезает.

Полезные факты

1) Этилен является природным растительным гормоном, он влияет на рост, развитие, созревание и старение всех растений.

2) Газ не вреден и не токсичен для человека в определенной концентрации (100-150 мг).

3) Он используется в медицине в качестве обезболивающего средства.

4) Действие этилена замедляется при низких температурах.

5) Характерным свойством является хорошая проникающая способность через большинство веществ, например через картонные упаковочные коробки, деревянные и даже бетонные стены.

6) В то время как он имеет неоценимое значение благодаря своей способности инициировать процесс созревания, он также может быть очень вредным для многих фруктов, овощей, цветов и растений, ускоряя процесс старения и снижая качество продукта и его срок годности. Степень повреждения зависит от концентрации, продолжительности воздействия и температуры.

7) Этилен взрывоопасен при высоких концентрациях.

8) Этилен используется в производстве стекла специального назначения для автомобильной промышленности.

9) Изготовление металлоконструкций: газ используется в качестве кислородно-топливного газа для резки металла, сварки и высокой скорости термического напыления.

10) Нефтепереработка: этилен используется в качестве хладагента, особенно на производстве по сжижению природного газа.

11) Как уже говорилось ранее, этилен является очень реактивным веществом, кроме того, он еще и очень легко воспламеняется. Из соображений безопасности, его обычно транспортируют по специальному отдельному газопроводу.

12) Одним из самых распространенных продуктов, изготовленных непосредственно из этилена, является пластмасса.

Непредельные углеводороды с двойной химической связью в молекулах относят к группе алкенов. Первым представителем гомологического ряда является этен, или этилен, формула которого: C 2 H 4 . Алкены часто называют олефинами. Название является историческим и возникло в 18-м веке, после получения продукта взаимодействия этилена с хлором - этилхлорида, имеющего вид маслянистой жидкости. Тогда этен и назвали маслородным газом. В нашей статье мы изучим его химические свойства, а также получение и применение в промышленности.

Взаимосвязь между строением молекулы и свойствами вещества

Согласно теории строения органических веществ, предложенной М. Бутлеровым, характеристика соединения полностью зависит структурной формулы и вида связей его молекулы. Химические свойства этилена также определяются пространственной конфигурацией атомов, гибридизацией электронных облаков и наличием в его молекуле пи-связи. Два негибридизованных p-электрона атомов углерода перекрываются в плоскости, перпендикулярной плоскости самой молекулы. Формируется двойная связь, разрыв которой обусловливает способность алкенов к реакциям присоединения и полимеризации.

Физические свойства

Этен - это газообразное вещество, с едва уловимым своеобразным запахом. Оно плохо растворимо в воде, но хорошо растворяется в бензоле, тетрахлорметане, бензине и других органических растворителях. Исходя из формулы этилена С 2 Н 4 , его молекулярная масса равна 28, то есть этен немного легче воздуха. В гомологическом ряду алкенов с увеличением их массы агрегатное состояние веществ изменяется по схеме: газ - жидкость - твердое соединение.

Получение газа в лаборатории и промышленности

Нагревая этиловый спирт до 140 °С в присутствии концентрированной серной кислоты, можно получить этилен в лабораторных условиях. Еще один способ - отщепление атомов водорода от молекул алканов. Действуя едким натрием или калием на галогензамещенные соединения предельных углеводородов, например на хлорэтан, добывают этилен. В промышленности наиболее перспективным способом его получения является переработка природного газа, а также пиролиз и крекинг нефти. Все химические свойства этилена - реакции гидратации, полимеризации, присоединения, окисления - объясняются наличием в его молекуле двойной связи.

Взаимодействие олефинов с элементами главной подгруппы седьмой группы

Все члены гомологического ряда этена присоединяют атомы галогенов по месту разрыва пи-связи в своей молекуле. Так, водный раствор брома красно-коричневого цвета обесцвечивается, в результате чего образуется уравнение этилена - дибромэтан:

C 2 H 4 + Br 2 = C 2 H 4 Br 2

Аналогично протекает реакция с хлором и йодом, в ней присоединение атомов галогенов также происходит по месту разрушения двойной связи. Все соединения - олефины могут взаимодействовать с галогеноводородами: хлороводородом, фтороводородом и т.д. В результате реакции присоединения, протекающей по ионному механизму, образуется вещества - галогенопроизводные предельных углеводородов: хлорэтан, фторэтан.

Промышленное производство этанола

Химические свойства этилена часто используют для получения важных веществ, широко применяемых в промышленности и быту. Например, нагревая этен с водой в присутствии ортофосфорной или серной кислот, под действием катализатора происходит процесс гидратации. Он идет с образованием этилового спирта - многотоннажного продукта, получаемого на химических предприятиях органического синтеза. Механизм реакции гидратации протекает по аналогии с другими реакциями присоединения. Кроме того, взаимодействие этилена с водой также происходит в результате разрыва пи-связи. К свободным валентностям атомов углерода этена присоединяются атомы водорода и гидроксогруппа, входящие в состав молекулы воды.

Гидрогенизация и горение этилена

Несмотря на все вышесказанное, реакция соединения водорода не имеет большого практического значения. Однако она показывает генетическую связь между различными классами органических соединений, в данном случае алканов и олефинов. Присоединяя водород, этен превращается в этан. Противоположный процесс - отщепление от предельных углеводородов атомов водорода приводит к образованию представителя алкенов - этена. Жесткое окисление олефинов, называемое горением, сопровождается выделением большого количества тепла, реакция является экзотермической. Продукты сгорания одинаковы для веществ всех классов углеводородов: алканов, непредельных соединений ряда этилена и ацетилена, ароматических веществ. К ним относятся углекислый газ и вода. Воздух в реакции с этиленом образует взрывчатую смесь.

Реакции окисления

Этен может окисляться раствором перманганата калия. Это одна из качественных реакций, с помощью которой доказывают наличие двойной связи в составе определяемого вещества. Фиолетовая окраска раствора исчезает вследствие разрыва двойной связи и образования двухатомного предельного спирта - этиленгликоля. Продукт реакции имеет широкий спектр применения в промышленности в качестве сырья для получения синтетических волокон, например лавсана, взрывчатых веществ и антифризов. Как видим, химические свойства этилена используются для получения ценных соединений и материалов.

Полимеризация олефинов

Повышение температуры, увеличение давления и применение катализаторов - это необходимые условия для проведения процесса полимеризации. Его механизм отличается от реакций присоединения или окисления. Он представляет собой последовательное связывание многих молекул этилена в местах разрыва двойных связей. Продуктом реакции является полиэтилен, физические характеристики которого зависят от величины n - степени полимеризации. Если она невелика, то вещество находится в жидком агрегатном состоянии. Если показатель приближается к 1000 звеньев, то из такого полимера изготовляют полиэтиленовую пленку, гибкие шланги. Если степень полимеризации превышает 1500 звеньев в цепи, то материал представляет собой твердое вещество белого цвета, жирное на ощупь.

Он идет на изготовление цельнолитых изделий и пластиковых труб. Галогенпроизводное соединение этилена - тефлон обладает антипригарными свойствами и является широко применяемым полимером, востребованным при изготовлении мультиварок, сковород, жаровен. Его высокая способность противостоять истиранию используется в производстве смазок к автомобильным двигателям, а низкая токсичность и толерантность к тканям человеческого организма позволили применять тефлоновые протезы в хирургии.

В нашей статье мы рассмотрели такие химические свойства олефинов, как горение этилена, реакции присоединения, окисления и полимеризации.

Яркий представитель непредельных углеводородов — этен (этилен). Физические свойства: бесцветный горючий газ, взрывоопасный в смеси с кислородом и воздухом. В значительных количествах этилен получают из нефти для последующего синтеза ценных органических веществ (одноатомных и двухатомных спиртов, полимеров, уксусной кислоты и других соединений).

этилена, sp 2 -гибридизация

Углеводороды, сходные по строению и свойствам с этеном, называются алкенами. Исторически закрепился еще один термин для этой группы — олефины. Общая формула C n H 2n отражает состав всего класса веществ. Первый его представитель — этилен, в молекуле которого атомы углерода образуют не три, а всего две õ-связи с водородом. Алкены — непредельные или ненасыщенные соединения, их формула C 2 H 4 . Смешиваются по форме и энергии только 2 p- и 1 s-электронное облако атома углерода, всего формируются три õ-связи. Это состояние называется sp2-гибридизацией. Четвертая валентность углерода сохраняется, в молекуле возникает π-связь. В структурной формуле особенность строения находит отражение. Но символы для обозначения разных типов связи на схемах обычно используются одинаковые — черточки или точки. Строение этилена определяет его активное взаимодействие с веществами разных классов. Присоединение воды и других частиц происходит благодаря разрыву непрочной π-связи. Освободившиеся валентности насыщаются за счет электронов кислорода, водорода, галогенов.

Этилен: физические свойства вещества

Этен при обычных условиях (нормальном атмосферном давлении и температуре 18°C) — бесцветный газ. Он обладает сладким (эфирным) запахом, его вдыхание оказывает наркотическое действие на человека. Затвердевает при -169,5°C, плавится при таких же температурных условиях. Кипит этен при -103,8°C. Воспламеняется при нагревании до 540°C. Газ хорошо горит, пламя светящееся, со слабой копотью. Этилен растворяется в эфире и ацетоне, значительно меньше — в воде и спирте. Округленная молярная масса вещества — 28 г/моль. Третий и четвертый представители гомологического ряда этена — тоже газообразные вещества. Физические свойства пятого и следующих алкенов отличаются, они являются жидкостями и твердыми телами.

Получение и свойства этилена

Немецкий химик Иоган Бехер случайно использовал в опытах с концентрированной серной кислотой. Так впервые был получен этен в лабораторных условиях (1680 год). В середине XIX века А.М. Бутлеров дал соединению название этилен. Физические свойства и также были описаны известным русским химиком. Бутлеров предложил структурную формулу, отражающую строение вещества. Способы его получения в лаборатории:

  1. Каталитическое гидрирование ацетилена.
  2. Дегидрогалогенирование хлорэтана в реакции с концентрированным спиртовым раствором сильного основания (щелочи) при нагревании.
  3. Отщепление воды от молекул этилового Проходит реакция в присутствии серной кислоты. Ее уравнение: Н2С-СН2-OH → Н2С=СН2 + Н2О

Промышленное получение:

  • переработка нефти — крекинг и пиролиз углеводородного сырья;
  • дегидрирование этана в присутствии катализатора. H 3 C-CH 3 → H 2 C=CH 2 + H 2

Строение этилена объясняет его типичные химические реакции — присоединение частиц атомами C, которые находятся при кратной связи:

  1. Галогенирование и гидрогалогенирование. Продуктами этих реакций являются галогенопроизводные.
  2. Гидрирование (насыщение этана.
  3. Окисление до двухатомного спирта этиленгликоля. Его формула: OH-H2C-CH2-OH.
  4. Полимеризация по схеме: n(H2C=CH2) → n(-H2C-CH2-).

Области применения этилена

При фракционной в больших объемах Физические свойства, строение, химическая природа вещества позволяют использовать его в производстве этилового спирта, галогенопроизводных, спиртов, оксида, уксусной кислоты и других соединений. Этен — мономер полиэтилена, а также исходное соединение для полистирола.

Дихлорэтан, который получают из этена и хлора, является хорошим растворителем, используется в производстве поливинилхлорида (ПВХ). Из полиэтилена низкого и высокого давления изготавливают пленку, трубы, посуду, из полистирола — футляры для CD-дисков и другие детали. ПВХ — это основа линолеума, непромокаемых плащей. В сельском хозяйстве этеном обрабатываются плоды перед уборкой урожая для ускорения созревания.

error: