Применение электронно-лучевой трубки. Электронно-лучевая трубка (ЭЛТ)

Электронно-лучевая трубка (ЭЛТ) - электронный прибор, имеющий форму трубки, удлиненной (часто с коническим расширением) в направлении оси электронного луча, который формируется в ЭЛТ. ЭЛТ состоит из электронно-оптической системы, отклоняющей системы и флуоресцентного экрана или мишени. Ремонт телевизоров в Бутово , обращайтесь к нам за помощью.

Классификация ЭЛТ

Классификация ЭЛТ чрезвычайно затруднена, что объясняется их чрезвычайн

о широким применением в науке и технике и возможностью модификации конструкции с целью получения технических параметров, которые необходимы для реализации конкретной технической идеи.

Зависимости от метода управления электронным лучом ЭЛТ подразделяются на:

электростатические (с электростатической системой отклонения лучей);

электромагнитные (с электромагнитной системой отклонения лучей).

В зависимости от назначения ЭЛТ подразделяются на:

электронно-графические трубки (приемные, телевизионные, осциллографические, индикаторные, телевизионные знакодрукувальни, кодирующие и др..)

оптико-электронные претворюючи трубки (передающие телевизионные трубки, электронно-оптические преобразователи и др..)

электронно-лучевые переключатели (коммутаторы);

другие ЭЛТ.

Электронно-графические ЭЛТ

Электронно-графические ЭЛТ - группа электронно-лучевых трубок, применяемых в различных областях техники, для преобразования электрических сигналов в оптические (преобразование типа «сигнал - свет»).

Электронно-графические ЭЛТ подразделяются:

В зависимости от области применения:

приемной телевизионные (кинескопы, ЭЛТ с сверхвысоким разрешением для специальных телевизионных систем, и др..)

приемной осциллографические (низкочастотные, высокочастотные, сверхвысокочастотные, импульсные высоковольтные и др..)

приемной индикаторные;

запоминающие;

знакодрукувальни;

кодирующие;

другие ЭЛТ.

Строение и действие ЭЛТ с электростатической системой отклонения лучей

Электронно-лучевая трубка состоит из катода (1), анода (2), выравнивающего цилиндра (3), экрана (4), регуляторов плоскости (5) и высоты (6).

Под действием фото-или термоэмиссии из металла катода (тонкая проводниковая спираль) выбиваются электроны. Поскольку между анодом и катодом поддерживается напряжение (разность потенциалов) в несколько кило вольт, то эти электроны, выравниваясь цилиндром, движутся по направлению анода (пустотелый цилиндр). Пролетая сквозь анод электроны попадают к регуляторам плоскости. Каждый регулятор - это две металлические пластины, разноименно заряженные. Если левую пластину зарядить отрицательно, а правую положительно, то электроны проходя сквозь них будут отклоняться вправо, и наоборот. Аналогично действуют и регуляторы высоты. Если же на эти пластины подать переменный ток, то можно будет контролировать поток электронов как в горизонтальной, так и вертикальной плоскостях. В конце своего пути поток электронов попадает на экран, где может вызвать изображения.

Осциллографическая электронно-лучевая трубка предназначена для отображения на люминесцентном экране электрических сигналов. Изображение на экране служит не только для визуальной оценки формы сигнала, но и для измерения его параметров, а в некоторых случаях - для фиксации его на фотоплёнку.

Энциклопедичный YouTube

  • 1 / 5

    Осциллографическая ЭЛТ представляет собой вакуумированную стеклянную колбу, внутри которой находятся электронная пушка , отклоняющая система и люминесцентный экран. Электронная пушка предназначена для формирования узкого пучка электронов и его фокусировки на экран. Электроны испускаются катодом косвенного накала с подогревателем за счет явления термоэлектронной эмиссии . Интенсивность электронного пучка и следовательно яркость пятна на экране регулируется отрицательным относительно катода напряжением на управляющем электроде. Первый анод служит для фокусировки, второй для ускорения электронов. Управляющий электрод и система анодов образуют фокусирующую систему .

    Отклоняющая система состоит из двух пар пластин, расположенных горизонтально и вертикально. К горизонтальным пластинам, которые называются пластинами вертикального отклонения , прикладывается исследуемое напряжение. К вертикальным пластинам, которые называются пластинами горизонтального отклонения , прикладывается пилообразное напряжение от генератора развёртки. Под влиянием образующегося электрического поля летящие электроны отклоняются от своей первоначальной траектории пропорционально приложенному напряжению. Светящееся пятно на экране ЭЛТ рисует форму исследуемого сигнала. Благодаря пилообразному напряжению пятно движется по экрану слева направо.

    Если на вертикальные и горизонтальные отклоняющие пластины подать два различных сигнала, то на экране можно наблюдать фигуры Лиссажу .

    На экране ЭЛТ можно наблюдать различные функциональные зависимости, например вольт-амперную характеристику двухполюсника , если подать на пластины горизонтального отклонения сигнал, пропорциональный приложенному к нему изменяющемуся напряжению, а на пластины вертикального отклонения - сигнал, пропорциональный протекающему через него току.

    В осциллографических ЭЛТ применяется электростатическое отклонение луча, потому что исследуемые сигналы могут иметь произвольную форму и широкий частотный спектр , и применение в этих условиях электромагнитного отклонения невозможно из-за зависимости импеданса отклоняющих катушек от частоты.

    Трубки «низкочастотного» диапазона (до 100 МГц)

    Электростатическая система отклонения таких трубок состоит из двух пар отклоняющих пластин, вертикального и горизонтального отклонения, находящихся внутри ЭЛТ.

    При наблюдении сигналов, имеющих частотный спектр менее 100 МГц, можно пренебречь временем пролёта электронов сквозь отклоняющую систему. Время пролёта электронов оценивается формулой:

    t ≈ l m 2 e U a {\displaystyle t\approx l{\sqrt {\frac {m}{2eU_{a}}}}}

    где e {\displaystyle e} и m {\displaystyle m} - соответственно заряд и масса электрона, l {\displaystyle l} - длина пластин, U a {\displaystyle U_{a}} - напряжение анода.

    Отклонение луча Δ {\displaystyle \Delta } в плоскости экрана пропорционально приложенному к пластинам напряжению U O T {\displaystyle U_{OT}} (считая, что за время пролёта электронов в поле отклоняющих пластин напряжение на пластинах остаётся постоянным):

    Δ = U O T l D 2 U a d {\displaystyle \Delta ={\frac {U_{OT}lD}{2U_{a}d}}}

    где D {\displaystyle D} - расстояние от центра отклонения пластин до экрана, d {\displaystyle d} - расстояние между пластинами.

    В ЭЛТ, используемых для наблюдения редко повторяющихся и однократных сигналов, применяются люминофоры с длительным временем послесвечения.

    Трубки диапазона свыше 100 МГц

    Для быстро меняющихся сигналов синусоидальной формы чувствительность к отклонению начинает уменьшаться, а при приближении периода синусоиды к времени пролёта чувствительность отклонения падает до нуля. В частности, при наблюдении импульсных сигналов, имеющих широкий спектр (период верхней гармоники равен или превышает время пролёта), указанный эффект приводит к искажению формы сигнала из-за разной чувствительности отклонения к разным гармоникам. Увеличением анодного напряжения или уменьшением длины пластин можно сократить время пролёта и уменьшить эти искажения, но при этом падает чувствительность к отклонению. Поэтому для осциллографирования сигналов, частотный спектр которых превышает 100 МГц, отклоняющие системы делаются в виде линии бегущей волны, обычно спирального типа. Сигнал подаётся на начало спирали и виде электромагнитной волны движется вдоль оси системы с фазовой скоростью v f {\displaystyle v_{f}} :

    v f = c h c l c {\displaystyle v_{f}={\frac {ch_{c}}{l_{c}}}}

    где c {\displaystyle c} - скорость света, h c {\displaystyle h_{c}} - шаг спирали, l c {\displaystyle l_{c}} - длина витка спирали. В результате можно исключить влияние времени пролёта, если выбрать скорость пролёта электронов равной фазовой скорости волны в направлении оси системы.

    Для уменьшения потерь мощности сигнала выводы отклоняющей системы таких ЭЛТ делаются коаксиальными . Геометрия коаксиальных вводов подбирается так, чтобы их волновое сопротивление соответствовало волновому сопротивлению спиральной отклоняющей системы.

    Трубки с послеускорением

    Для увеличения чувствительности к отклонению надо иметь невысокое анодное напряжение, однако это приводит к уменьшению яркости изображения из-за снижения скорости электронов. Поэтому в осциллографических ЭЛТ применяют систему послеускорения. Она представляет собой систему электродов, расположенную между отклоняющей системой и экраном, в виде токопроводящего покрытия, нанесённого на внутреннюю поверхность корпуса ЭЛТ.

    Трубки с усилителем яркости

    В широкополосных ЭЛТ, работающих в диапазоне несколько ГГц, для увеличения яркости без потери чувствительности, применяют усилители яркости. Усилитель яркости представляет собой микроканальную пластину, расположенную внутри ЭЛТ перед люминесцентным экраном. Пластина изготовлена из специального полупроводящего стекла с высоким коэффициентом вторичной эмиссии. Электроны пучка, попадая в каналы (диаметр которых много меньше их длины) выбивают из его стенок вторичные электроны. Они ускоряются полем, создаваемым металлическим покрытием на торцах пластины и, попадая на стенки канала, выбивают новые электроны. Общий коэффициент усиления микроканального усилителя может составлять 10 5 … 10 6 . Однако, из-за накопления зарядов на стенках каналов, микроканальный усилитель эффективен только для импульсов наносекундного диапазона, однократных или следующих с малой частотой повторения.

    Шкала

    Для измерения параметров сигнала, воспроизводимого на экране ЭЛТ, отсчёт должен производиться по шкале с делениями. При нанесении шкалы на наружнюю поверхность экрана ЭЛТ, точность измерений снижается из-за параллакса , вызванного толщиной экрана. Поэтому в современных ЭЛТ шкала делается непосредственно на внутренней поверхности экрана, то есть практически совмещается с изображением сигнала.

    Трубки для фотографической регистрации

    Для повышения качества контактного фотографирования сигнала, экран делается в виде стекловолоконного диска. Это решение позволяет переносить изображение с внутренней поверхности на внешнюю с сохранением его чёткости. Расплывание изображения при этом ограничивается диаметром стекловолоконных нитей, который обычно не превышает 20 мкм. В ЭЛТ, предназначенных для фоторегистрации, применяются люминофоры , спектр излучения которых согласован со спектральной чувствительностью фотоплёнки.

    Литература

    • Вуколов Н. И., Гербин А. И., Котовщиков Г. С. Приёмные электронно-лучевые трубки: Справочник.. - М. : Радио и связь, 1993. - 576 с. - ISBN 5-256-00694-0 .
    • Жигарев А. А., Шамаева Г. Т. Электронно-лучевые и фотоэлектронные приборы: Учебник для вузов. - М. : Высшая школа, 1982. - 463 с. , ил.

    Электронно-лучевая трубка, изобретенная еще в 1897 г., является электронно-вакуумным прибором, который имеет много общего с обычной электронной лампой. Внешне трубка представляет собой стеклянную колбу с удлиненной горловиной и плоской торцовой частью— экраном.

    Внутри колбы и горловины, так же как и внутри баллона электронной лампы, располагаются электроды, выводы которых, так же как и у лампы, подпаяны к ножкам цоколя.

    Основное назначение электронно-лучевой трубки — образование видимого изображения с помощью электрических сигналов. Подводя к электродам трубки соответствующие напряжения, можно рисовать на ее экране графики переменных напряжения и токов, характеристики различных радиоустройств, а также получать движущиеся изображения, подобным тем, которые мы видим на экране кино.

    Рис. 1. Чудесный карандаш.

    Все это делает электронно-лучевую трубку незаменимой частью телевизоров, радиолокаторов, многих измерительных и вычислительных приборов.

    Какой же «быстрый карандаш» успевает зарисовывать на экране электроннолучевой трубки импульсы тока, которые длятся миллионные доли секунды? Каким образом удается подбирать тона сложного рисунка? Как можно мгновенно «стирать» с экрана одно изображение и с такой же быстротой создать другое? (рис. 1).

    Люминесцирующий экран к электронный луч. В основе работы электронно-лучевой трубки лежит способность некоторых веществ (виллемит, сернистый цинк, алюминат цинка:) светиться (люминесцировать) под действием электронной бомбардировки.

    Если таким люминесцирующим веществом покрыть изнутри анод обычной электронной лампы, то он будет ярко светиться за счет бомбардировки электронами, образующими анодный ток. Между прочим, такой люминесцирующий анод используется в одной из специальных электронных ламп — оптическом индикаторе настройки 6Е5С. Люминесцирующим составом покрывают изнутри утолщенный торец колбы, образуя таким образам люминесцирующий экран электронно-лучевой трубки. С помощью специального устройства —«электронной пушки»— из горловины трубки на экран направляютузкий пучок электродов —«электронный луч».

    Рис. 2. Экран светится под действием пучка электронов.

    В том месте, где электроны ударяются о люминесцирующий слой, на экране образуется светящаяся точка, которая отлично видна (с торца) снаружи трубки сквозь стекло. Чем большее количество электронов образует луч и чем с большей скоростью эти электроны движутся, тем ярче светящаяся точка на люминесцирующем экране.

    Если электронный луч перемещать в пространстве, то и светящаяся точка также будет двигаться по экрану, причем если перемещение луча происходит достаточно быстро, то наш глаз вместо движущейся точки увидит на экране сплошные светящиеся линии (рис. 2).

    Если электронным лучом быстро прочертить весь экран строка за строкой и при этом соответствующим образом менять ток луча (т. е. яркость светящейся точки), то на экране можно будет получить сложную и достаточно четкую картину.

    Таким образом, изображение на люминесцирующем экране трубки получается с помощью остро направленного пучка электронов и поэтому, так же как и в электронной лампе, основные процессы в трубке связаны с получением и упорядоченным движением свободных электронов в вакууме.

    Электронно-лучевая трубка и триод

    Электроннолучевая трубка во многом напоминает усилительную лампу — триод. Так же как и в лампе, в трубке имеется катод, испускающий электроны, необходимые для образования электронного луча. От катода трубки электроны движутся к экрану, который, так же как и анод триода, имеет высокий положительный потенциал относительно катода.

    Рис. 3. Возникновение вторичных электронов

    Однако подача положительного напряжения непосредственно «а экран затруднена, так как люминесцирующее вещество является полупроводником. Поэтому положительные напряжения на экране приходится создавать косвенным путем. Колбу изнутри покрывают слоем графита, на который и подают положительное напряжение. Электроны, образующие луч, с силой ударяя в люминесцирующее вещество, «выбивают» из него так называемые «вторичные» электроны, которые упорядоченно движутся к графитовому покрытию под действием положительного напряжения на нем (рис. 3).

    В первый момент число вторичных электронов, покидающих экран, намного превышает число попадающих в него электронов луча. Это приводит к тому, что в атомах люминесцирующего вещества образуется нехватка электронов, т. е. экран приобретает положительный потенциал. Равновесие между числом попадающих на экран электронов и числом выбиваемых из него вторичных электронов установится лишь тогда, когда напряжение на экране трубки окажется близким к напряжению на графитовом покрытии. Таким образом, ток в электронно-лучевой трубке замыкается по пути катод — экран — графитовое покрытие, а следовательно, именно графитовое покрытие играет роль анода, хотя электроды, вылетевшие из катода, непосредственно на него не попадают.

    Вблизи катода трубки располагается управляющий электрод (модулятор), который играет ту же роль, что и управляющая сетка триода. Меняя напряжение на управляющем электроде, можно изменять величину тока луча, что в свою очередь приведет к изменению яркости светящейся на экране точки.

    Однако наряду со сходством между усилительной электронной лампой и электронно-лучевой трубкой в работе последней имеются особенности, принципиально отличающие ее от триода.

    Во-первых, электроны движутся от катода к экрану трубки узким пучком, в то время как к аноду лампы они движутся «широким фронтом».

    Во-вторых, для того чтобы, передвигая светящуюся точку по экрану, создавать на нем изображение, необходимо изменять направление движения летящих к экрану электронов и, таким образом, перемещать электронный луч в пространстве.

    Из всего этого следует, что важнейшими процессами, отличающими трубку от триода, являются образование тонкого электронного луча и отклонение этого луча в разные стороны.

    Образование и фокусировка электронного луча

    Образование электронного луча начинается уже около катода электронно-лучевой трубки, который состоит из маленького никелевого цилиндра с колпачком, покрытым эмиттирующим (хорошо испускающим электроны при нагревании) материалом. Внутри цилиндра помещается изолированная проволока — подогреватель. Благодаря такой конструкции катода электроны излучаются со значительно меньшей поверхности, чем в обычной электронной лампе. Это сразу создает некоторую направленность пучка летящих от катода электронов.

    Катод электронно-лучевой трубки помещен в тепловой экран — металлический цилиндр, торцовая часть которого, направленная в сторону колбы, открыта. Благодаря этому электроны движутся от катода не во все стороны, как это имеет место в лампе, а только в направлении люминесцирующето экрана. Однако, несмотря на специальную конструкцию катода и тепловой экран, поток движущихся электронов остается чрезмерно широким.

    Резкое сужение потока электронов осуществляется управляющим электродом, который хотя и выполняет роль управляющей сетки, конструктивно ничего общего с сеткой не имеет. Управляющий электрод выполнен в виде накрывающего катод цилиндра, в торцовой части которого сделано круглое отверстие диаметром в несколько десятых долей миллиметра.

    На управляющий электрод подают значительное (несколько десятков вольт) отрицательное смещение, благодаря чему он отталкивает электроны, обладающие, как известно, отрицательным зарядом. Под действием отрицательного напряжения траектории (пути движения) электронов, проходящих сквозь узкое отверстие в управляющем электроде, «сжимаются» к центру этого отверстия и таким образом образуется довольно тонкий электронный луч.

    Однако для нормальной работы трубки нужно не только создать электронный луч, но и произвести его фокусировку, т. е. добиться того, чтобы траектории всех электронов луча сходились на экране в одной точке. Если фокусировки луча не производить, то на экране вместо светящейся точки появится довольно большое светящееся пятно и вследствие этого изображение окажется расплывчатым или, как говорят фотолюбители, «нерезким».

    Рис. 4. Электронная пушка и ее оптическая аналогия.

    Фокусировка луча осуществляется электронной оптической системой, которая действует на движущиеся электроны так же, как и обычная оптика на световые лучи. Электронная оптическая система образуется электростатическими линзами (статическая фокусировка) либо электромагнитными линзами (магнитная фокусировка), конечный результат действия которых одинаков.

    Электростатическая линза — это не что иное (рис. 4,а), как образованное с помощью специальных электродов электрическое поле, под действием которого искривляются траектории электронов луча. В трубке со статической фокусировкой (рис. 4,б) обычно имеются две линзы, для образования которых используют уже известный нам управляющий электрод, а также два специальных электрода: первый и второй аноды. Оба эти электрода представляют собой металлические цилиндры, иногда разных диаметров, на которые подают большое положительное (относительно катода) напряжение: на первый анод — обычно 200—500 в, на второй — 800—15 000 в.

    Первая линза образуется между управляющим электродом и первым анодом. Ее оптическим аналогом является короткофокусная собирающая линза, состоящая из двух элементов: двояковыпуклой и двояковогнутой линз. Эта линза дает внутри первого анода изображение катода, в свою очередь проектируемого на экран трубки с помощью второй линзы.

    Вторая линза образуется полем между первым и вторым анодами и аналогична первой линзе, за исключением того, что ее фокусное расстояние значительно больше. Таким образом, первая линза играет роль конденсора, а вторая линза — главной проекционной линзы.

    Внутри анодов располагают тонкие металлические пластины с отверстиями в центре — диафрагмы, которые улучшают фокусирующие свойства линз.

    Изменяя напряжение на любом из трех образующих электростатические линзы электродов, можно менять свойства линз, добиваясь хорошей фокусировки луча. Обычно это делают путем изменения напряжения на первом аноде.

    Несколько слов о названиях электродов «первый анод» и «второй анод». Раньше мы установили, что роль анода в электронно-лучевой трубке играет графитовое покрытие вблизи экрана. Однако первый « второй аноды, в основном предназначенные для фокусировки луча, благодаря наличию на них большого положительного напряжения ускоряют электроны, т. е. делают то же, что и анод усилительной лампы. Поэтому названия этих электродов можно считать оправданными, тем более что на них попадает некоторая часть вылетающих из катода электронов.

    Рис. 5. Трубка с магнитной фокусировкой. 1 —управляющий электрод; 2—первый анод; 3—фокусирующая катушка; 4—графитовое покрытие; 5—-люминесцирующий экран; 6—колба.

    В электронно-лучевых трубках с магнитной фокусировкой (рис. 5) второй анод отсутствует. Роль собирающей линзы в этой трубке играет магнитное поле. Это поле образуется охватывающей горловину трубки катушкой, по которой пропускают постоянный ток. Магнитное поле катушки создает вращательное движение электронов. В то же время электроны с большой скоростью движутся параллельно оси трубки к люминесцирующему экрану под действием положительного напряжения на нем. В результате этого траектории электронов представляют собой кривую, «напоминающую винтовую линию.

    По мере приближения к экрану скорость поступательного движения электронов возрастает, а действие магнитного поля ослабляется. Поэтому радиус кривой постепенно уменьшается и вблизи экрана пучок электронов вытягивается в тонкий прямой луч. Хорошей фокусировки, как правило, добиваются путем изменения тока в фокусирующей катушке, т. е. путем изменения напряженности магнитного поля.

    Всю систему для образования электронного луча в трубках часто называют «электронной пушкой» или «электронным прожектором».

    Отклонение электронного луча

    Отклонение электронного луча, так же как и его фокусировка, осуществляется с помощью электрических полей (электростатическое отклонение) либо с помощью магнитных полей (магнитное отклонение).

    В трубках с электростатическим (рис. 6,а) отклонением электронный луч, прежде чем попасть на экран, проходит между четырьмя плоскими металлическими пластинами-электродами, которые получили название отклоняющих пластин.

    Рис. 6. Управление лучом при помощи. а—электростатического и б—магнитного полей.

    Как работает электронно-лучевая трубка?

    Электронно-лучевые трубки - это электровакуумные приборы, в которых образуется электронный пучок малого поперечного сечения, причем электронный пучок может отклоняться в желаемом направлении и, попадая на люминесцентный экран, вызывать его свечение (рис. 5.24). Электронно-лучевая трубка является электронно-оптическим преобразователем, превращающим электрический сигнал в соответствующее ему изображение в виде импульсного колебания, воспроизводимого на экране трубки. Электронный пучок образуется в электронном прожекторе (или электронной пушке), состоящем из катода и фокусирующих электродов. Первый фокусирующий электрод, который называют также модулятором , выполняет функции сетки с отрицательным смещением, направляющей электроны к оси трубки. Изменение напряжения смещения сетки влияет на число электронов, а следовательно, на яркость получаемого на экране изображения. За модулятором (в направлении к экрану) расположены следующие электроды, задачей которых является фокусирование и ускорение электронов. Они действуют на принципе электронных линз. Фокусирующе-ускоряющие электроды называются анодами и на них подается положительное напряжение. В зависимости от типа трубки анодные напряжения имеют значения от нескольких сотен вольт до нескольких десятков киловольт.

    Рис. 5.24. Схематическое изображение электронно-лучевой трубки:

    1 - катод; 2 - анод I: 3 - анод II; 4 - горизонтальные отклоняющие пластины; 5 - электронный пучок; 6 - экран; 7 - вертикальные отклоняющие пластины; 8 - модулятор


    В некоторых трубках фокусировку пучка производят с помощью магнитного поля путем использования катушек, расположенных снаружи лампы, вместо электродов, находящихся внутри трубки и создающих фокусирующее электрическое поле. Отклонение пучка также осуществляется двумя методами: с помощью электрического или магнитного поля. В первом случае в трубке помещают отклоняющие пластины, во втором - снаружи трубки монтируют отклоняющие катушки. Для отклонения как в горизонтальном, так и в вертикальном направлениях используют пластины (или катушки) вертикального или горизонтального отклонения луча.

    Экран трубки покрыт изнутри материалом - люминофором, который светится под влиянием бомбардировки электронами. Люминофоры отличаются различным цветом свечения и разным временем свечения после прекращения возбуждения, которое называется временем послесвечения . Обычно оно составляет от долей секунды до нескольких часов в зависимости от назначения трубки.

    Применение электронно-лучевой трубки

    Электронно-лучевые трубки применяются в осциллографах для измерения напряжения и фазовых углов, анализа формы кривой силы тока или напряжения и т. д. Эти трубки используются в телевизионных и радиолокационных установках.

    Электронно-лучевые трубки бывают разных типов. По способу получения электронного луча они делятся на трубки с холодным и накаленным катодом. Трубки с холодным катодом используются сравнительно редко, так как для их работы требуются очень высокие напряжения (30-70 кВ). Трубки с накаленным катодом имеют широкое применение. Эти трубки по способу управления электронным лучом также разделяются на два вида: электростатические и магнитные. В электростатических трубках управление электронным лучом осуществляется с помощью электрического поля, а в магнитных - с помощью магнитного поля.

    Электронно-лучевые трубки с электростатическим управлением применяются в осциллографах и бывают чрезвычайно разнообразны по конструктивному выполнению. Учащихся достаточно ознакомить с принципом устройства такой трубки, содержащей основные типовые элементы. Этим целям отвечает трубка типа 13ЛОЗ7, которая представлена на таблице с некоторыми упрощениями.

    Электронно-лучевая трубка представляет собой хорошо вакуумированный стеклянный баллон, внутри которого находятся электроды. Широкий торец трубки - экран - с внутренней стороны покрывается флуоресцирующим веществом. Вещество экрана светится при ударах электронов. Источником электронов служит катод косвенного накала. Катод состоит из нити накала 7, вставленной в тонкую фарфоровую трубочку (изолятор), на которую надет цилиндр 6 с оксидным покрытием торца (катод), благодаря чему достигается излучение электронов только в одном направлении. Вылетевшие из катода электроны устремляются к анодам 4 и 3, имеющим довольно высокий потенциал относительно катода (несколько сотен вольт). Для придания пучку электронов формы луча и его фокусировки на экране пучок проходит через ряд электродов. Однако следует обратить внимание уча-щихся только на три электрода: модулятор (управляющий цилиндр) 5, первый анод 4 и второй анод 3. Модулятор представляет собой трубчатый электрод, на который подается отрицательный потенциал относительно катода. Благодаря этому проходящий через модулятор электронный пучок будет стягиваться в узкий пучок (луч) и направляться электрическим полем через отверстие в аноде в сторону экрана. Повышая или понижая потенциал управляющего электрода, можно регулировать коли-чество электронов в луче, т. е. интенсивность (яркость) свечения экрана. С помощью анодов не только создается ускоряющее поле (обеспечивается разгон электронов), но, изменяя потенциал одного из них, можно более точно фокусировать электронный луч на экране и получить большую резкость светящейся точки. Обычно фокусировку осуществляют путем изменения потенциала первого анода, который называется фокусирующим.

    Электронный луч, выйдя из отверстия в аноде, проходит между двумя парами отклоняющих пластин 1,2 и попадает на экран, вызывая его свечение.

    Подавая напряжение на отклоняющие пластины, можно вызвать отклонение луча и смещение светящегося пятна от центра экрана. Величина и направление смещения зависят от напряжения, поданного на пластины, и полярности пластин. На таблице показан случай, когда напряжение подано только на вертикальные пластины 2. При указанной полярности пластин смещение электронного луча под действием сил электрического поля происходит вправо. Если подать напряжение на го-ризонтальные пластины 1, то смещение луча будет происходить в вертикальном направлении.

    В нижней части таблицы приведен способ управления лучом с помощью магнитного поля, созданного двумя взаимно перпендикулярными катушками (каждая катушка разделена на две секции), оси которых имеют вертикальное и горизонтальное направления. На таблице показан случай, когда в горизонтальной катушке ток отсутствует и вертикальная катушка обеспечивает смещение луча только в горизонтальном направлении.

    Магнитное поле горизонтальной катушки вызывает смещение луча в вертикальном направлении. Совместное действие магнитных полей двух катушек обеспечивает движение луча по всему экрану.

    Магнитные трубки применяются в телевизорах.

error: