Параллельность плоскостей: признак, условие. Геометрия в пространстве

( I курс)

Преподаватель математики ПУ№3

Туаева З.С.

2015г.

Тема урока “Параллельность плоскостей”

Тип урока: урок усвоения нового материала.

Основная цель:

    Ввести понятие параллельных плоскостей.

    Доказать признак параллельности двух плоскостей.

    Рассмотреть свойства параллельных плоскостей.

Задачи:

Обучающие :

    Сформировать навык применения признака параллельности двух плоскостей и изученных свойств параллельных плоскостей при решении задач.

Развивающие :

    Развитие пространственного воображения обучающихся,

    Развитие мыслительной деятельности обучающихся.

    Развитие логичного, рационального, критичного, творческого мышления и познавательных способностей обучающихся.

Воспитательные :

    Воспитание аккуратности, графической грамотности.

Использование новых образовательных технологий: использование технологии проблемного обучения.

План урока

II . Изучение нового материала на интерактивной доске с моделью:

    Определение параллельных плоскостей.

    Признак параллельности двух плоскостей.

    Свойства параллельных плоскостей.

Беседа с учащимися по вопросам, при которой преподаватель, систематически создавая проблемные ситуации и организуя деятельность учащихся по решению учебных проблем, обеспечивает оптимальное сочетание их самостоятельной, поисковой деятельности с усвоением готовых выводов науки.

III . Формирование умений и навыков

Решение учащимися задач на применение признака параллельности двух плоскостей и свойств параллельных плоскостей . Самостоятельная работа для контроля усвоенного и проведения первичного закрепления материала

IV . Домашнее задание

Комментарии учителя по домашнему заданию

Ход урока:

1. Сообщение темы и цели урока. Сообщение плана урока.

2. Этап актуализации знаний.

Вопросы к учащимся:

1. Какие прямые в пространстве называются параллельными?

(Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не имеют общих точек)

2. Сформулируйте определение параллельности прямой и плоскости?

(Прямая и плоскость называются параллельными, если они не имеют общих точек)

3. Сформулируйте третью аксиому стереометрии?

(Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей)

4. Как могут располагаться две плоскости в пространстве?

(Две плоскости либо пересекаются по прямой (рис.1, а), либо не пересекаются (рис.1, б))

Рис.1, а Рис.1, б

3. Изучение нового материала.

1. Учебная проблема : дать определение параллельных плоскостей.

Учебная ситуация :

Вопросы к учащимся:

1. Сколько общих точек имеют две непересекающиеся плоскости?

(Ни одной общей точки)

2. Как называются плоскости, которые не имеют ни одной общей точки?

(Параллельные плоскости)

3. Сформулируйте определение параллельных плоскостей, учитывая количество их общих точек?

Две плоскости называются параллельными, если они не имеют общих точек.

4. Укажите модели параллельных плоскостей на предметах классной обстановки?

(Пол и потолок кабинета, две противоположные стены, поверхность стола и плоскость пола)

2. Учебная проблема : сформулировать и доказать признак параллельности двух плоскостей.

Учебная ситуация :

Учащимся предоставляется модель параллелепипеда.


Вопросы к учащимся:

1. Какого взаимное расположение плоскостей и ?

(плоскости и параллельны)

2. Назовите любые две пересекающиеся прямые плоскости

(прямая АВ, прямая ВС)

3. Назовите прямые плоскости , параллельные прямым АВ и ВС ?

(


4. Какого взаимное расположение прямой АВ и плоскости ? Ответ обоснуйте.

(АВ║ по признаку параллельности прямой и плоскости: если прямая, не лежащая в данной плоскости (
), параллельна какой-нибудь прямой, лежащей в этой плоскости (

Если учащиеся затрудняются обосновать ответ, то обратить их внимание на признак параллельности прямой и плоскости.

5. Какого взаимное расположение прямой ВС и плоскости ? Ответ обоснуйте.

(ВС║ по признаку параллельности прямой и плоскости: если прямая, не лежащая в данной плоскости(
), параллельна какой-нибудь прямой, лежащей в этой плоскости(

), то она параллельна самой плоскости)

6. Предположите, что плоскости и не параллельны. Как тогда они будут располагаться?

(плоскости будут пересекаться по некоторой прямой с)

7. Как в этом случае будут располагаться прямые АВ и с ?

║АВ, согласно свойству
), параллельную другой плоскости (АВ║

║АВ))

8. Как в этом случае будут располагаться прямые ВС и с ?

║ВС, согласно свойству : если плоскость проходит через данную прямую (
), параллельную другой плоскости (ВС║
), и пересекает эту плоскость (
), то линия пресечения плоскостей параллельна данной прямой (с
║ВС))

9. Сколько прямых, параллельных прямой с , проходит через точку В ?

(Две прямые: прямая АВ, прямая ВС)

10. Возможно ли это?

(Это не возможно, так как по теореме о параллельных прямых: через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и притом только одна)

11. Какой вывод можно сделать? Верно ли наше предположение?

(Наше предположение не верно, остается признать, что )

12. Сколько прямых необходимо в плоскости , чтобы плоскости и были параллельны?

(две прямые)

13. Какие между собой должны быть эти прямые?

(пересекающиеся)

14. Скольким прямым они должны быть параллельны из плоскости ?

(Двум)

15. Сформулируйте признак параллельности двух плоскостей, учитывая количество прямых одной плоскости, параллельных прямым другой плоскости?

Результат умозаключения обучающихся:

Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны.


3. Учебная проблема : сформулировать и доказать свойства параллельных плоскостей.

Учебная ситуация :


Вопросы к учащимся:

и ?

(плоскости параллельны)

по отношению к плоскостям и ?

(плоскость пересекает плоскости и )

3. Что вы можете сказать про линии пересечения плоскостей?

(линии пересечения плоскостей параллельны между собой)

4. Ответ обоснуйте, используя определение параллельных прямых в пространстве.

(прямые а и в лежат в одной плоскости и не пересекаются, так как, если бы прямые пересекались, то плоскости и имели бы общую точку, что невозможно, так как эти плоскости параллельны)

5. Сформулируйте первое свойство параллельных плоскостей, учитывая взаимное расположение линий пересечений а и в ?

Результат умозаключения обучающихся:

Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны.

Учебная ситуация :

Учащимся предоставляется модель параллельных плоскостей, пересеченных третьей плоскостью.


Вопросы к учащимся:

1. Какого взаимное расположение плоскостей и ?

(плоскости параллельны)

2. Как располагается плоскость по отношению к плоскостям и ?

(плоскость пересекает плоскости и )

3. Что вы можете сказать про отрезки АВ и С D ?

(отрезки АВ и С D параллельны между собой)

4. Что вы можете сказать про отрезки АС и В D ?

(отрезки АС и В D параллельны между собой по свойству 1)

5. Как называется четырехугольник, у которого противоположные стороны попарно параллельны?

(параллелограмм)

6. Какие свойства параллелограмма вы знаете?

    в параллелограмме противоположные стороны и углы равны

    Диагонали параллелограмма точкой пресечения делятся пополам

7. Что вы можете сказать про отрезки АВ и С D , используя первое свойство параллелограмма?

(отрезки АВ и С D равны между собой)

8. Сформулируйте второе свойство параллельных плоскостей, используя равенство отрезков АВ и С D ?

Результат умозаключения обучающихся:

Отрезки параллельных прямых, заключенных между параллельными плоскостями равны.

4. Формирование умений и навыков.

Решение задач

Задача № 1. (№ 54) (На отработку признака параллельности двух плоскостей)

Дано :

Доказать :


Найти :

Доказательство:

1.
- средняя линия
MN AC .

2. NP – средняя линия
NP CD .


MN AC
(
MNP )║( ADC ) по признаку параллельности 2 пл.

NP CD

4.
подобен
по третьему признаку подобия треугольников (если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны)
(так как отношение площадей двух подобных треугольников равно квадрату коэффициента подобия)

Ответ :
.

Задача № 2. (№ 63(а)) (На отработку 1 свойства параллельных плоскостей)

Дано:

Найти:

Решение:

1. Докажем, что

.

Так как

(по условию)




.(по 1 свойству параллельных плоскостей)

2. Докажем, что
подобен
.

, как соответственные при

.и секущей

, как соответственные при

.и секущей

Значит,
подобен
по 2 углам.

3. Найдем
.

По условию

4. Найдем
.

Составим пропорцию :

Ответ :

Задача № 3. (№ 65) (На отработку 2 свойства параллельных плоскостей)

Дано :



Определить :

вид четырехугольников

Доказать:

Решение:

1. Рассмотрим четырехугольник
.


(по условию)

=

четырехугольник

2. Рассмотрим четырехугольник
.


(по условию)

=
(как отрезки параллельных прямых, заключенных между параллельными плоскостями, свойство 2)
четырехугольник
является параллелограммом (по 1 признаку параллелограмма: если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник – параллелограмм)

3. Рассмотрим четырехугольник
.


(по условию)

=
(как отрезки параллельных прямых, заключенных между параллельными плоскостями, свойство 2)
четырехугольник
отсекает от треугольника треугольник, подобный данному. : ║ Домашнее задание.

§ 10 (п. 10-11) стр. (20-21)

№ 53, № 63(б).

Учебник: Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев, Л. С. Киселева, Э. Г. Позняк. Геометрия 10, 11. Москва Просвещение , 2002.

6. Итог урока.

Сегодня на уроке мы ввели понятие параллельных плоскостей, самостоятельно доказали признак параллельности двух плоскостей, рассмотрели свойства параллельных плоскостей. Научились решать задачи на доказательство с применением признака параллельности двух плоскостей, применять изученные свойства параллельных плоскостей при решении задач.

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Две плоскости в пространстве могут быть параллельными или могут пересекаться, как показано в следующей таблице.

Две пересекающиеся плоскости

Определение:
Две плоскости называют пересекающимися , если они не совпадают , и у них есть общие точки . В случае, когда две плоскости пересекаются, пересечением этих плоскостей является прямая линия .

Две параллельные плоскости

Определение:
Две плоскости называют параллельными , если они не имеют общих точек .

Признаки параллельности двух плоскостей

Первый признак параллельности двух плоскостей . Если две пересекающиеся прямые пересекающиеся прямые , лежащие в одной плоскости, соответственно параллельны параллельны двум прямым, лежащим в другой плоскости, то такие плоскости параллельны.

Доказательство . Рассмотрим рисунок 1, на котором изображены плоскости α и β

Прямые a и b лежат в плоскости α и пересекаются в точке K . Прямые c и d лежат в плоскости β и параллельны прямым a и b соответственно.

Будем доказывать первый признак параллельности двух плоскостей методом «от противного». Для этого предположим, что плоскости α и β не параллельны. Следовательно, плоскости α и β должны пересекаться, причём пересекаться по некоторой прямой. Обозначим прямую линию, по которой пересекаются плоскости α и β буквой l (рис.2) и воспользуемся признаком параллельности прямой и плоскости .

Плоскость α проходит через прямую a , параллельную прямой c , и пересекает плоскость β по прямой l . Отсюда, в силу , заключаем, что прямые a и l параллельны. В то же время плоскость α проходит через прямую b , параллельную прямой d , и пересекает плоскость β по прямой l . Отсюда, в силу признака параллельности прямой и плоскости , заключаем, что прямые b и l параллельны. Таким образом, мы получили, что на плоскости α через точку K проходят две прямые, а именно, прямые a и b , которые параллельны прямой l . Полученное противоречие с аксиомой о параллельных прямых даёт возможность утверждать, что предположение о том, что плоскости α и β пересекаются, является неверным. Доказательство первого признака параллельности двух плоскостей завершено.

Второй признак параллельности двух плоскостей . Если две пересекающиеся прямые, лежащие в одной плоскости, параллельны другой плоскости, то такие плоскости параллельны.

Доказательство . Рассмотрим рисунок 3, на котором изображены плоскости α и β .

На этом рисунке также изображены прямые a и b , которые лежат в плоскости α и пересекаются в точке K. По условию каждая из прямых a и b параллельна плоскости β . Требуется доказать, что плоскости α и β параллельны.

Доказательство этого утверждения аналогично доказательству первого признака параллельности двух плоскостей, и мы его оставляем читателю в качестве полезного упражнения.

На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ по математике .

индивидуальные занятия с репетиторами по математике и русскому языку

В данной статье будут изучены вопросы параллельности плоскостей. Дадим определение плоскостям, которые параллельны между собой; обозначим признаки и достаточные условия параллельности; рассмотрим теорию на иллюстрациях и практических примерах.

Yandex.RTB R-A-339285-1 Определение 1

Параллельные плоскости – плоскости, не имеющие общих точек.

Чтобы обозначить параллельность применяют такой символ: ∥ . Если заданы две плоскости: α и β , являющиеся параллельными, краткая запись об этом будет выглядеть так: α ‖ β .

На чертеже, как правило, плоскости, параллельные друг другу, отображаются как два равных параллелограмма, имеющих смещение относительно друг друга.

В речи параллельность можно обозначить так: плоскости α и β параллельны, а также – плоскость α параллельна плоскости β или плоскость β параллельна плоскости α .

Параллельность плоскостей: признак и условия параллельности

В процессе решения геометрических задач зачастую возникает вопрос: а параллельны ли заданные плоскости между собой? Для получения ответа на этот вопрос используют признак параллельности, который также является достаточным условием параллельности плоскостей. Запишем его как теорему.

Теорема 1

Плоскости являются параллельными, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости.

Доказательство этой теоремы приводится в программе геометрии за 10 - 11 класс.

В практике для доказательства параллельности, в том числе, применяют две следующие теоремы.

Теорема 2

Если одна из параллельных плоскостей параллельна третьей плоскости, то другая плоскость или также параллельна этой плоскости, или совпадает с ней.

Теорема 3

Если две несовпадающие плоскости перпендикулярны некоторой прямой, то они параллельны.

На основе этих теорем и самого признака параллельности доказывается факт параллельности любых двух плоскостей.

Рассмотрим подробнее необходимое и достаточное условие параллельности плоскостей α и β , заданных в прямоугольной системе координат трехмерного пространства.

Допустим, что в некоторой прямоугольной системе координат задана плоскость α, которой соответствует общее уравнение A 1 x + B 1 y + C 1 z + D 1 = 0 , а также задана плоскость β , которую определяет общее уравнение вида A 2 x + B 2 y + C 2 z + D 2 = 0 .

Теорема 4

Для параллельности заданных плоскостей α и β необходимо и достаточно, чтобы система линейных уравнений A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 не имела решения (являлась несовместной).

Доказательство

Предположим, что заданные плоскости, определяемые уравнениями A 1 x + B 1 y + C 1 z + D 1 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 являются параллельными, а значит не имеют общих точек. Таким образом, не существует ни одной точки в прямоугольной системе координат трехмерного пространства, координаты которой отвечали бы условиям одновременно обоих уравнений плоскостей, т.е. система A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 не имеет решения. Если указанная система не имеет решений, тогда не существует ни одной точки в прямоугольной системе координат трехмерного пространства, чьи координаты одновременно отвечали бы условиям обоих уравнений системы. Следовательно, плоскости, заданные уравнениями A 1 x + B 1 y + C 1 z + D 1 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 не имеют ни одной общей точки, т.е. они параллельны.

Разберем использование необходимого и достаточного условия параллельности плоскостей.

Пример 1

Заданы две плоскости: 2 x + 3 y + z - 1 = 0 и 2 3 x + y + 1 3 z + 4 = 0 . Необходимо определить, являются ли они параллельными.

Решение

Запишем систему уравнений из заданных условий:

2 x + 3 y + z - 1 = 0 2 3 x + y + 1 3 z + 4 = 0

Проверим, возможно ли решить полученную систему линейных уравнений.

Ранг матрицы 2 3 1 2 3 1 1 3 равен одному, поскольку миноры второго порядка равны нулю. Ранг матрицы 2 3 1 1 2 3 1 1 3 - 4 равен двум, поскольку минор 2 1 2 3 - 4 отличен от нуля. Таким образом, ранг основной матрицы системы уравнений меньше, чем ранг расширенной матрицы системы.

Совместно с этим, из теоремы Кронекера-Капелли следует: система уравнений 2 x + 3 y + z - 1 = 0 2 3 x + y + 1 3 z + 4 = 0 не имеет решений. Этим фактом доказывается, что плоскости 2 x + 3 y + z - 1 = 0 и 2 3 x + y + 1 3 z + 4 = 0 являются параллельными.

Отметим, что, если бы мы применили для решения системы линейных уравнений метод Гаусса, это дало бы тот же результат.

Ответ: заданные плоскости параллельны.

Необходимое и достаточное условие параллельности плоскостей возможно описать по-другому.

Теорема 5

Чтобы две несовпадающие плоскости α и β были параллельны друг другу необходимо и достаточно, чтобы нормальные векторы плоскостей α и β являлись коллинеарными.

Доказательство сформулированного условия базируется на определении нормального вектора плоскости.

Допустим, что n 1 → = (A 1 , B 1 , C 1) и n 2 → = (A 2 , B 2 , C 2) являются нормальными векторами плоскостей α и β соответственно. Запишем условие коллинеарности данных векторов:

n 1 → = t · n 2 ⇀ ⇔ A 1 = t · A 2 B 1 = t · B 2 C 1 = t · C 2 , где t – некое действительное число.

Таким образом, чтобы несовпадающие плоскости α и β с заданными выше нормальными векторами были параллельны, необходимо и достаточно, чтобы имело место действительное число t , для которого верно равенство:

n 1 → = t · n 2 ⇀ ⇔ A 1 = t · A 2 B 1 = t · B 2 C 1 = t · C 2

Пример 2

В прямоугольной системе координат трехмерного пространства заданы плоскости α и β . Плоскость α проходит через точки: A (0 , 1 , 0) , B (- 3 , 1 , 1) , C (- 2 , 2 , - 2) . Плоскость β описывается уравнением x 12 + y 3 2 + z 4 = 1 Необходимо доказать параллельность заданных плоскостей.

Решение

Удостоверимся, что заданные плоскости не совпадают. Действительно, так и есть, поскольку координаты точки A не соответствуют уравнению плоскости β .

Следующим шагом определим координаты нормальных векторов n 1 → и n 2 → , соответствующие плоскостям α и β . Также проверим условие коллинеарности этих векторов.

Вектор n 1 → можно задать, взяв векторное произведение векторов A B → и A C → . Их координаты соответственно: (- 3 , 0 , 1) и (- 2 , 2 , - 2) . Тогда:

n 1 → = A B → × A C → = i → j → k → - 3 0 1 - 2 1 - 2 = - i → - 8 j → - 3 k → ⇔ n 1 → = (- 1 , - 8 , - 3)

Для получения координат нормального вектора плоскости x 12 + y 3 2 + z 4 = 1 приведем это уравнение к общему уравнению плоскости:

x 12 + y 3 2 + z 4 = 1 ⇔ 1 12 x + 2 3 y + 1 4 z - 1 = 0

Таким образом: n 2 → = 1 12 , 2 3 , 1 4 .

Осуществим проверку, выполняется ли условие коллинеарности векторов n 1 → = (- 1 , - 8 , - 3) и n 2 → = 1 12 , 2 3 , 1 4

Так как - 1 = t · 1 12 - 8 = t · 2 3 - 3 = t · 1 4 ⇔ t = - 12 , то векторы n 1 → и n 2 → связаны равенством n 1 → = - 12 · n 2 → , т.е. являются коллинеарными.

Ответ : плоскости α и β не совпадают; их нормальные векторы коллинеарные. Таким образом, плоскости α и β параллельны.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Параллельности плоскостей. Если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, то эти плоскости параллельны.
Доказательство. Пусть a и b - данные плоскости, а 1 и а 2 – прямые в плоскости a , пересекающиеся в точке А , b 1 и b 2 соответственно параллельные им прямые в плоскости b . Допустим, что плоскости a и b не параллельны, то есть они пересекаются по некоторой прямой с . Прямая а 1 параллельна прямой b 1 , значит она параллельна и самой плоскости b (признак параллельности прямой и плоскости). Прямая а 2 параллельна прямой b 2 , значит она параллельна и самой плоскости b (признак параллельности прямой и плоскости). Прямая с принадлежит плоскости a , значит хотя бы одна из прямых а 1 или а 2 пересекает прямую с, то есть имеет с ней общую точку. Но прямая с также принадлежит и плоскости b , значит, пересекая прямую с, прямая а 1 или а 2 пересекает плоскость b , чего быть не может, так как прямые а 1 и а 2 параллельны плоскости b . Из этого следует, что плоскости a и b не пересекаются, то есть они параллельны.

Теорема 1 . Если две параллельные плоскости пересекаются третей, то прямые пересечения параллельны.
Доказательство. Пусть a и b - параллельные плоскости, а g - плоскость, пересекающая их. Плоскость a пересеклась с плоскостью g по прямой а. Плоскость b пересеклась с плоскостью g по прямой b . Линии пересечения а и b лежатв одной плоскости g и потому могут быть либо пересекающимися, либо параллельными прямыми. Но, принадлежа двум параллельным плоскостям, они не могут иметь общих точек. Следовательно, они параллельны.

Теорема 2. Отрезки параллельных прямых, заключенных между двумя параллельными плоскостями, равны.
Доказательство. Пусть a и b - параллельные плоскости, а а и b – параллельные прямые, пересекающие их. Через прямые а и b проведем плоскость g (эти прямые параллельны, значит определяют плоскость, причем только одну). Плоскость a пересеклась с плоскостью g по прямой АВ. Плоскость b пересеклась с плоскостью g по прямой СД.По предыдущей теореме прямая с параллельна прямой d . Прямые а, b , АВ и СД принадлежат плоскости g .Четырехугольник, ограниченный этими прямыми,есть параллелограмм (у него противоположные стороны параллельны). А раз это параллелограмм, то противоположные стороны у него равны, то есть АД = ВС

error: