Катализ и катализаторы в химии. Портал интересных увлечений



← предыдущая следующая →

Наши публикации

 Гвоздика (пряность) и ее целительная сила Рубрика: Здоровый образ жизни

Традиционно гвоздика встречается практически в каждом рецепте пряников и пуншей. Эта пряность улучшает вкус соусов, а также мясных и овощных блюд. Ученые обнаружили, что пряная гвоздика является прекрасным антиоксидантом и поэтому подходит для укрепления защитных сил организма.

Читать полностью

Рубрика: Здоровый образ жизни

Черемша (дикий чеснок) - своего рода предвестник весны, которого ждут с нетерпением. Это неудивительно, ведь нежные зеленые листья дикого чеснока являются не только кулинарной, но и полезной для здоровья изюминкой! Черемша выводит токсины, снижает кровяное давление и уровень холестерина. Она борется с существующим атеросклерозом и защищает организм от бактерий и грибков. В дополнение к большому количеству витаминов и питательных веществ, дикий чеснок также содержит активный ингредиент аллиин - природный антибиотик с разнообразным целебным действием.



Рубрика: Здоровый образ жизни

Зима – время гриппа. Ежегодная волна заболеваний гриппом обычно начинается в январе и длится три-четыре месяца. Можно ли предотвратить грипп? Как защитить себя от гриппа? Является ли вакцина против гриппа действительно единственной альтернативой или есть другие способы? Что конкретно можно сделать для укрепления иммунной системы и предотвращения гриппа естественными способами, вы узнаете в нашей статье.

Читать полностью

Рубрика: Здоровый образ жизни

Существует множество лекарственных растений от простудных заболеваний. В нашей статье вы познакомитесь с наиболее важными травами, которые помогут вам быстрее справиться с простудой и стать сильнее. Вы узнаете, какие растения помогают при насморке, оказывают противовоспалительное действие, облегчают боль в горле и успокаивают кашель.

Читать полностью

Как стать счастливым? Несколько шагов к счастью Рубрика: Психология отношений

Ключи к счастью находятся не так далеко, как это может показаться. Есть вещи, которые омрачают нашу действительность. От них необходимо избавляться. В нашей статье мы познакомим вас с несколькими шагами, с помощью которых ваша жизнь станет ярче, и вы почувствуете себя счастливее.

Читать полностью

Учимся извиняться правильно Рубрика: Психология отношений

Человек может быстро что-то сказать и даже не заметить, что он кого-то обидел. В мгновение ока может разгореться ссора. Одно плохое слово следует за следующим. В какой-то момент ситуация настолько накаляется, что, похоже, из нее уже нет выхода. Единственное спасение - чтобы один из участников ссоры остановился и извинился. Искренне и дружелюбно. Ведь холодное «Извините» не вызывает никаких эмоций. Правильное извинение - лучший лекарь для отношений в каждой жизненной ситуации.

Читать полностью

Рубрика: Психология отношений

Сохранять гармоничные отношения с партнером - это не просто, но бесконечно важно для нашего здоровья. Можно правильно питаться, регулярно заниматься спортом, иметь прекрасную работу и много денег. Но ничто из этого не поможет, если у нас есть проблемы в отношениях с дорогим человеком. Поэтому так важно, чтобы наши отношения были гармоничными, а как этого добиться, помогут советы в данной статье.

Читать полностью

Неприятный запах изо рта: в чем причина? Рубрика: Здоровый образ жизни

Плохой запах изо рта - довольно неприятный вопрос не только для самого виновника этого запаха, но и для его близких. Неприятный запах в исключительных случаях, например, в виде чесночной пищи, прощается всем. Хронический плохой запах изо рта, однако, может легко продвигать человека к социальному офсайду. Так не должно происходить, потому что причина неприятного запаха изо рта может быть в большинстве случаев относительно легко обнаружена и устранена.

Читать полностью

Рубрика:

Спальня всегда должна быть оазисом мира и благополучия. Очевидно поэтому многие люди хотят украсить спальню комнатными растениями. Но целесообразно ли это? И если да, то какие растения подходят для спальной комнаты?

Современные научные знания порицают древнюю теорию о том, что цветы в спальне неуместны. Раньше считалось, что зеленые и цветущие растения ночью потребляют много кислорода и могут вызвать проблемы со здоровьем. На самом деле комнатные растения имеют минимальную потребность в кислороде.

Читать полностью

Секреты ночной фотосъемки Рубрика: Фотография

Какие же настройки камеры следует использовать при длительной экспозиции, ночной фотосъемке и фотосъемке с низким уровнем освещения? В нашей статье мы собрали несколько советов и рекомендаций, которые помогут Вам сделать качественные ночные фотографии.

Катализаторы обеспечивают более быстрый исход любой химической реакции. Реагируя с исходными веществами реакции, катализатор образует с ними промежуточное соединение, после чего это соединение подвергается преобразованию и в итоге распадается на необходимый конечный продукт реакции, а также на неподвергшийся изменениям катализатор. После распада и образования необходимого продукта катализатор снова вступает в реакцию с исходными реагентами, образуя все большее количество исходного вещества. Данный цикл может повторяться миллионы раз, и если извлечь катализатор из группы реагентов, реакция может длиться в сотни и тысячи раз медленнее.

Катализаторы гетерогенными и гомогенными. Гетерогенные катализаторы в ходе химической реакции образуют самостоятельную фазу, которая отделена разделяющей границей от фазы исходных реагентов. Гомогенные катализаторы, напротив, являются частью одной и той же фазы с исходными реагентами.

Существуют катализаторы органического происхождения, которые участвуют в брожении и созревании, они называются ферментами. Без их непосредственного участия человечество не смогло бы получать большую часть спиртных напитков, молочнокислых продуктов, продуктов из теста, а также мед и . Без участия ферментов был бы невозможен обмен веществ у живых организмов.

Требования к веществам катализаторам

Катализаторы, которые широко применяются в промышленном производстве, должны обладать целым рядом свойств, необходимых для успешного завершения реакции. Катализаторы должны быть высокоактивными, селективными, механически прочными и термоустойчивыми. Они должны обладать продолжительным действием, легкой регенерацией, устойчивостью к каталитическим ядам, гидродинамическими свойствами, а также небольшой ценой.

Современное применение промышленных катализаторов

В нынешнем высокотехнологическом производстве катализаторы применяются при крекинге нефтепродуктов, получении ароматических углеводородов и высокооктанового , получении чистого водорода, кислорода или инертных газов, синтезе аммиака, получении и серной кислоты без дополнительных затрат. Также катализаторы широко применяются для получения азотной кислоты, фталевого ангидрида, метилового и спирта и ацетальдегида. Наиболее широко применяемые катализаторы – это металлическая платина, ванадий, никель, хром, железо, цинк, серебро, алюминий и палладий. Также довольно часто применяются некоторые соли этих металлов.

Скорости химических реакций могут резко увеличиваться в присутствии различных веществ, не являющихся реагентами и не входящих в состав продуктов реакции. Это замечательное явление получило название катализ (от греч. «katalysis» - разрушение). Вещество, при наличии которого в смеси увеличивается скорость реакции, называется катализатором. Его количество до и после реакции остается неизменным. Катализаторы не представляют собой какой-то особый класс веществ. В разных реакциях каталитическое действие могут проявить металлы, оксиды, кислоты, соли, комплексные соединения. Химические реакции в живых клетках протекают под контролем каталитических белков, называемых ферментами. Катализ следует рассматривать как истинно химический фактор увеличения скоростей химических реакций, так как катализатор непосредственно участвует в реакции. Катализ часто оказывается более мощным и менее рискованным средством ускорения реакции, чем повышение температуры. Это ярко проявляется на примере химических реакций в живых организмах. Реакции, например гидролиз белков, которые в лабораториях приходится проводить при длительном нагревании до температуры кипения, в процессе пищеварения протекают без нагревания при температуре тела.

Впервые явление катализа наблюдал французский химик Л. Ж. Тенар (1777-1857) в 1818 г. Он обнаружил, что оксиды некоторых металлов при внесении в раствор перекиси водорода вызывают ее разложение. Такой опыт легко воспроизвести, внеся кристаллы перманганата калия в 3%-ный раствор перекиси водорода. Соль КМп0 4 превращается в Мп0 2 , и из раствора под действием оксида быстро выделяется кислород:

Непосредственно действие катализатора на скорость реакции связано с понижением энергии активации. При обычной температуре понижение? а на 20 кДж/моль увеличивает константу скорости приблизительно в 3000 раз. Понижение Е Л может быть и значительно более сильным. Однако понижение энергии активации является внешним проявлением действия катализатора. Реакция характеризуется определенным значением E. v которое может измениться только при изменении самой реакции. Давая те же самые продукты, реакция при участии добавленного вещества идет по иному пути, через другие стадии и с другой энергией активации. Если на этом новом пути энергия активации оказывается ниже и реакция соответственно идет быстрее, то мы говорим, что эго вещество является катализатором.

Катализатор взаимодействует с одним из реагентов, образуя некоторое промежуточное соединение. На одной из последующих стадий реакции катализатор регенерируется - выходит из реакции в первоначальном виде. Реагенты, участвуя в каталитической реакции, продолжают взаимодействовать между собой и по медленному пути без участия катализатора. Поэтому каталитические реакции относятся к разновидности сложных реакций, называемых последовательно-параллельными. На рис. 11.8 показана зависимость константы скорости от концентрации катализатора. График зависимости не проходит через ноль, так как при отсутствии катализатора протекание реакции не прекращается.

Рис. 11.8.

наблюдаемая константа k выражается суммой k u + & к с(К)

Пример 11.5. При температуре -500 °С реакция окисления оксида серы(1У)

являющаяся одной из стадий промышленного получения серной кислоты, идет очень медленно. Дальнейшее повышение температуры неприемлемо, так как равновесие смещается влево (реакция экзотермическая) и выход продукта слишком сильно понижается. Но эта реакция ускоряется различными катализаторами, одним из которых может быть оксид азота(П). Сначала катализатор реагирует с кислородом:

а потом передает атом кислорода оксиду серы(1У):

Так образуется конечный продукт реакции и регенерируется катализатор. Для реакции открылась возможность течения по новому пути, на котором константы скорости значительно возросли:

На приведенной схеме показаны оба пути процесса окисления S0 2 . При отсутствии катализатора реакция идет только по медленному пути, а в присутствии катализатора- по обоим.

Различают два вида катализа - гомогенный и гетерогенный. В первом случае катализатор и реагенты образуют гомогенную систему в виде газовой смеси или раствора. Пример окисления оксида серы - это гомогенный катализ. Скорость гомогенной каталитической реакции зависит как от концентраций реагентов, так и от концентрации катализатора.

При гетерогенном катализе катализатор представляет собой твердое вещество в чистом виде или нанесенное на носитель. Например, платина в качестве катализатора может быть закреплена на асбесте, оксиде алюминия и т.д. Молекулы реагента адсорбируются (поглощаются) из газа или раствора на особых точках поверхности катализатора - активных центрах и при этом активируются. После химического превращения образовавшиеся молекулы продукта десорбируются с поверхности катализатора. На активных центрах повторяются акты превращения частиц. Кроме прочих факторов, скорость гетерогенной каталитической реакции зависит от площади поверхности каталитического материала.

Гетерогенный катализ особенно широко применяется в промышленности. Это объясняется легкостью осуществления непрерывного каталитического процесса при прохождении смеси реагентов через контактный аппарат с катализатором.

Катализаторы действуют избирательно, ускоряя вполне определенный вид реакций или даже отдельную реакцию и не влияя на другие. Это позволяет использовать катализаторы не только для ускорения реакций, но и для целенаправленного превращения исходных веществ в желаемые продукты. Метан и вода при 450 °С на катализаторе Fe 2 0 3 превращаются в углекислый газ и водород:

Те же вещества при 850 °С на поверхности никеля реагируют с образованием оксида углерода(П) и водорода:

Катализ относится к тем областям химии, в которых пока невозможно делать точные теоретические прогнозы. Все промышленные катализаторы для переработки нефтяных продуктов, природного газа, производства аммиака и многие другие разработаны на основе трудоемких и длительных экспериментальных исследований.

Умение управлять скоростями химических процессов имеет неоценимое значение в хозяйственной деятельности человека. При промышленном получении химических продуктов обычно необходимо увеличивать скорости технологических химических процессов, а при хранении продукции требуется уменьшать скорость разложения или воздействия кислорода, воды и т.д. Известны вещества, которые могут замедлять химические реакции. Они называются ингибиторами , или отрицательными катализаторами. Ингибиторы принципиально отличаются от настоящих катализаторов тем, что реагируют с активными частицами (свободными радикалами), которые по тем или иным причинам возникают в веществе или окружающей его среде и вызывают ценные реакции разложения и окисления. Ингибиторы постепенно расходуются, прекращая свое защитное действие. Наиболее важной разновидностью ингибиторов являются антиоксиданты, предохраняющие различные материалы от воздействия кислорода.

Следует напомнить и о том, чего нельзя добиться с помощью катализаторов. Они способны ускорять только самопроизвольные реакции. Если реакция самопроизвольно не идет, то катализатор не сможет ее ускорить. Например, никакой катализатор не может вызвать разложение воды на водород и кислород. Этот процесс можно осуществить только электролизом, затрачивая при этом электрическую работу.

Катализаторы могут активизировать и нежелательные процессы. В последние десятилетия наблюдается постепенное разрушение озонового слоя атмосферы на высоте 20-25 км. Предполагается, что в распаде озона участвуют некоторые вещества, например галогенированные углеводороды, выбрасываемые в атмосферу промышленными предприятиями, а также используемые в бытовых целях.

При попытке поджечь сахар он будет плавиться и обугливаться Положите на сахар горку пепла, который будет служить катализатором С пеплом сахар загорится! Сахар горит, если на него посыпать пеплом! При отсутствии пепла (катализатора) - сахар только обугливается Окисление спирта в присутствии медного катализатора

Вы когда-нибудь пробовали поджечь сахар? Казалось бы, сильно экзотермическая реакция С 12 Н 22 О 11 +12О 2 →12СО 2 +11Н 2 О должна идти легко. Не тут-то было - при сильном нагреве сахар плавится, приобретает коричневую окраску и запах карамели, но не загорается. И всё же сжечь сахар можно. Для этого надо посыпать его табачным пеплом и внести в пламя - тогда сахар загорится. Такое же воздействие на эту реакцию оказывают и некоторые другие вещества, например соли лития или оксид хрома (III).

Химические реакции, которые «не желают» протекать сами по себе или идут с очень малой скоростью и требуют дополнительного «стимула» - присутствия веществ, которые в результате реакции остаются неизменными, - происходят повсеместно. Это, во-первых, абсолютно все химические процессы, лежащие в основе жизнедеятельности клеток. Они протекают только в присутствии ферментов , а отсутствие в организме хотя бы одного из них нарушает обмен веществ и чревато тяжёлой болезнью или же просто несовместимо с жизнью.

Кроме того, к таким реакциям относится большинство крупнотоннажных процессов, используемых в химической промышленности. Получение серной кислоты , переработка нефти , синтез аммиака немыслимы без участия «посторонних веществ», называемых катализаторами . Как выглядел бы наш мир без катализаторов? Он был бы гораздо статичнее, ведь многие химические реакции просто не происходили бы. Впрочем, изучать химию всё равно было бы некому: жизнь в таком мире появиться не может.

Катализаторы позволяют проводить химические процессы при гораздо более мягких условиях. А кроме того, в присутствии катализаторов идут реакции, которые вообще невозможны без их участия ни в каких условиях.

При этом количество катализатора, необходимое для превращения огромной массы реагентов в продукты реакции, несоизмеримо мало. Одна молекула фермента катализирует разложение 5 млн. молекул сахара за 1 с!

Катализ и его секреты

Но в чём скрыта тайна веществ - катализаторов ? Давайте разберёмся, почему сахар и другие органические вещества самопроизвольно не превращаются в углекислый газ и воду - гораздо более энергетически выгодные (говорят ещё «термодинамически устойчивые») соединения. Разве это не удивительно? Ведь если положить, скажем, шарик на вершину горки, он тут же займёт более энергетически выгодное положение - скатится вниз. Если же его оградить барьером, он скатиться не сможет. Чтобы оказаться внизу и тем самым уменьшить свою потенциальную энергию, шарику нужно преодолеть барьер, а для этого ему нужно подвести дополнительную энергию.

Все существующие химические вещества, даже весьма термодинамически неустойчивые, окружены на своих энергетических «вершинах» подобными барьерами. Порой энергия, необходимая для их преодоления, сравнима с кинетической энергией теплового движения молекул. Тогда достаточно простого смешения реагентов - и реакция происходит при комнатной температуре. Нагревая реакционную смесь, можно преодолеть барьер чуть повыше. Но иногда он слишком высок, и в этом случае придётся или искать способы доставки необходимой энергии молекулам реагентов, или попытаться обойти энергетический барьер.

Как это сделать? Оказывается, катализатор может, подобно опытному проводнику, хорошо знающему местность, повести реакцию по совершенно иному пути. При этом её механизм претерпевает сильные изменения. Существует масса способов обойти энергетическую «гору». Каждый катализатор , работающий в конкретной реакции, выбирает для процесса свой путь. При этом новый маршрут может быть гораздо длиннее изначального: число промежуточных стадий и продуктов реакции иногда возрастает в несколько раз. Но зато количество энергии, требуемое на каждой стадии, оказывается существенно меньше, чем в отсутствие «проводника». В итоге, пройдя более длинный путь при помощи катализатора, реакция даёт желаемый результат значительно быстрее.

Однако «постороннее вещество» может воздействовать на ход реакции и противоположным образом: привести её к труднопреодолимому энергетическому барьеру. Тогда процесс замедляется. Такой «отрицательный» катализ называется ингибированием (от лат. inhibeo - «останавливаю», «сдерживаю»), а «катализаторы, действующие наоборот» - ингибиторами .

Зачем нужно замедлять скорость реакции? Существуют процессы, которые необходимы человеку, а также существуют такие процессы, проведение которых может пагубно сказаться как на человека, так и на предметах его обихода и окружающей среде. например появление ржавчины - коррозия металлов , гниение продуктов питания. Такими реакциями могут быть взрывы различных химических веществ, которые чувствительны к движению или сотрясению. Нужно учитывать, что химические реакции, в результате которых образуется лишь одно вещество - достаточно редкие. В основном при реакциях образуется более одного вещества. Особенно ярко такое явление наблюдается в органической химии.

В организмах живых существ и множестве других процессах, протекающих в нашей среде обитания часто необходимо, чтобы в процессе реакции получалось только одно нужное нам вещество или продукт реакции. Именно в этом случае применяется катализ . Грамотный подбор катализатора позволяет проводить химические процессы только в нужном для нас направлении и с получением требуемого нам вещества, при этом исключая выход других побочных эффектов реакции.

Катализ – это процесс изменения скорости химической реакции при помощи катализаторов – , принимающих участие в химической реакции, но в состав конечных продуктов не входящих и в результате реакции не расходующихся.

Одни катализаторы ускоряют реакцию (положительный катализ ), другие – замедляют (отрицательный катализ ). Отрицательный катализ называют ингибированием , а катализаторы, понижающие скорость химической реакции – ингибиторами .

Различают гомогенный и гетерогенный катализ.

Гомогенный катализ.

При гомогенном (однородном) катализе реагирующие вещества и катализатор находятся в одинаковом и между ними отсутствует поверхность раздела. Пример гомогенного катализа – реакция окисления SO 2 и SO 3 в присутствии катализатора NO (реагирующие вещества и катализатор являются газами).

Гетерогенный катализ.

В случае гетерогенного (неоднородного) катализа реагирующие вещества и катализатор находятся в различных агрегатных состояниях и между ними существует поверхность (граница) раздела. Обычно катализатор – твердое вещество, а реагирующие вещества – жидкости или газы. Пример гетерогенного катализа – окисление NN 3 до NO в присутствии Pt (катализатор – твердое вещество).

Механизм действия катализаторов

Действие положительных катализаторов сводится к понижению энергии активации реакции Е а(исх) , действие ингибиторов – противоположное.

Так, для реакции 2 HI = H 2 + I 2 Е а(исх) =184 кДж/моль. Когда же эта реакция протекает в присутствии катализатора Au или Pt , то Е а(исх) =104 кДж/моль, соответственно.

Механизм действия катализатора при гомогенном катализе объясняется образованием промежуточных соединений между катализатором и одним из реагирующих веществ. Далее промежуточное соединение реагирует со вторым исходным веществом, в результате чего образуется продукт реакции и катализатор в первоначальном виде. Так как скорость обоих промежуточных процессов значительно больше скорости прямого процесса, то реакция с участием катализатора протекает значительно быстрее, чем без него.

Например, реакция:

SO 2 +1/2 O 2 = SO 3 протекает очень медленно, а если использовать катализатор NO

то реакции NO +1/2О 2 = NO 2 и NO 2 + SO 2 = SO 3 + NO протекают быстро.

Механизм действия катализатора при гетерогенном катализе иной. В этом случае реакция протекает вследствие адсорбции молекул реагирующих веществ поверхностью катализатора (поверхность катализатора неоднородна: на ней имеются так называемые активные центры , на которых и адсорбируются частицы реагирующих веществ.). Увеличение скорости химической реакции достигается, в основном, за счет понижения энергии активации адсорбированных молекул, а также, отчасти, за счет увеличения концентрации реагирующих веществ в местах, где произошла адсорбция.

Каталитические яды и промоторы.

Некоторые вещества снижают или полностью уничтожают активность катализатора, такие вещества называют каталитическими ядами . Например, небольшие примеси серы (0,1%) полностью прекращает каталитическое действие металлического катализатора (губчатого железа), использующегося при синтезе аммиака. Вещества, повышающие активность катализатора, называют промоторами. Например, каталитическая активность губчатого железа значительно возрастает при добавлении примерно 2% метаалюмината калия KAlO 2 .

Применение катализаторов

Действие катализатора избирательно и специфично. Это означает, что, применяя различные катализаторы, из одних и тех же веществ можно получить различные продукты. Это особенно характерно для реакций органических веществ. Например, в присутствии катализатора AlO 3 происходит дегидратация этилового спирта, в присутствии Cu – дегидрирование:

Биологические катализаторы, принимающие участие в сложных химических превращениях, протекающих в организме, называются ферментами.

Катализаторы широко используются в производстве серной кислоты, аммиака, каучука, пластмасс и др. веществ.

error: