Как найти положение центра масс двух тел. Удивительное равновесие

Существует множество различных конструкций и сооружений, смотря на которые, удивляешься, как они сохраняют равновесие. Самое, пожалуй, известное из них – знаменитая Пизанская башня, построенная ещё в 1360 году и сохраняющая свой непреднамеренный наклон. Почему же Пизанская башня сохраняет равновесие? Секрет прост. Вертикальная проекция центра масс башни находится на её основании. Это справедливо и для любого другого сооружения. Кроме того, если какой-либо предмет подвесить за точку, которая совпадает с центром масс, то подвешенный предмет тоже будет сохранять равновесие. Можно также собирать из различных предметов конструкции самой причудливой формы, которые будут находиться в равновесии, если правильно рассчитать местоположение центра масс. Давайте попробуем разобраться, как рассчитывать координаты центра масс различных плоских фигур.

Предположим, что Вы решили сделать новогоднюю гирлянду, состоящую из различных фигур, в том числе в форме стрелки. Сначала нужно вырезать из плотной бумаги с новогодним рисунком равнобедренный треугольник. Потом нужно сделать вырез тоже в форме равнобедренного треугольника так, чтобы центр масс получившейся фигуры оказался в точке В (см.рисунок). Найдем координаты x c и y c центра масс этой фигуры в прямоугольной системе координат yOx .

Положение центра масс плоских фигур известно: центр масс треугольника находится в точке пересечения его медиан, центр масс прямоугольника находится в точке пересечения его диагоналей, центр масс круга совпадает с его центром. Так как треугольник ACD – равнобедренный, то, исходя из его симметрии относительно прямой ОА , следует, что x c = 0 .

Для расчета координаты y c воспользуемся следующей формулой:

где S ΔACD и S ΔBCD – площади треугольников ACD и BCD , а y c 1 и y c 2 – координаты их центров масс, соответственно. Тогда:

Учитывая, что центр масс должен находиться в точке B , получаем:

|OB | = ½ |OA | . То есть точка B – середина отрезка |OA |.

По предложенному методу мы предлагаем вам решить задачу:

Рассчитайте координаты центра масс круга радиуса R с вырезанным кругом радиуса r (см. рисунок). Определите, каким должен быть отношение радиусов R и r , чтобы центр масс фигуры находился в точке B . Проанализируйте результат.

Определение

При рассмотрении системы частиц, часто удобно найти такую точку, которая характеризует положение и движение рассматриваемой системы как единого целого. Такой точкой является центр масс .

Если у нас две частицы одинаковой массы, то такая точка находится посередине между ними.

Координаты центра масс

Допустим, что две материальные точки, имеющие массы $m_1$ и $m_2$ находятся на оси абсцисс и имеют координаты $x_1$ и $x_2$. Расстояние ($\Delta x$) между этими частицами равно:

\[\Delta x=x_2-x_1\left(1\right).\]

Определение

Точку С (рис.1), делящую расстояние между этими частицами на отрезки, обратно пропорциональные массам частиц называют центром масс этой системы частиц.

В соответствии с определением для рис.1 имеем:

\[\frac{l_1}{l_2}=\frac{m_2}{m_1}\left(2\right).\]

где $x_c$ - координата центра масс, то получаем:

Из формулы (4) получим:

Выражение (5) легко обобщается для множества материальных точек, которые расположены произвольным образом. При этом абсцисса центра масс равна:

Аналогично получают выражения для ординаты ($y_c$) центра масс и его аппликаты ($z_c$):

\ \

Формулы (6-8) совпадают с выражениями, определяющими центр тяжести тела. В том случае, если размеры тела малы в сравнении с расстоянием до центра Земли, центр тяжести считают совпадающим с центром масс тела. В большинстве задач центр тяжести совпадает с центром масс тела.

Если положение N материальных точек системы задано в векторной форме, то радиус - вектор, определяющий положение центра масс находим как:

\[{\overline{r}}_c=\frac{\sum\limits^N_{i=1}{m_i{\overline{r}}_i}}{\sum\limits^N_{i=1}{m_i}}\left(9\right).\]

Движение центра масс

Выражение для скорости центра масс (${\overline{v}}_c=\frac{d{\overline{r}}_c}{dt}$) имеет вид:

\[{\overline{v}}_c=\frac{m_1{\overline{v}}_1+m_2{\overline{v}}_2+\dots +m_n{\overline{v}}_n}{m_1+m_2+\dots +m_n}=\frac{\overline{P}}{M}\left(10\right),\]

где $\overline{P}$ - суммарный импульс системы частиц; $M$ масса системы. Выражение (10) справедливо при движениях со скоростями которые существенно меньше скорости света.

Если система частиц является замкнутой, то сумма импульсов ее частей не изменяется. Следовательно, скорость центра масс при этом величина постоянная. Говорят, что центр масс замкнутой системы перемещается по инерции, то есть прямолинейно и равномерно, и это движение не зависимо от движения составных частей системы. В замкнутой системе могут действовать внутренние силы, в результате их действия части системы могут иметь ускорения. Но это не оказывает влияния на движение центра масс. Под действием внутренних сил скорость центра масс не изменяется.

Примеры задач с решением

Пример 1

Задание. Запишите координаты центра масс системы из трех шариков, которые находятся в вершинах и центра равностороннего треугольника, сторона которого равна $b\ (м)$ (рис.2).

Решение. Для решения задачи используем выражения, определяющие координаты центра масс:

\ \

Из рис.2 мы видим, что абсциссы точек:

\[\left\{ \begin{array}{c} m_1=2m,\ \ x_1=0;;\ \ \\ {\rm \ }m_2=3m,\ \ \ \ x_2=\frac{b}{2};; \\ m_3=m,\ \ x_3=\frac{b}{2};; \\ m_4=4m,\ \ x_4=b. \end{array} \right.\left(2.3\right).\]

Тогда абсцисса центра масса равна:

Найдем ординаты точек.

\[ \begin{array}{c} m_1=2m,\ \ y_1=0;;\ \ \\ {\rm \ }m_2=3m,\ \ \ \ y_2=\frac{b\sqrt{3}}{2};; \\ m_3=m,\ \ y_3=\frac{b\sqrt{3}}{6};; \\ m_4=4m,\ \ y_4=0. \end{array} \left(2.4\right).\]

Для нахождения ординаты $y_2$ вычислим, чему равна высота в равностороннем треугольнике:

Ординату $y_3$ найдем, помня, что медианы в равностороннем треугольнике точкой пересечения делятся в отношении 2:1 от вершины, получаем:

Вычислим ординату центра масс:

Ответ. $x_c=0,6b\ {\rm \ }{\rm м}$; $y_c=\frac{b\sqrt{3}\ }{6}$ м

Пример 2

Задание. Запишите закон движения центра масс.

Решение. Закон изменения импульса системы частиц является законом движения центра масс. Из формулы:

\[{\overline{v}}_c=\frac{\overline{P}}{M}\to \overline{P}=M{\overline{v}}_c\left(2.1\right)\]

при постоянной массе $M$ продифференцировав обе части выражения (2.1), получим:

\[\frac{d\overline{P}}{dt}=M\frac{d{\overline{v}}_c}{dt}\left(2.2\right).\]

Выражение (2.2) означает, что скорость изменения импульса системы равняется произведению массы системы на ускорение ее центра масс. Так как

\[\frac{d\overline{P}}{dt}=\sum\limits^N_{i=1}{{\overline{F}}_i\left(2.3\right),}\]

В соответствии с выражением (2.4) получаем, что центр масс системы движется так, как двигалась бы одна материальная точка массы M, если на нее действует сила, равная сумме всех внешних сил, действующих на частицы, которые входят в рассматриваемую систему. Если $\sum\limits^N_{i=1}{{\overline{F}}_i=0,}$ то центр масс движется равномерно и прямолинейно.

Любое тело можно рассматривать как совокупность материальных точек, в качестве которых можно, например, брать молекулы. Пусть тело состоит из n материальных точек с массами m1, m2, ...mn.

Центром масс тела , состоящего из n материальных точек, называется точка (в геометрическом смысле), радиус-вектор которой определяется формулой :

Здесь R1 – радиус-вектор точки с номером i (i = 1, 2, ... n).

Это определение выглядит непривычно, но на самом деле оно даёт положение того самого центра масс, о котором у нас имеется интуитивное представление. Например, центр масс стержня будет находиться в его середине. Сумма масс всех точек, входящая в знаменатель вышеопределённой формулы, называется массой тела. Массой тела называется сумма масс всех его точек : m = m1 + m2 + ... + mn .

В симметричных однородных телах ЦМ всегда расположен в центре симметрии или лежит на оси симметрии, если у фигуры центра симметрии нет. Центр масс может находиться как внутри тела (диск, квадрат, треугольник), так и вне его (кольцо, рамка, угольник).

Для человека положение ЦМ зависит от принятой позы. Во многих видах спорта важным слагаемым успеха является способность сохранять равновесие. Так, в спортивной гимнастике, акробатике

большое количество элементов включат в себя разные виды равновесия. Важна способность сохранять равновесие в фигурном катании, в беге на коньках, где опора имеет очень малую площадь.

Условиями равновесия покоящегося тела являются одновременное равенство нулю суммы сил и суммы моментов сил , действующих на тело.

Выясним, какое положение должна занимать ось вращения, чтобы закреплённое на ней тело оставалось в равновесии под действием сил тяжести. Для этого разобьём тело на множество маленьких кусочков и нарисуем действующие на них силы тяжести.

В соответствии с правилом моментов для равновесия необходимо, чтобы сумма моментов всех этих сил относительно оси равнялась нулю.

Можно показать, что для каждого тела существует единственная точка, где сумма моментов сил тяжести относительно любой оси, проходящей через эту точку, равна нулю. Эта точка называется центром тяжести (обычно совпадает с центром масс).

Центром тяжести тела (ЦТ) называется точка, относительно которой сумма моментов сил тяжести, действующей на все частицы тела, равна нулю .

Таким образом, силы тяжести не вызывают вращения тела вокруг центра тяжести. Поэтому все силы тяжести можно было бы заменить единственной силой, которая приложена к этой точке и равна силе тяжести.

Для изучения движений тела спортсмена часто вводится термин общий центр тяжести (ОЦТ). Основные свойства центра тяжести:

Если тело закреплено на оси, проходящей через центр тяжести, то сила тяжести не будет вызывать его вращения;

Центр тяжести является точкой приложения силы тяжести;

В однородном поле центр тяжести совпадает с центром масс.

Равновесным называется такое положение тела, при котором оно может оставаться в покое сколь угодно долго. При отклонении тела от положения равновесия, силы, действующие на него, изменяются, и равновесие сил нарушается.

Существуют различные виды равновесия (рис. 9). Принято различать три вида равновесия: устойчивое, неустойчивое и безразличное.

Устойчивое равновесие (рис. 9, а) характеризуется тем, что тело возвращается в первоначальное положение при его отклонении. В таком случае возникают силы, или моменты сил, стремящаяся возвратить тело в исходное положение. Примером может служить положение тела с верхней опорой (например, вис на перекладине), когда при любых отклонениях тело стремится возвратиться в начальное положение.

Безразличное равновесие (рис. 9, б) характеризуется тем, что при изменении положения тела не возникает сил или моментов сил, стремящихся возвратить тело в начальное положение или ещё более удалить тело от него. Это редко наблюдаемый у человека случай. Примером может служить состояние невесомости на космическом корабле.

Неустойчивое равновесие (рис. 9, в) наблюдается тогда, когда при малых отклонениях тела возникают силы или моменты сил, стремящихся ещё больше отклонить тело от начального положения. Такой случай можно наблюдать, когда человек, стоя на опоре очень малой площади (значительно меньшей площади его двух ног или даже одной ноги), отклоняется в сторону.

Рисунок 9. Равновесие тела : устойчивое (а), безразличное (б), неустойчивое (в)

Наряду с перечисленными видами равновесия тел в биомеханике рассматривают ещё один вид равновесия – ограниченно-устойчивое. Этот вид равновесия отличается тем, что тело может вернуться в начальное положение при отклонении от него до некоторого предела, например, определяемого границей площади опоры. Если же отклонение переходит этот предел, равновесие становится неустойчивым.

Основная задача при обеспечении равновесия тела человека состоит в том, чтобы проекция ОЦМ тела находилась в пределах площади опоры. В зависимости от вида деятельности (сохранение статического положения, ходьба, бег и т. п.) и требований к устойчивости частота и быстрота корригирующих воздействий изменяются, но процессы сохранения равновесия одинаковы.

Распределение массы в теле человека

Масса тела и массы отдельных сегментов очень важны для различных аспектов биомеханики. Во многих видах спорта необходимо знать распределение массы для выработки правильной техники выполнения упражнений. Для анализа движений тела человека используется метод сегментирования: оно условно рассекается на определённые сегменты. Для каждого сегмента определяются его масса и положение центра масс. В табл. 1 определены массы частей тела в относительных единицах.

Таблица 1. Массы частей тела в относительных единицах

Часто вместо понятия центра масс используют другое понятие – центр тяжести. В однородном поле тяжести центр тяжести всегда совпадает с центром масс. Положение центра тяжести звена указывают как его расстояние от оси проксимального сустава и выражают относительно длины звена, принятой за единицу.

В табл. 2 приведены анатомическое положение центров тяжести различных звеньев тела.

Таблица 2. Центры тяжести частей тела

Часть тела Положение центра тяжести
Бедро 0,44 длины звена
Голень 0,42 длины звена
Плечо 0,47 длины звена
Предплечье 0,42 длины звена
Туловище
Голова
Кисть
Стопа
Плечо 0,47 длины звена
Предплечье 0,42 длины звена
Туловище 0,44 расстояния от поперечной оси плечевых суставов до оси тазобедренных
Голова Расположена в области турецкого седла клиновидной кости (проекция спереди между бровями, сбоку – на 3,0 – 3,5 выше наружного слухового прохода)
Кисть В области головки третьей пястной кости
Стопа На прямой, соединяющей пяточный бугор пяточной кости с концом второго пальца на расстоянии 0,44 от первой точки
Общий центр масс тяжести при вертикальном положении тела Расположен при основной стойке в области малого таза, впереди крестца

Термин «центр масс» используется не только в механике и в расчетах движения но и обыденной жизни. Просто люди не всегда задумываются о том, какие же законы природы проявляются в той или иной ситуации. Например, фигуристы в парном катании активно используют центр масс системы, когда раскручиваются, взявшись за руки.

Понятие центра масс также применяется при проектировке кораблей. Необходимо учесть не просто два тела, а огромное их количество и все привести к единому знаменателю. Ошибки в расчетах означают отсутствие устойчивости корабля: в одном случае он будет чрезмерно погружен в воду, рискуя пойти ко дну при самых незначительных волнах; а в другом слишком приподнят над уровнем моря, создавая опасность переворота на бок. Кстати, именно поэтому каждая вещь на борту должна быть на своем месте, предусмотренным расчетами: наиболее массивные в самом низу.

Центр масс используется не только в отношении небесных тел и проектировании механизмов, но и при изучении «поведения» частиц микромира. К примеру, многие из них рождаются парами (электрон-позитрон). Обладая изначальным вращением и подчиняясь законам притяжения/отталкивания, они могут быть рассмотрены как система с общим центром масс.

Любая механическая система так же, как и любое тело обладает такой замечательной точкой как центр масс. Она есть у человека, автомобиля, Земли, Вселенной, т. е. у любого предмета. Очень часто эту точку путают с центром тяжести. Несмотря на то что они часто друг с другом совпадают, у них есть определенные различия. Можно сказать, что центр масс механической системы - это более обширное понятие по сравнению с ее центром тяжести. Что же это такое и как найти его местоположение в системе или в отдельно взятом объекте? Об этом как раз и пойдет речь в нашей статье.

Понятие и формула определения

Центр масс представляет собой некую точку пересечения прямых, параллельно которым воздействуют внешние силы, вызывая при этом поступательное движение данного объекта. Это утверждение является справедливым как для отдельного взятого тела, так и для группы элементов имеющих между собой определенную связь. Центр масс всегда совпадает с центром тяжести и является одной из важнейших геометрических характеристик распределения всех масс в исследуемой системе. Обозначим через m i массу каждой точки системы (i = 1,…,n). Положение любой из них можно описать тремя координатами: x i , у i , z i . Тогда очевидно, что масса тела (всей системы) будет равна сумме масс ее частиц: М=∑m i . А сам центр масс (O) можно будет определить через следующие соотношения:

X o = ∑m i *x i /M;

Y o = ∑m i *y i /M;

Z o = ∑m i *z i /M.

Чем же интересна данная точка? Одно из главных ее достоинств - это то, что она характеризует движение объекта как целого. Это свойство позволяет использовать центр массы в тех случаях, когда тело имеет большие габариты или неправильную геометрическую форму.

Что следует знать для нахождения данной точки


Практическое применение

Рассматриваемое понятие широко используется в различных областях механики. Обычно центр масс используют в роли центра тяжести. Последний представляет собой такую точку, подвесив объект, за который, можно будет наблюдать неизменность его положения. Центр масс системы нередко рассчитывают при проектировании различных деталей в машиностроении. Он также играет большую роль в обеспечении равновесия, что можно применить, к примеру, при создании альтернативных вариантов мебели, транспортных средств, в строительстве, в складском хозяйстве и т. д. Без знания основных принципов, по которым определяется центр тяжести, было бы сложно организовать безопасность работ с массивными грузами и любыми габаритными предметами. Надеемся, что наша статья оказалась полезной и ответила на все вопросы по данной теме.

error: