Исследовательский проект замечательные точки треугольника. Четыре замечательные точки треугольника

Докажем сначала теорему о биссектрисе угла.

Теорема

Доказательство

1) Возьмём произвольную точку М на биссектрисе угла ВАС, проведём перпендикуляры МК и ML к прямым АВ и АС и докажем, что MK = ML (рис. 224). Рассмотрим прямоугольные треугольники AM К и AML. Они равны по гипотенузе и острому углу (AM - общая гипотенуза, ∠1 = ∠2 по условию). Следовательно, MK = ML.

2) Пусть точка М лежит внутри угла ВАС и равноудалена от его сторон АВ и АС. Докажем, что луч AM - биссектриса угла ВАС (см. рис. 224). Проведём перпендикуляры МК и ML к прямым АВ и АС. Прямоугольные треугольники АМК и AML равны по гипотенузе и катету (AM - общая гипотенуза, МК = ML по условию). Следовательно, ∠1 = ∠2. Но это и означает, что луч AM - биссектриса угла ВАС. Теорема доказана.


Рис. 224

Следствие 1

Следствие 2

В самом деле, обозначим буквой О точку пересечения биссектрис АА 1 и ВВ 1 треугольника АВС и проведём из этой точки перпендикуляры OK, OL и ОМ соответственно к прямым АВ, ВС и СА (рис. 225). По доказанной теореме ОК = ОМ и OK = OL. Поэтому ОМ = OL, т. е. точка О равноудалена от сторон угла АСВ и, значит, лежит на биссектрисе СС 1 этого угла. Следовательно, все три биссектрисы треугольника АВС пересекаются в точке О, что и требовалось доказать.


Рис. 225

Свойства серединного перпендикуляра к отрезку

Серединным перпендикуляром к отрезку называется прямая, проходящая через середину данного отрезка и перпендикулярная к нему.


Рис. 226

Докажем теорему о серединном перпендикуляре к отрезку.

Теорема

Доказательство

Пусть прямая m - серединный перпендикуляр к отрезку АВ, точка О - середина этого отрезка (рис. 227, а).


Рис. 227

1) Рассмотрим произвольную точку М прямой m и докажем, что AM = ВМ. Если точка M совпадает с точкой О, то это равенство верно, так как О - середина отрезка АВ. Пусть M и О различные точки. Прямоугольные треугольники ОAM и ОВМ равны по двум катетам (ОА = ОВ, ОМ - общий катет), поэтому AM = ВМ.

2) Рассмотрим произвольную точку N, равноудалённую от концов отрезка АВ, и докажем, что точка N лежит на прямой m. Если N - точка прямой АВ, то она совпадает с серединой О отрезка АВ и потому лежит на прямой m. Если же точка N не лежит на прямой АВ, то треугольник ANB равнобедренный, так как AN = BN (рис. 227, б). Отрезок NO - медиана этого треугольника, а значит, и высота. Таким образом, NO ⊥ АВ, поэтому прямые ON и m совпадают, т. е. N - точка прямой m. Теорема доказана.

Следствие 1

Следствие 2

Для доказательства этого утверждения рассмотрим серединные перпендикуляры m и n к сторонам АВ и ВС треугольника АВС (рис. 228). Эти прямые пересекаются в некоторой точке О. В самом деле, если предположить противное, т. е. что m || n, то прямая ВА, будучи перпендикулярной к прямой m, была бы перпендикулярна и к параллельной ей прямой n, а тогда через точку В проходили бы две прямые ВА и ВС, перпендикулярные к прямой n, что невозможно.


Рис. 228

По доказанной теореме ОВ = ОА и ОВ = ОС. Поэтому ОА = ОС, т. е. точка О равноудалена от концов отрезка АС и, значит, лежит на серединном перпендикуляре р к этому отрезку. Следовательно, все три серединных перпендикуляра m, n и р к сторонам треугольника АВС пересекаются в точке О.

Теорема о пересечении высот треугольника

Мы доказали, что биссектрисы треугольника пересекаются в одной точке, серединные перпендикуляры к сторонам треугольника пересекаются в одной точке. Ранее было доказано, что медианы треугольника пересекаются в одной точке (п. 64). Оказывается, аналогичным свойством обладают и высоты треугольника.

Теорема

Доказательство

Рассмотрим произвольный треугольник АВС и докажем, что прямые АА 1 ВВ 1 и СС 1 содержащие его высоты, пересекаются в одной точке (рис. 229).


Рис. 229

Проведём через каждую вершину треугольника АВС прямую, параллельную противоположной стороне. Получим треугольник А 2 В 2 С 2 . Точки А, В и С являются серединами сторон этого треугольника. Действительно, АВ = А 2 С и АВ = СВ 2 как противоположные стороны параллелограммов АВА 2 С и АВСВ 2 , поэтому А 2 С = СВ 2 . Аналогично С 2 А = АВ 2 и С 2 В = ВА 2 . Кроме того, как следует из построения, СС 1 ⊥ А 2 В 2 , АА 1 ⊥ В 2 С 2 и ВВ 1 ⊥ А 2 С 2 . Таким образом, прямые АА 1 , ВВ 1 и СС 1 являются серединными перпендикулярами к сторонам треугольника А 2 В 2 С 2 . Следовательно, оНи пересекаются в одной точке. Теорема доказана.

Итак, с каждым треугольником связаны четыре точки: точка пересечения медиан, точка пересечения биссектрис, точка пересечения серединных перпендикуляров к сторонам и точка пересечения высот (или их продолжений). Эти четыре точки называются замечательными точками треугольника .

Задачи

674. Из точки М биссектрисы неразвёрнутого угла О проведены перпендикуляры МА и МВ к сторонам этого угла. Докажите, что АВ ⊥ ОМ.

675. Стороны угла О касаются каждой из двух окружностей, имеющих общую касательную в точке А. Докажите, что центры этих окружностей лежат на прямой О А.

676. Стороны угла А касаются окружности с центром О радиуса r. Найдите: а) ОА, если r = 5 см, ∠A = 60°; б) г, если ОА = 14 дм, ∠A = 90°.

677. Биссектрисы внешних углов при вершинах В и С треугольника АВС пересекаются в точке О. Докажите, что точка О является центром окружности, касающейся прямых АВ, ВС, АС.

678. Биссектрисы АА 1 и ВВ 1 треугольника АВС пересекаются в точке М. Найдите углы ACM и ВСМ, если: a) ∠AMB = 136°; б) ∠AMB = 111°.

679. Серединный перпендикуляр к стороне ВС треугольника АВС пересекает сторону АС в точке D. Найдите: a) AD и CD, если BD = 5 см, Ас = 8,5см; б) АС, если BD = 11,4 см, AD = 3,2 см.

680. Серединные перпендикуляры к сторонам АВ и АС треугольника АВС пересекаются в точке D стороны ВС. Докажите, что: а) точка D - середина стороны ВС; б) ∠A - ∠B + ∠C.

681. Серединный перпендикуляр к стороне АВ равнобедренного треугольника АВС пересекает сторону ВС в точке Е. Найдите основание АС, если периметр треугольника АЕС равен 27 см, а АВ = 18 см.

682. Равнобедренные треугольники АВС и ABD имеют общее основание АВ. Докажите, что прямая CD проходит через середину отрезка АВ.

683. Докажите, что если в треугольнике АВС стороны АВ и АС не равны, то медиана AM треугольника не является высотой.

684. Биссектрисы углов при основании АВ равнобедренного треугольника АВС пересекаются в точке М. Докажите, что прямая СМ перпендикулярна к прямой АВ.

685. Высоты АА 1 и ВВ 1 равнобедренного треугольника АВС, проведённые к боковым сторонам, пересекаются в точке М. Докажите, что прямая МС - серединный перпендикуляр к отрезку АВ.

686. Постройте серединный перпендикуляр к данному отрезку.

Решение

Пусть АВ - данный отрезок. Построим две окружности с центрами в точках А и В радиуса АВ (рис. 230). Эти окружности пересекаются в двух точках М 1 и М 2 . Отрезки АМ 1 , AM 2 , ВМ 1 , ВМ 2 равны друг другу как радиусы этих окружностей.


Рис. 230

Проведём прямую М 1 М 2 . Она является искомым серединным перпендикуляром к отрезку АВ. В самом деле, точки М 1 и М 2 равноудалены от концов отрезка АВ, поэтому они лежат на серединном перпендикуляре к этому отрезку. Значит, прямая М 1 М 2 и есть серединный перпендикуляр к отрезку АВ.

687. Даны прямая а и две точки А и В, лежащие по одну сторону от этой прямой. На прямой а постройте точку М, равноудалённую от точек А к В.

688. Даны угол и отрезок. Постройте точку, лежащую внутри данного угла, равноудалённую от его сторон и равноудалённую от концов данного отрезка.

Ответы к задачам

    674. Указание. Сначала доказать, что треугольник АОВ равнобедренный.

    676. а) 10 см; б) 7√2 дм.

    678. а) 46° и 46°; б) 21° и 21°.

    679. a) АВ = 3,5 см, CD = 5 см; б) АС = 14,6 см.

    683. Указание. Воспользоваться методом доказательства от противного.

    687. Указание. Воспользоваться теоремой п. 75.

    688. Указание. Учесть, что искомая точка лежит на биссектрисе данного угла.

1 То есть равноудалена от прямых, содержащих стороны угла.

Содержание

Введение………………………………………………………………………………………3

Глава1.

1.1 Треугольник………………………………………………………………………………..4

1.2. Медианы треугольника

1.4. Высоты в треугольнике

Заключение

Список использованной литературы

Буклет

Введение

Геометрия - это раздел математики, который рассматривает различные фигуры и их свойства. Геометрия начинается с треугольника. Вот уже два с половиной тысячелетия треугольник является символом геометрии; но он не только символ, треугольник - атом геометрии.

В своей работе я рассмотрю свойства точек пересечения биссектрис, медиан и высот треугольника, расскажу о замечательных их свойствах и линиях треугольника.

К числу таких точек, изучаемых в школьном курсе геометрии, относятся:

а) точка пересечения биссектрис (центр вписанной окружности);

б) точка пересечения серединных перпендикуляров (центр описанной окружности);

в) точка пересечения высот (ортоцентр);

г) точка пересечения медиан (центроид).

Актуальность: расширить свои знания о треугольнике, свойствах его замечательных точек.

Цель: исследование треугольника на его замечательные точки, изучение их классификаций и свойств.

Задачи:

1. Изучить необходимую литературу

2. Изучить классификацию замечательных точек треугольника

3. Уметь строить замечательные точки треугольника.

4. Обобщить изученный материал для оформления буклета.

Гипотеза проекта:

умение находить замечательные точки в любом треугольнике, позволяет решать геометрические задачи на построение.

Глава 1. Исторические сведения о замечательных точках треугольника

В четвертой книге "Начал" Евклид решает задачу: "Вписать круг в данный треугольник". Из решения вытекает, что три биссектрисы внутренних углов треугольника пересекаются в одной точке – центре вписанного круга. Из решения другой задачи Евклида вытекает, что перпендикуляры, восстановленные к сторонам треугольника в их серединах, тоже пересекаются в одной точке – центре описанного круга. В "Началах" не говорится о том, что и три высоты треугольника пересекаются в одной точке, называемой ортоцентром (греческое слово "ортос" означает "прямой", "правильный"). Это предложение было, однако, известно Архимеду, Паппу, Проклу.

Четвертой особенной точкой треугольника является точка пересечения медиан. Архимед доказал, что она является центром тяжести (барицентром) треугольника. На вышеназванные четыре точки было обращено особое внимание, и начиная с XVIII века они были названы "замечательными" или "особенными" точками треугольника.

Исследование свойств треугольника, связанных с этими и другими точками, послужило началом для создания новой ветви элементарной математики – "геометрии треугольника" или "новой геометрии треугольника", одним из родоначальников которой стал Леонард Эйлер. В 1765 году Эйлер доказал, что в любом треугольнике ортоцентр, барицентр и центр описанной окружности лежат на одной прямой, названной позже "прямой Эйлера".

    1. Треугольник

Треугольник - геометрическая фигура, состоящая из трех точек, не лежащих на одной прямой, и трех отрезков, попарно соединяющих эти точки. Точки - вершины треугольника, отрезки - стороны треугольника.

В А, В, С - вершины

АВ, ВС, СА - стороны

А С

С каждым треугольником связаны четыре точки:

    Точка пересечения медиан;

    Точка пересечения биссектрис;

    Точка пересечения высот.

    Точка пересечения серединных перпендикуляров;

1.2. Медианы треугольника

Медина треугольника ― , соединяющий вершину с серединой противоположной стороны (Рисунок 1). Точка пересечения медианы со стороной треугольника называется основанием медианы.

Рисунок 1. Медианы треугольника

Построим середины сторон треугольника и проведем отрезки, соединяющую каждую из вершин с серединой противолежащей стороны. Такие отрезки называются медианой.

И вновь мы наблюдаем, что и эти отрезки пересекаются в одной точке. Если мы измерим длины получившихся отрезков медиан, то можно проверить еще одно свойство: точка пересечения медиан делит все медианы в отношении 2:1, считая от вершин. И еще, треугольник, который опирается на острие иглы в точке пересечения медиан, находится в равновесии! Точка, обладающая таким свойством, называется центром тяжести (барицентр). Центр равных масс иногда называют центроидом. Поэтому свойства медиан треугольника можно сформулировать так: медианы треугольника пересекаются в центре тяжести и точкой пересечения делятся в отношении 2:1, считая от вершины.

1.3. Биссектрисы треугольника

Биссектрисой называется биссектрисы угла, проведенный от вершины угла до её пересечения с противолежащей стороной. У треугольника существуют три биссектрисы, соответствующие трём его вершинам (Рисунок 2).

Рисунок 2. Биссектриса треугольника

В произвольном треугольнике ABC проведем биссектрисы его углов. И вновь при точном построении все три биссектрисы пересекутся в одной точке D. Точка D – тоже необычная: она равноудалена от всех трех сторон треугольника. В этом можно убедиться, если опустить перпендикуляры DA 1, DB 1 и DC1 на стороны треугольника. Все они равны между собой: DA1=DB1=DC1.

Если провести окружность с центром в точке D и радиусом DA 1, то она будет касаться всех трех сторон треугольника (то есть будет иметь с каждым из них только одну общую точку). Такая окружность называется вписанной в треугольник. Итак, биссектрисы углов треугольника пересекаются в центре вписанной окружности.

1.4. Высоты в треугольнике

Высота треугольника - , опущенный из вершины на противоположную сторону или прямую, совпадающую с противоположной стороной. В зависимости от типа треугольника высота может содержаться внутри треугольника (для треугольника), совпадать с его стороной (являться треугольника) или проходить вне треугольника у тупоугольного треугольника (Рисунок 3).

Рисунок 3. Высоты в треугольниках

    Если в треугольнике построить три высоты, то все они пересекутся в одной точке H. Эта точка называется ортоцентром. (Рисунок 4).

С помощью построений можно проверить, что в зависимости от вида треугольника ортоцентр располагается по – разному:

    у остроугольного треугольника – внутри;

    у прямоугольного – на гипотенузе;

    у тупоугольного – снаружи.

Рисунок 4. Ортоцентр треугольника

Таким образом, мы познакомились еще с одной замечательной точкой треугольника и можем сказать, что: высоты треугольника пересекаются в ортоцентре.

1.5. Серединные перпендикуляры к сторонам треугольника

Серединный перпендикуляр к отрезку - это прямая, перпендикулярная данному отрезку и проходящая через его середину.

Начертим произвольный треугольник ABC и проведем серединные перпендикуляры к его сторонам. Если построение выполнено точно, то все перпендикуляры пересекутся в одной точке – точке О. Эта точка равноудалена от всех вершин треугольника. Другими словами, если провести окружность с центром в точке О, проходящую через одну из вершин треугольника, то она пройдет и через две другие его вершины.

Окружность, проходящая через все вершины треугольника, называется описанной около него. Поэтому установленное свойство треугольника можно сформулировать так: серединные перпендикуляры к сторонам треугольника пересекаются в центре описанной окружности (Рисунок 5).

Рисунок 5. Треугольник вписанный в окружность

Глава 2. Исследование замечательных точек треугольника.

Исследование высоты в треугольниках

Все три высоты треугольника пересекаются в одной точке. Эта точка называется ортоцентром треугольника.

Высоты остроугольного треугольника расположены строго внутри треугольника.

Соответственно, точка пересечения высот также находится внутри треугольника.

В прямоугольном треугольнике две высоты совпадают со сторонами. (Это высоты, проведенные из вершин острых углов к катетам).

Высота, проведенная к гипотенузе, лежит внутри треугольника.

AC - высота, проведенная из вершины С к стороне AB.

AB - высота, проведенная из вершины B к стороне AC.

AK - высота, проведенная из вершины прямого угла А к гипотенузе ВС.

Высоты прямоугольного треугольника пересекаются в вершине прямого угла (А - ортоцентр).

В тупоугольном треугольника внутри треугольника лежит только одна высота - та, которая проведена из вершины тупого угла.

Две другие высоты лежат вне треугольника и опущены к продолжению сторон треугольника.

AK - высота, проведенная к стороне BC.

BF - высота, проведенная к продолжению стороны АС.

CD - высота, проведенная к продолжению стороны AB.

Точка пересечения высот тупоугольного треугольника также находится вне треугольника:

H - ортоцентр треугольника ABC.

Исследование биссектрис в треугольнике

Биссектриса треугольника является частью биссектрисы угла треугольника (луча), которая находится внутри треугольника.

Все три биссектрисы треугольника пересекаются в одной точке.


Точка пересечения биссектрис в остроугольном, тупоугольном и прямоугольном треугольниках, является центром вписанной в треугольник окружности и находится внутри.

Исследование медиан в треугольнике

Так как у треугольника три вершины и три стороны, то и отрезков, соединяющих вершину и середину противолежащей стороны, тоже три.


Исследовав эти треугольники я понял, что в любом треугольнике медианы пересекаются в одной точке. Эту точку называют центром тяжести треугольника.

Исследование серединных перпендикуляров к стороне треугольника

Серединный перпендикуляр треугольника – это перпендикуляр, проведенный к середине стороны треугольника.

Три серединных перпендикуляра треугольника пересекаются в одной точке, являются центром описанной окружности.

Точка пересечения серединных перпендикуляров в остроугольном треугольнике лежит внутри треугольника; в тупоугольном – вне треугольника; в прямоугольном – на середине гипотенузы.

Заключение

В ходе проделанной работы мы приходим к следующим выводам:

    Цель достигнута: исследовали треугольник и нашли его замечательные точки.

    Поставленные задачи решены:

1). Изучили необходимую литературу;

2). Изучили классификацию замечательных точек треугольника;

3). Научились строить замечательные точки треугольника;

4). Обобщили изученный материал для оформления буклета.

Гипотеза, что умение находить замечательные точки треугольника, помогает в решении задач на построение подтвердилась.

В работе последовательно излагаются приемы построения замечательных точек треугольника, приведены исторические сведения о геометрических построениях.

Сведения из данной работы могут пригодиться на уроках геометрии в 7 классе. Буклет может стать справочником по геометрии по изложенной теме.

Список литературы

    Учебник . Л.С. Атанасян «Геометрия 7-9 классы Мнемозина,2015.

    Википедияhttps://ru.wikipedia.org/wiki/Геометрия#/media/File:Euclid%27s_postulates.png

    Портал Алые Паруса

    Ведущий образовательный портал России http://cendomzn.ucoz.ru/index/0-15157

Министерство общего и профессионального образования Свердловской области.

МОУО г. Екатеринбург.

Образовательное учреждение – МОУСОШ № 212 «Екатеринбургский культурологический лицей»

Образовательная область – математика.

Предмет – геометрия.

Замечательные точки треугольника

Референт : учащийся 8 класса

Селицкий Дмитрий Константинович.

Научный руководитель:

Рабканов Сергей Петрович.

Екатеринбург, 2001

Введение 3

Описательная часть:

    Ортоцентр 4

    Ицентр 5

    Центр тяжести 7

    Центр описанной окружности 8

    Прямая Эйлера 9

Практическая часть:

    Ортоцентрический треугольник 10

    Заключение 11

    Список литературы 11

Введение.

Геометрия начинается с треугольника. Вот уже два с половиной тысячелетия треугольник является символом геометрии. Постоянно открываются его новые свойства. Чтобы рассказать обо всех известных свойствах треугольника, потребуется большое количество времени. Меня заинтересовали так называемые «Замечательные точки треугольника». Примером таких точек является точка пересечения биссектрис. Замечательно то, что если взять три произвольные точки пространства, построить из них треугольник и провести биссектрисы, то они (биссектрисы) пересекутся в одной точке! Казалось бы, это не возможно, потому что мы взяли произвольные точки, но это правило действует всегда. Подобными свойствами обладают и другие «замечательные точки»

После прочтения литературы по данной теме, я зафиксировал для себя определения и свойства пяти замечательных точек и треугольника. Но на этом моя работа не закончилась, мне захотелось самому исследовать эти точки.

Поэтому цель данной работы – изучение некоторых замечательные свойства треугольника, и исследование ортоцентрического треугольника. В процессе достижения поставленной цели можно выделить следующие этапы:

    Подбор литературы, с помощью преподавателя

    Изучение основных свойств замечательных точек и линий треугольника

    Обобщение этих свойства

    Составление и решение задачи, связанной с ортоцентрическим треугольником

Полученные результаты я изложил в данной научно-исследовательской работе. Все чертежи я выполнил с использованием компьютерной графики (векторный графический редактор CorelDRAW).

Ортоцентр. (Точка пересечения высот)

Докажем, что высоты пересекаются в одной точке. Проведём через вершины А , В и С треугольника АВС прямые, параллельные противоположным сторонам. Эти прямые образуют треугольник А 1 В 1 С 1 . высоты треугольника АВС являются серединными перпендикулярами к сторонам треугольника А 1 В 1 С 1 . следовательно, они пересекаются в одной точке – центре описанной окружности треугольника А 1 В 1 С 1 . Точка пересечения высот треугольника называется ортоцентром (H ).

Ицентр – центр вписанной окружности.

(Точка пересечения биссектрис)

Докажем, что биссектрисы углов треугольника АВС пересекаются в одной точке. Рассмотрим точку О пересечения биссектрис углов А и В . любые точки биссектрисы угла А равноудалена от прямых АВ и АС , а любая точка биссектрисы угла В равноудалена от прямых АВ и ВС , поэтому точка О равноудалена от прямых АС и ВС , т.е. она лежит на биссектрисе угла С . точка О равноудалена от прямых АВ , ВС и СА , значит, существует окружность с центром О , касающаяся этих прямых, причём точки касания лежат на самих сторонах, а не на их продолжениях. В самом деле, углы при вершинах А и В треугольника АОВ острые поэтому проекция точки О на прямую АВ лежит внутри отрезка АВ .

Для сторон ВС и СА доказательство аналогично.

Ицентр обладает тремя свойствами:

    Если продолжение биссектрисы угла С пересекает описанную окружность треугольника АВС в точке М , то МА =МВ =МО .

    Если АВ - основание равнобедренного треугольника АВС , то окружность, касающаяся сторон угла АСВ в точках А и В , проходит через точку О .

    Если прямая, проходящая через точку О параллельно стороне АВ , пересекает стороны ВС и СА в точках А 1 и В 1 , то А 1 В 1 =А 1 В +АВ 1 .

Центр тяжести. (Точка пересечения медиан)

Докажем, что медианы треугольника пересекаются в одной точке. Рассмотрим для этого точку М , в которой пересекаются медианы АА 1 и ВВ 1 . проведём в треугольникеВВ 1 С среднюю линию А 1 А 2 , параллельную ВВ 1 . тогда А 1 М:АМ =В 1 А 2 :АВ 1 =В 1 А 2 1 С =ВА 1 :ВС =1:2, т.е. точка пересечения медиан ВВ 1 и АА 1 делит медиану АА 1 в отношении 1:2. Аналогично точка пересечения медиан СС 1 и АА 1 делит медиану АА 1 в отношении 1:2. Следовательно, точка пересечения медиан АА 1 и ВВ 1 совпадает с точкой пересечения медиан АА 1 и СС 1 .

Если точку пересечения медиан треугольника соединить с вершинами, то треугольники разобьётся на три треугольника равной площади. В самом деле, достаточно доказать, что если Р – любая точка медианы АА 1 в треугольнике АВС , то площади треугольников АВР и АСР равны. Ведь медианы АА 1 и РА 1 в треугольниках АВС и РВС разрезают их на треугольники равной площади.

Справедливо и обратное утверждение: если для некоторой точки Р , лежащей внутри треугольника АВС , площади треугольников АВР , ВСР и САР равны, то Р – точка пересечения медиан.

У точки пересечения есть ещё одно свойство: если вырезать треугольник из какого-либо материала, провести на нём медианы, закрепить в точке пересечения медиан подвез и закрепить подвес на штативе, то модель (треугольник) будет находиться в состоянии равновесия, следовательно, точка пересечения есть ни что иное, как центр тяжести треугольника.

Центр описанной окружности.

Докажем, что существует точка, равноудалённая от вершин треугольника, или, иначе, что существует окружность, проходящая через три вершины треугольника. Геометрическим местом точек, равноудалённых от точек А и В , является перпендикуляр к отрезку АВ , проходящий через его середину (серединный перпендикуляр к отрезку АВ ). Рассмотрим точку О , в которой пересекаются серединные перпендикуляры к отрезкам АВ и ВС . Точка О равноудалена от точек А и В , а также от точек В и С . поэтому она равноудалена от точек А и С , т.е. она лежит и на серединном перпендикуляре к отрезку АС .

Центр О описанной окружности лежит внутри треугольника, только если этот треугольник остроугольный. Если же треугольник прямоугольный, то точка О совпадает с серединой гипотенузы, а если угол при вершине С тупой, то прямая АВ разделяет точки О и С .

В математике часто бывает так, что объекты, определённые совсем по-разному, оказываются совпадающими. Покажем это на примере.

Пусть А 1 , В 1 , С 1 – середины сторон ВС , СА и АВ. Можно доказать, что окружности, описанные около треугольников АВ 1 С , А 1 ВС 1 и А 1 В 1 С 1 пересекаются в одной точке, причём эта точка – центр описанной окружности треугольника АВС . Итак, у нас есть две, казалось бы, совсем разные точки: точка пересечения серединных перпендикуляров к сторонам треугольника АВС и точка пересечения описанных окружностей треугольников АВ 1 С 1 , А 1 ВС и А 1 В 1 С 1 . а оказывается, что эти две точки совпадают.

Прямая Эйлера.

Самым удивительным свойством замечательных точек треугольника является то, что некоторые из них связаны друг с другом определёнными соотношениями. Например, центр тяжести М , ортоцентр Н и центр описанной окружности О лежат на одной прямой, причём точка М делит отрезок ОН так, что справедливо соотношение ОМ:МН =1:2. Эта теорема была доказана в 1765 г. швейцарским учёным Леонардо Эйлером.

Ортоцентрический треугольник.

Ортоцентрический треугольник (ортотреугольник) – это треугольник (М N К ), вершинами которого служат основания высот данного треугольника (АВС ). Этот треугольник обладает многими интересными свойствами. Приведем одно из них.

Свойство.

Доказать:

Треугольники AKM , CMN и BKN подобны треугольнику АВС ;

Углы ортотреугольника MNK таковы: L KNM = π - 2 L A , L KMN = π – 2 L B , L MNK = π - - 2 L C .

Доказательство:

Имеем AB cos A , AK cos A . Следовательно, AM /AB = AK /AC .

Т.к. у треугольников ABC и AKM угол А – общий, то они подобны, откуда заключаем, что угол L AKM = L C . Поэтому L BKM = L C . Далее имеем L MKC = π/2 – L C , L NKC = π/2 – - - L C , т.е. СК – биссектриса угла MNK . Итак, L MNK = π – 2 L C . Аналогично доказываются остальные равенства.

Заключение.

В заключение данной научно-исследовательской работы можно сделать следующие выводы:

    Замечательными точками и линиями треугольника являются:

    ортоцентр треугольника - это точка пересечения его высот;

    ицентр треугольника – это точка пересечения биссектрис;

    центр тяжести треугольника - это точка пересечения его медиан;

    центр описанной окружности – это точка пересечения серединных перпендикуляров;

    прямая Эйлера – это прямая, на которой лежат центр тяжести, ортоцентр и центр описанной окружности.

    Ортоцентрический треугольник делит данный треугольник на три подобных данному.

Проделав данную работу, я узнал много нового о свойствах треугольника. Данная работа явилась актуальной для меня с точки зрения развития моих знаний в области математики. В дальнейшем я предполагаю развивать эту интереснейшую тему.

Список литературы.

    Киселёв А. П. Элементарная геометрия. – М.: Просвещение, 1980.

    Коксетер Г.С., Грейтцер С.Л. Новые встречи с геометрией. – М.: Наука, 1978.

    Прасолов В.В. Задачи по планиметрии. – М.: Наука, 1986. – Ч. 1.

    Шарыгин И.Ф. Задачи по геометрии: Планиметрия. – М.: Наука, 1986.

    Сканави М. И. Математика. Задачи с решениями. – Ростов-на-Дону: Феникс, 1998.

    Берже М. Геометрия в двух томах – М: Мир, 1984.

На данном уроке мы рассмотрим четыре замечательные точки треугольника. На двух из них остановимся подробно, вспомним доказательства важных теорем и решим задачу. Остальные две вспомним и охарактеризуем.

Тема: Повторение курса геометрии 8 класса

Урок: Четыре замечательные точки треугольника

Треугольник - это, прежде всего, три отрезка и три угла, поэтому свойства отрезков и углов являются основополагающими.

Задан отрезок АВ. У любого отрезка есть середина, и через нее можно провести перпендикуляр - обозначим его за р. Таким образом, р - серединный перпендикуляр.

Теорема (основное свойство серединного перпендикуляра)

Любая точка, лежащая на серединном перпендикуляре, равноудалена от концов отрезка.

Доказать, что

Доказательство:

Рассмотрим треугольники и (см. Рис. 1). Они прямоугольные и равные, т.к. имеют общий катет ОМ, а катеты АО и ОВ равны по условию, таким образом, имеем два прямоугольных треугольника, равных по двум катетам. Отсюда следует, что гипотенузы треугольников тоже равны, то есть , что и требовалось доказать.

Рис. 1

Справедлива обратная теорема.

Теорема

Каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к этому отрезку.

Задан отрезок АВ, серединный перпендикуляр к нему р, точка М, равноудаленная от концов отрезка (см. Рис. 2).

Доказать, что точка М лежит на серединном перпендикуляре к отрезку.

Рис. 2

Доказательство:

Рассмотрим треугольник . Он равнобедренный, так как по условию. Рассмотрим медиану треугольника: точка О - середина основания АВ, ОМ - медиана. Согласно свойству равнобедренного треугольника, медиана, проведенная к его основанию, является одновременно высотой и биссектрисой. Отсюда следует, что . Но прямая р также перпендикулярна АВ. Мы знаем, что в точку О можно провести единственный перпендикуляр к отрезку АВ, значит, прямые ОМ и р совпадают, отсюда следует, что точка М принадлежит прямой р, что и требовалось доказать.

Если необходимо описать окружность около одного отрезка, это можно сделать, и таких окружностей бесконечно много, но центр каждой из них будет лежать на серединном перпендикуляре к отрезку.

Говорят, что серединный перпендикуляр есть геометрическое место точек, равноудаленных от концов отрезка.

Треугольник состоит из трех отрезков. Проведем к двум из них серединные перпендикуляры и получим точку О их пересечения (см. Рис. 3).

Точка О принадлежит серединному перпендикуляру к стороне ВС треугольника, значит, она равноудалена от его вершин В и С, обозначим это расстояние за R: .

Кроме того, точка О находится на серединном перпендикуляре к отрезку АВ, т.е. , вместе с тем , отсюда .

Таким образом, точка О пересечения двух серединных

Рис. 3

перпендикуляров треугольника равноудалена от его вершин, а значит, она лежит и на третьем серединном перпендикуляре.

Мы повторили доказательство важной теоремы.

Три серединных перпендикуляра треугольника пересекаются в одной точке - центре описанной окружности.

Итак, мы рассмотрели первую замечательную точку треугольника - точку пересечения его серединных перпендикуляров.

Перейдем к свойству произвольного угла (см. Рис. 4).

Задан угол , его биссектриса AL, точка М лежит на биссектрисе.

Рис. 4

Если точка М лежит на биссектрисе угла, то она равноудалена от сторон угла, то есть расстояния от точки М до АС и до ВС сторон угла равны.

Доказательство:

Рассмотрим треугольники и . Это прямоугольные треугольники, и они равны, т.к. имеют общую гипотенузу АМ, а углы и равны, так как AL - биссектриса угла . Таким образом, прямоугольные треугольники равны по гипотенузе и острому углу, отсюда следует, что , что и требовалось доказать. Таким образом, точка на биссектрисе угла равноудалена от сторон этого угла.

Справедлива обратная теорема.

Теорема

Если точка равноудалена от сторон неразвернутого угла, то она лежит на его биссектрисе (см. Рис. 5).

Задан неразвернутый угол , точка М, такая, что расстояние от нее до сторон угла одинаковое.

Доказать, что точка М лежит на биссектрисе угла.

Рис. 5

Доказательство:

Расстояние от точки до прямой есть длина перпендикуляра. Проведем из точки М перпендикуляры МК к стороне АВ и МР к стороне АС.

Рассмотрим треугольники и . Это прямоугольные треугольники, и они равны, т.к. имеют общую гипотенузу АМ, катеты МК и МР равны по условию. Таким образом, прямоугольные треугольники равны по гипотенузе и катету. Из равенства треугольников следует равенство соответствующих элементов, против равных катетов лежат равные углы, таким образом, , следовательно, точка М лежит на биссектрисе данного угла.

Если необходимо вписать в угол окружность, это можно сделать, и таких окружностей бесконечно много, но их центры лежат на биссектрисе данного угла.

Говорят, что биссектриса есть геометрическое место точек, равноудаленных от сторон угла.

Треугольник состоит из трех углов. Построим биссектрисы двух из них, получим точку О их пересечения (см. Рис. 6).

Точка О лежит на биссектрисе угла , значит, она равноудалена от его сторон АВ и ВС, обозначим расстояние за r: . Также точка О лежит на биссектрисе угла , значит, она равноудалена от его сторон АС и ВС: , , отсюда .

Несложно заметить, что точка пересечения биссектрис равноудалена от сторон третьего угла, а значит, она лежит на

Рис. 6

биссектрисе угла . Таким образом, все три биссектрисы треугольника пересекаются в одной точке.

Итак, мы вспомнили доказательство еще одной важной теоремы.

Биссектрисы углов треугольника пересекаются в одной точке - центре вписанной окружности.

Итак, мы рассмотрели вторую замечательную точку треугольника - точку пересечения биссектрис.

Мы рассмотрели биссектрису угла и отметили ее важные свойства: точки биссектрисы равноудалены от сторон угла, кроме того, отрезки касательных, проведенных к окружности из одной точки, равны.

Введем некоторые обозначения (см. Рис. 7).

Обозначим равные отрезки касательных через х, у и z. Сторона ВС, лежащая против вершины А, обозначается как а, аналогично АС как b, АВ как с.

Рис. 7

Задача 1: в треугольнике известны полупериметр и длина стороны а. Найти длину касательной, проведенной из вершины А - АК, обозначенную за х.

Очевидно, что треугольник задан не полностью, и таких треугольников много, но, оказывается, некоторые элементы у них общие.

Для задач, в которых речь идет о вписанной окружности, можно предложить следующую методику решения:

1. Провести биссектрисы и получить центр вписанной окружности.

2. Из центра О провести перпендикуляры к сторонам и получить точки касания.

3. Отметить равные касательные.

4. Выписать связь между сторонами треугольника и касательными.

Баранова Елена

В данной работе рассмотрены замечательные точки треугольника, их свойства и закономерности такие, как окружность девяти точек и прямая Эйлера. Приведена историческая справка открытия прямой Эйлера и окружности девяти точек. Предложена практическая направленность прменения моего проекта.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

« ЗАМЕЧАТЕЛЬНЫЕ ТОЧКИ ТРЕУГОЛЬНИКА». (Прикладные и фундаментальные вопросы математики) Баранова Елена 8 кл., МКОУ «СОШ № 20» Пос. Новоизобильный, Духанина Татьяна Васильевна, учитель математики МКОУ «СОШ №20» Посёлок Новоизобильный 2013. Муниципальное казённое общеобразовательное учреждение «Средняя общеобразовательная школа №20»

Цель: исследование треугольника на его замечательные точки, изучение их классификаций и свойств. Задачи: 1.Изучить необходимую литературу 2. Изучить классификацию замечательных точек треугольника 3.. Познакомиться со свойствами замечательных точек треугольника 4. Уметь строить замечательные точки треугольника. 5. Изучить область применения замечательных точек. Объект исследования - раздел математики - геометрия Предмет исследования - треугольник Актуальность: расширить свои знания о треугольнике, свойствах его замечательных точек. Гипотеза: связь треугольника и природы

Точка пересечения серединных перпендикуляров Она равноудалена от вершин треугольника и является центром описанной окружности. Окружности, описанные около треугольников, вершинами которых являются середины сторон треугольника и вершины треугольника пересекаются в одной точке, которая совпадает с точкой пересечения серединных перпендикуляров.

Точка пересечения биссектрис Точка пересечения биссектрис треугольника равноудалена от сторон треугольника. ОМ=ОА=ОВ

Точка пересечения высот Точка пересечения биссектрис треугольника, вершинами которого являются основания высот, совпадает с точкой пересечения высот треугольника.

Точка пересечения медиан Медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2:1, считая от вершины. Если точку пересечения медиан соединить с вершинами, то треугольник разобьётся на три треугольника, равных по площади. Важным свойством точки пересечения медиан является тот факт, что сумма векторов, началом которых является точка пересечения медиан, а концами – вершины треугольников, равна нулю М1 N C B А м2 м3 М1 N C B А м2 м3 М1 N C B А м2 м3 М1 N C B А м2 м3

Точка Торричелли Замечание: точка Торричелли существует, если все углы треугольника меньше 120.

Окружность девяти точек В1, А1, С1 – основания высот; А2, В2, С2 – середины соответствующих сторон; А3, В3, С3, - середины отрезков АН, ВН и СН.

Прямая Эйлера Точка пересечения медиан, точка пересечения высот, центр окружности девяти точек лежат на одной прямой, которую называют прямой Эйлера в честь ученого математика определившего эту закономерность.

Н емного из истории открытия замечательных точек В 1765 году Эйлер обнаружил, что середины сторон треугольника и основания его высот лежат на одной окружности. Самым удивительным свойством замечательных точек треугольника является то, с что некоторые из них связаны друг с другом определённым соотношением. Точка пересечения медиан М, точка пересечения высот Н, и центр описанной окружности О лежат на одной прямой, причём точка М делит отрезок ОН так, что справедливо соотношение ОМ: ОН = 1: 2. Эта теорема была доказана Леонардом Эйлером в 1765 году.

Связь геометрии с природой. В этом положении потенциальная энергия имеет наименьшее значение и сумма отрезков МА+МВ+МС будет наименьшей, а сумма векторов, лежащих на этих отрезках с началом в точке Торричелли, будет равна нулю.

Выводы Я узнала, что кроме известных мне замечательных точек пересечения высот, медиан, биссектрис и серединных перпендикуляров существуют еще замечательные точки и линии треугольника. Полученные знания по данной теме смогу использовать в своей учебной деятельности, самостоятельно применять теоремы к определенным задачам, применять изученные теоремы в реальной ситуации. Считаю, что применение замечательных точек и линий треугольника в изучении математики является эффективным. Знание их значительно ускоряет решение многих заданий. Предложенный материал можно использовать как на уроках математики, так и во внеклассных занятиях учащимися 5-9-х классов.

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром создайте себе аккаунт (учетную запись) Google и войдите в него:

error: