Источник ультрафиолетового излучения. Какие стандарты регламентируют светопропускание линз солнцезащитных очков? Диапазон длин волн ультрафиолетового излучения

Ультрафиолетовое излучение Солнца и искусственных источников в зависимости от длины волны делят на три диапазона:

  • - область А – длина волны 400-320 нм (длинноволновое ультрафиолетовое излучение УФ-А);
  • - область Б – длина волны 320-275 нм (средневолновое ультрафиолетовое излучение УФ-В);
  • - область С – длина волны 275-180 нм (коротковолновое ультрафиолетовое излучение УФ-С).

В действии длинно, средне и коротковолнового излучения на клетки, ткани и организм имеются существенные различия.

Область А (УФ-А) длинноволновое излучение оказывает разнообразное биологическое действие, вызывает пигментацию кожи и флуоресценцию органических веществ. УФ-А – лучи обладают наибольшей проникающей способностью, что позволяет некоторым атомам и молекулам тела избирательно поглощать энергию УФ-излучения и переходить в неустойчивое возбужденное состояние. Последующий переход в исходное состояние сопровождается выделением квантов света (фотонов), способных инициировать различные фотохимические процессы, прежде всего затрагивающие ДНК, РНК, белковые молекулы.

Фототехнические процессы вызывают реакции и изменения со стороны различных органов и систем, которые составляют основу физиологического и лечебного действия УФ – лучей. Происходящие в облученном УФ – лучами организме сдвиги и эффекты (фотоэритема, пигментация, десенсибилизация, бактерицидный эффект и др.) имеют четкую спектральную зависимость (рис. 1), что и служит основой дифференцированного применения различных участков УФ – спектра.

Рисунок 1 - Спектральная зависимость важнейших биологических эффектов ультрафиолетового излучения

Облучение средневолновыми УФ-лучами вызывает фотолиз белка с образованием биологически активных веществ, а воздействие коротковолновыми лучами чаще приводит к коагуляции и денатурации белковых молекул. Под воздействием УФ-лучей диапазонов В и С, особенно в больших дозировках, происходят изменения в нуклеиновых кислотах, в результате чего возможно возникновение клеточных мутаций.

В то же время длинноволновые лучи приводят к образованию специфического фермента фотореактивации, способствующего восстановлению нуклеиновых кислот.

  1. Наиболее широко УФ-излучение используется с лечебными целями.
  2. Используются УФ-лучи также для стерилизации и дезинфекции воды, воздуха, помещений, предметов и т. д.
  3. Весьма распространено их применение с профилактическими и косметическими целями.
  4. Применяют УФ-излучение и с диагностическими целями, для определения реактивности организма, в люминисцентных методах.

УФ-излучение – жизненно необходимый фактор, а его длительный недостаток ведет к развитию своеобразного симптомокомплекса, имеющего «световым голоданием» или «УФ-недостаточностью». Наиболее часто он проявляется развитием авитаминоза D, ослаблением защитных иммунобиологических реакций организма, обострением хронических заболеваний, функциональными расстройствами нервной системы и т. д.К контингентам, испытывающим «УФ-недостаточность», относятся рабочие шахт, рудников, метро, люди работающие в бесфонарныхи безоконных цехах, машинных отделениях и на Крайнем Севере.

Ультрафиолетовое облучение

Ультрафиолетовое облучение производится различными искусственными изделиями с отличными друг от друга длинами волн λ. Поглощение УФ-лучей сопровождается рядом первичных фотохимических и фотофизических процессов, которые зависят от их спектрального состава и определяют физиологическое и лечебное действие фактора на организм.

Длинноволновые ультрафиолетовые (ДУФ) лучи стимулируют пролиферацию клеток мальпигиевого слоя эпидермоса и декарбоксилирование тирозина с последующим образованием в клетках шиповидногослоя. Далее идет стимулирование синтеза АКТГ и других гармонов и т. д. Получаются различные иммунологические сдвиги.

ДУФ-лучи оказывают более слабое, чем другие УФ-лучи биологическое, в том числе и эритемообразующее действие. Для усиления чувствительности кожи к ним используют фотосенсибилизаторы, чаще всего соединения фурокумаринового ряда (пувален, бероксан, псорален, амминофурин и др.)

Это свойство длинноволнового излучения позволяет его применять при лечении кожных заболеваний. Метод ПУВА-терапии (используется и салициловый спирт).

Таким образом можно выделить основные характеристики лечебных эффектов ДУФ-лучей:

  1. Лечебными эффектами являются
  • - фотосенсибилизирующий,
  • - пигментообразующий,
  • - иммуностимулирующий.
  1. ДУФ-лучи, как и другие области УФ-излучения вызывают изменение функционального состояния ЦНС и ее высшего отдела коры головного мозга. За счет рефлекторной реакции улучшается кровообращение, усиливается секторная активность органов пищеварения и функциональное состояние почек.
  2. ДУФ-лучи влияют на обмен веществ, прежде всего минеральный и азотный.
  3. Широко применяют местные аппликации фотосенсибилизаторов при ограниченных формах псориаза. В последнее время с успехом в качестве сенсибилизатора используют УФ-В как обладающее большей биологической активностью. Комбинированное облучение УФ-А и УФ-В называют селективным облучением.
  4. ДУФ-лучи используют как для местных, так и для общих облучений. Основными показаниями для их применения являются:
  • - кожные заболевания (псориаз, экзема, витилиго, себорея и др.)
  • - хронические воспалительные заболевания внутренних органов (особенно органов дыхания)
  • - заболевания органов опоры и движения различной этнологии
  • - ожоги, отморожения
  • - вялозаживающие раны и язвы, косметические цели.

Протвопоказания

  • - острые противовоспалительные процессы,
  • - заболевания печени и почек с выраженным нарушением их функций,
  • - гипертиреоз,
  • - повышенная чувствительность к ДУФ-излучениям.

Средневолновое ультрафиолетовое (СУФ) излучение обладает выраженным и разносторонним биологическим действием.

При поглощении квантов СУФ-излучения в коже образуются низкомолекулярные продукты фотолиза белка и продукты перекисного окисления липидов. Они вызывают изменения ультраструктурной организации биологических мембран, белково-липидных комплексов, мембранных ферментов и их важнейших физико-химических и функциональных свойств.

Продукты фотораспада активируют систему мононуклеарных фагоцитов и вызывают дегрануляцию лаброцитов и базофилов. В результате в облученной области и прилежащих тканях происходит выделение биологически активных веществ (кининн, простогландинн, гепарин, лейкотриены, тромбоксаны и др.) и вазоактивных медиаторов (ацетилхолин, гистамин), которые существенно увеличивают проницаемость и тонус сосудов, а также способствуют расслаблению гладкой мускулатуры. Вследствие гумаральных механизмов увеличивается количество функционирующих капилляров кожи, нарастает скорость местного кровотока, что ведет к формированию эритомы.

Повторные СУФ-облучения могут привести к появлению быстро исчезающей пигментации, способствующей повышению барьерной функции кожи, повышают ее холодовую чувствительность и резистентность к действию токсических веществ и неблагоприятных факторов.

Как эритемная реакция, так и другие сдвиги, вызываемые СУФ-лучами зависят не только от длины волны, но и от дозировки. В фототерапии его применяют в эритемных и субэритемных дозах.

Облучение СУФ-лучами в субэритемных дозировках способствует образованию в коже витамина D, который после его биотрансформации в печени и почках участвует в регуляции фосфорно-кальциевого обмена в организме. СУФ-облучение способствует образованию не только витамина D1, но и его изомера – эргокальцифемина (витамина D2). Последний обладает антирахитическим действием, стимулирует аэробный и анаэробный пути клеточного дыхания. СУФ-лучи в небольших дозировках также модулируют обмен других витаминов (А и С) вызывают активизацию метаболических процессов в облученных тканях. Под их влиянием активируется адаптационно-трофическая функция симпатической нервной системы, нормализуются нарушенные процессы различных видов обмена веществ, сердечнососудистая деятельность.

Таким образом СУФ-излучение обладает выраженным биологическим действием. В зависимости от фазы облучения можно получить эритему на коже и слизистых оболочках или проводить лечение в дозе, не вызывающей ее. Механизм лечебного действия эритемных и безэритемных доз СУФ различный, следовательно будут различными и показания к применению ультрафиолетового излучения.

Ультрафиолетовая эритема появляется на месте облучения УФ-В через 2-8 ч и связана с гибелью клеток эпидермиса. Продуты фотолиза белков поступают в ток крови и вызывают расширение сосудов, отек кожи, миграцию лейкоцитов, раздражение многочисленных рецепторов, ведущие к возникновению ряда рефлекторных реакций организма.

Кроме того, продукты фотолиза, попадающие в ток крови, оказывают гуморальное действие на отдельные органы, нервную и эндокринную системы организма. Явления асептического воспаления постепенно стихают к седьмому дню, оставляя после себя пигментацию кожи на месте облучения.

Основные лечебные эффекты СУФ-илучения:

  1. СУФ –излучения являются витаминно образующий, трофостимулирующий, иммуномодулирующий – это субэритемные дозы.
  2. Протиивовоспалиительный, анальгетический, десенсибилизирующий – это эритемная доза.
  3. Бронхиальные болезни, астма, закаливание – это безэритемная доза.

Показания к местному применению УФ-В (субэритемные и эритемные дозы):

  • - острый неврит
  • - острый меозит
  • - гнойничковые заболевания кожи (фурукул, карбункул, сикоз и др)
  • - рожа
  • - трофические язвы
  • - вялозаживающие раны
  • - пролежни
  • - воспалительные и посттравматические заболевания суставов
  • - ревматоидный артрит
  • - бронхиальная астма
  • - острый и хронический бронхит
  • - острые респературные заболевания
  • - воспаления придатков матки
  • - хронический тонзиллит.

Безэритемные зоны ультрафиолетового излучения спектра В при общих облучениях организма ликвидируют явления Д-гиповитаминоза, связанного с недостатком солнечного света. Нормализует фосфорно-кальциевый обмен, стимулируют функцию симпатико-адреналовой и гипофизарно-надпочечниковой систем, повышают механическую прочность костной ткани и стимулируют образование костной мозоли, повышают сопротивляемость кожи организма и организма в целом к вредным факторам внешней среды. Уменьшаются аллергические и экссудативные реакции, повышается умственная и физическая работоспособность. Ослабляются другие нарушения в организме, вызванные солнечным голоданием.

Показания к общему применению УФ-В (безэритемные дозы):

  • - D-гиповитаминоз
  • - нарушение обмена веществ
  • - предрасположенность к гнойничковым заболеваниям
  • - нейродермит
  • - псориаз
  • - переломы костей и нарушение образования костной мозоли
  • - бронхиальная астма
  • - хронические заболевания бронхиального аппарата
  • - закаливание организма.

Противопоказания:

  • - злокачественные новообразования
  • - наклонность к кровотечениям
  • - системные заболевания крови
  • - тиреотоксикоз
  • - активный туберкулез
  • - язвенная болезнь желудка и двенадцатиперстной кишки в стадии обострения
  • - гипертоническая болезнь II и III стадии
  • - далекозашедший атеросклероз артерий головного мозга и коронных артерий.

Коротковолновый ультрафиолетовый спектр излучения (КУФ) излучения.

УФ-излучение коротковолнового диапазона является активным физическим фактором, т. к. его кванты обладают наибольшим запасом энергии. Оно способно вызывать денатурацию и фотолиз нуклеиновых кислот и белков за счет избыточного поглащения энергии его квантов различными молекулами, в первую очередь ДНК и РНК.

При действии на микроорганизмы, на клетки это приводит к инактивации их генома и денатурации белка, что ведет к их гибели.

При излучении КУФ-лучей возникает бактерицидный эффект, т. к. прямое попадание их на белок гибельно для клеток вирусов, микроорганизмов и грибов.

КУФ-лучи вызывают после кратковременного спазма расширение кровеносных сосудов, прежде всего субкапелярных вен.

Показания к применению КУФ-излучений:

  • - облучение раневых поверхностей
  • - пролежни и миндалевидных ниш после тонзиллэктомин с бактерицидной цепью
  • - санация носоглотки при острых распиратурных заболеваниях
  • - лечение наружного отита
  • - обеззараживание воздуха в операционных, процедурных, ингаляториях, реанимационных отделениях, палатах больных, детских учреждениях и в школах.

Кожа и ее функция

Кожа человека составляет 18% от массы тела человека и имеет общую площадь 2м2. Состоит кожа из трех анатомически и физиологически тесно взаимосвязанных слоев:

  • - эпидермиса или надкожницы
  • - дермы (собственно кожа)
  • - гиподерма (подкожно жировая подкладка).

Эпидермис построен из различных по форме и строению, послойно расположенных эпителиальных клеток (эпитермоцитов). При этом каждая вышележащая клетка происходит из нижележащей, отражая определенную фазу ее жизни.

Слои эпидермиса распологаются в следующей последовательности (с низу в верх):

  • - базальный (Д) или зародышевый;
  • - слой шиповатых клеток;
  • - слой кератогиалиновых или зернистых клеток;
  • - эпейдиновый или блестящий;
  • - роговой.

Кроме эпидермоцитов в эпидермисе (в базальном слое) располагаются клетки, способные вырабатывать меланин (меланоциты), клетки Лагерганса, Гринстейна и др.

Дерма располагается непосредственно под эпидермисом и отделяется от него основной мембраной. В дерме различают сосочковый и сетчатый слои. Она состоит из коллагеновых, эластических и ретикулиновых (аргирофильных) волокон, между которыми располагается основное вещество.

В дерме, собственно, в коже находится сосочковый слой, богато снабженный кровеносными и лимфатическими сосудами. Здесь же имеются сплетения нервных волокон, дающие начало многочисленным нервным окончаниям в эпидермисе и дерме. В дерме заложены на различных уровнях потовый и сальные железы, волосяные фолликулы.

Подкожная жировая клетчатка является самым глубоким слоем кожи.

Функции кожи сложны и многообразны. Кожа выполняет барьерно - защитную, терморегуляторную, выделительную, обменную, рецепторную и т. д.

Барьерно – защитная функция, считающаяся главнейшей функцией кожи человека и животных, осуществляется за счет различных механизмов. Так, прочный и эластичный роговой слой кожи противостоит механическим влияниям и уменьшает вредное действие химических веществ. Роговой слой, являясь плохим проводником, предохраняет глубжележащие слои от высыхания, охлаждения и действия электрического тока.

Рисунок 2 – Строение кожи

Кожное сало, продукт секреции потовых желез и чешуйки отшелушивающегося эпителия образуют на поверхности кожи эмульсионную пленку (защитную мантию), играющую важную роль в предохранении кожи от воздействия химических, биологических и физических агентов.

Кислая реакция водно-липидной мантии и поверхностных слоев кожи, а также бактерицидные свойства кожного секрета являются важным барьерным механизмом для микроорганизмов.

В защите от световых лучей определенную роль играет пигмент меланин.

Электрофизиологический барьер является основным препятствием проникновения веществ в глубь кожи, в том числе и при электрофорезе. Он располагается на уровне базального слоя эпидермиса и представляет собой электрический слой с разнородными слоями. Наружный слой вследствие кислой реакции имеет «+» заряд, а обращенный внутрь «-». следует иметь в виду, что, с одной стороны, барьерно-защитная функция кожи ослабляет действие физических факторов на организм, а с другой стороны – физические факторы могут стимулировать защитные свойства кожи и тем самым реализовывать лечебные действие.

Физическая терморегуляция организма также является одной из важнейших физиологических функций кожи и имеет непосредственное отношение к механизму действия водолечебных факторов. Она осуществляется кожей путем теплоизлучения в виде инфракрасных лучей (44%) теплопроведения (31%) и испарения воды с поверхности кожи (21%). Важно отметить, что кожа с ее терморегуляторными механизмами играет большую роль в акклиматизации организма.

Секретно-экскреторная функция кожи связана с деятельностью потовых и сальных желез. Она играет важную роль в поддержании гомеостаза организма, в выполнении кожей барьерных свойств.

Дыхательная и резорбционная функция тесно взаимосвязаны. Дыхательная функция кожи, состоящая в поглощении кислорода и выделении углекислоты, в общем балансе дыхания для организма большого значения не имеет. Однако дыхание через кожу может значительно возрастать в условиях высокой температуры воздуха.

Резорбционная функция кожи, ее проницаемость имеют большое значение не только в дерматологии и токсикологии. Значение ее для физиотерапии определяется тем, что химический компонент действия многих лечебных факторов(лекарственных, газовых и минеральных ванн, грязелечения и др.) зависит от проникновения их составных ингредиентов через кожу.

Обменная функция кожи имеет специфические особенности. С одной стороны, в коже происходят только ей присущие обменные процессы (образование кератина, меланина, витамина D и др.), с другой – она принимает активное участие в общем обмене веществ в организме. Особенно велика ее роль в жировом, минеральном, углеводном и витаминном обменах.

Кожа является также местом синтеза биологически активных веществ (гепарина, гистамина, серотонина и др.).

Рецепторная функция кожи обеспечивает ее связь с внешней средой. Эту функцию кожа осуществляет в виде многочисленных условных и безусловных рефлексов благодаря наличию в ней упомянутых выше различных рецепторов.

Считают, что на 1 см2 кожи 100-200 болевых точек 12-15 холодовых, 1-2 тепловые, 25 точек давления.

Взаимосвязь с внутренними органами связана теснейшим образом – изменения кожи отражаются на деятельности внутренних органов, а нарушения со стороны внутренних органов сопровождаются сдвигами в коже. Эта взаимосвязь особенно четко проявляется при внутренних болезнях в виде так называемых рефлексогенных, или болевых, зон Захарина-Геда.

Захарьина-Геда зоны определенные области кожи, в которых при заболеваниях внутренних органов часто появляются отраженные боли, а также болевая и температурная гиперестезия.

Рисунок 3 – Расположение Захарьина-Геда зоны

Такие зоны при заболеваниях внутренних органов выявлены также в области головы. Например, боли в лобно-носовой области соответствует поражению верхушек легких, желудка, печени, устья аорты.

Боли в среднеглазичной области поражению легких, сердца, восходящей аорты.

Боли в лобно-височной области поражению легких, сердца.

Боли в теменной области поражению привратника и верхней части кишечника и т. д.

Зона комфорта область температурных условий внешней среды, вызывающих у человека субъективно хорошее теплоощущение без признаков охлаждения или перегрева.

Для обнаженного человека 17,3 0С – 21,7 0С

Для одетого человека 16,7 0С – 20,6 0С

Импульсная ультрафиолетовая терапия

НИИ энергетики машиностроения МГТУ им. Н. Э. Баумана (Шашковский С. Г. 2000 г) разработал портативный аппарат «Мелитта 01» для локального облучения пораженных поверхностей кожных покрытий, слизистых оболочек высокоэффективным импульсным ультрафиолетовым излучением сплошного спектра в диапазоне 230-380 нм.

Режим работы данного аппарата импульсный-периодический с частотой 1 Гц. В аппарате предусмотрена автоматическая генерация 1, 4, 8, 16, 32 импульсов. Выходная импульсная плотность мощности на расстоянии 5 см от горелки 25 Вт/см2

Показания:

  • - гнойно-воспалительные заболевания кожи и подкожной клетчатки (фурункул, карбункул, гидраденит) в начальный период гидратации и после хирургического вскрытия гнойной полости;
  • - обширные гнойные раны, раны после некрэктомии, раны перед и после проведения аутодермопластики;
  • - гранулирующие раны после ожогов термических, химических, радиационных;
  • - трофические язвы и вялозаживающие раны;
  • - рожистое воспаление;
  • - герпетическое воспаление кожи и слизистых оболочек;
  • - облучение ран перед первичной хирургической обработке и после нее с целью профилактики развития гнойных осложнений;
  • - обеззараживание воздуха помещений, салона автомобиля, автобуса и автомобиля скорой помощи.

Импульсная магнитная терапия с вращающимся полем и изменяющейся частотой повторения импульсов автоматически.

В основе лечебного действия лежат известные физические законы. На электрический заряд, движущиеся по кровеносному сосуду в магнитном поле, действует сила Лоренца, перпендикулярная вектору скорости заряда, постоянная в постоянном и знакопеременная, в переменном, вращающемся магнитном поле. Это явление реализуется на всех уровнях организма (атомарный, молекулярный, субклеточный, клеточный, тканевой).

Действие импульсной магнитной терапии низкой интенсивности оказывает активное влияние на глубоко расположенную мышечную, нервную, костную ткань, внутренние органы, улучшая микроциркуляцию, стимулируя обменные процессы и регенерацию. Электрические токи большой плотности, индуцированные импульсным магнитным полем, активизирую миелинизированные толстые волокна нервов, вследствие чего блокируется афферентная импульсация из болевого очага по спинальному механизму «воротного блока». Болевой синдром ослабляется или устраняется полностью уже во время процедуры или после первых процедур. По степени выраженности обезболивающего эффекта импульсная магнитная терапия сильно превосходит другие виды магнитной терапии.

Благодаря импульсным вращающимся магнитным полям появляется возможность индицирования в глубине тканей без их повреждений электрических полей и токов, значительной интенсивности. Это позволяет получить выраженный терапевтический противоотечный, обезболивающий, противовоспалительный, стимулирующий процессы регенерации, биостимулирующий эффекты действия, которые по степени выраженности превосходят в несколько раз лечебные эффекты, получаемые от всех известных аппаратов низкочастотной магнитотерапии.

Аппараты импульсной магнитной терапии являются современным эффективным средством лечения травматических повреждений, воспалительных, дегеративно-дистрофических заболеваний нервной и опорно-двигательной системы.

Лечебные эффекты импульсной магнитной терапии: анальгетический, противоотечный, противовоспалительный, вазоактивный, стимулирующий процессы регенерации в поврежденных тканях, нейростимулирующий, миостимулирующий.

Показания:

  • – заболевания и травматические повреждения ЦНС (ишемический инсульт головного мозга, преходящее нарушение мозгового кровообращения, последствия черепно-мозговой травмы с двигательными расстройствами, закрытые травмы спинного мозга с двигательными на рушениями, детский церебральный паралич, функционально истерические параличи),
  • - травматические повреждения опорно-двигательной системы (ушибы мягких тканей, суставов, костей, растяжение связок, закрытые переломы костей и суставов при иммобилизации, в стадии репаративной регенерации, открытые переломы костей, суставов, ранения мягких тканей при иммобилизации,в стадии репаративной регенерации, гипотрофия, атрофия мышц в результате гиподинамии, вызванной травматическими повреждениями опорно-двигательной системы),
  • - воспалительные дегенеративно-дистрофические повреждения опорно-двигательной системы (деформирующий остеоартроз суставов с явлениями синовита и без явлений синовита, распространенный остеохондроз, деформирующий спондилез позвоночника с явлениями вторичного корешкового синдрома, шейный радикулит с явлениями плечелопаточного переатрита, грудной радикулит, пояснично-крестцовый радикулит, анкилозирующий спондилоатрит, сколиотическая болезнь у детей),
  • - хирургические воспалительные заболевания (послеоперационный период после оперативных вмешательств на опорно-двигательном аппарате, коже и подкожной клетчатке, вялозаживающие раны, трофические язвы, фурункулы, карбункулы, флегмоны после хирургического вмешательства, маститы),
  • - заболевания бронхолегочной системы (бронхиальная астма легкой и средней степени тяжести, хронический бронхит),
  • - заболевания органов пищеварения (гипомоторно-эвакуаторные нарушения функции желудка после желудка и ваготомии, гипомоторная дисфункция толстой кишки, желудка и желчного пузыря, хронический гепатит с умеренным нарушением функции печени, хронический панкреатит с секреторной недостаточностью),
  • - заболевания сердечно-сосудистой системы (оккклюзионные поражения переферических артерий атеросклеротического генеза),
  • - урологические заболевания (камень в мочеточнике, состояние после литотрипсии, атония мочевого пузыря, слабость сфинкера и детрузора, простатит),
  • - гинекологические заболевания (воспалительные заболевания матки и придатков, заболевания, обусловленные гипофункцией яичников),
  • - хронический простатит и сексуальные расстройства у мужчин,
  • - стоматологические заболевания (пародонтоз, пломбировочные боли).

Противопоказания:

  • - выраженная гипотония,
  • - системные заболевания крови,
  • - наклонности к кровотечениям,
  • - тромбофлебит,
  • - тромбоэмболическая болезнь, переломы костей до иммобилизации,
  • - беременность,
  • - тиреотоксикоз и узловой зоб,
  • - абсцесс, флегмоны (до вскрытия и дренирования полостей),
  • - злокачественные новообразования,
  • - лихорадочное состояние,
  • - желчекаменная болезнь,
  • - эпилепсия.

Предупреждение:

Импульсную магнитную терапию нельзя применять при наличии имплантированного кардиостимулятора, так как индуцированные электропотенциалы могут нарушать его работу; при различных металлических свободно лежащих в тканях организма предметах (например, осколки при ранениях), если они находятся на расстоянии менее 5 см от индукторов, поскольку при прохождении импульсов магнитного поля предметы из электропроводных материалов (сталь, медь и др.) могут совершать движения и вызывать повреждения окружающих тканей. Воздействовать на область головного мозга, сердца и глаза не допускается.

Большой интерес представляет создание импульсных магнитных аппаратов низкой интенсивности (20-150 мТл) с частотой следования импульсов, приблизительно совпадающей с частотой собственных биопотенциалов органов (2-4-6-8-10-12 Гц). Это позволило бы оказывать биорезонансное воздействие на внутренние органы (печень, поджелудочная железа, желудок, легкие) импульсным магнитным полем и положительно влиять на их функцию. Уже известно, что положительно ИМП влияет на частоте 8-10 Гц на функцию печени у больных с токсическим (алкогольным) гепатитом.

С открытием инфракрасного излучения у известного в свое время германского физика Иоганна Вильгельма Риттера возникло желание изучить противоположную сторону данного явления.

Спустя некоторое время ему удалось выяснить, что на другой конец обладает немалой химической активностью.

Такой спектр стали называть ультрафиолетовыми лучами. Что оно собой представляет и какое влияние оказывает на живые земные организмы, попробуем разобраться далее.

Оба излучения – это в любом случае электромагнитные волны. Как инфракрасное, так и ультрафиолетовое, они с обеих сторон ограничивают спектр света, воспринимаемого человеческим глазом.

Главное отличие этих двух явлений – длина волны. Ультрафиолет обладает достаточно широким диапазоном длины волны – от 10 до 380 мкм и располагается он между видимым светом и рентген-излучением.


Отличия инфракрасного излучения от ультрафиолетового

ИК-излучение имеет основное свойство – излучать тепло, в то время, как ультрафиолетовое обладает химической активностью, что оказывает ощутимое воздействие на человеческий организм.

Как ультрафиолетовое излучение влияет на человека?

Благодаря тому, что УФ делятся по разности длины волны, биологически они влияют на человеческий организм по-разному, поэтому ученые выделяют три участка ультрафиолетового диапазона: УФ-А, УФ-Б, УФ-С: ближний, средний и дальний ультрафиолет.

Атмосфера, которая окутывает нашу планету, выступает в роли защитного щита, что защищает ее от Солнечного потока ультрафиолета. Дальнее излучение удерживается и поглощается практически полностью посредством кислорода, водяного пара, углекислого газа. Таким образом, на поверхность попадает незначительная радиация в виде ближнего и среднего излучения.

Самое опасное – излучение с небольшой длиной волны. Если коротковолновое излучение опадает на живые ткани, это провоцирует моментальное разрушительное действие. Но благодаря тому, что у нашей планеты есть озоновый щит, мы находимся в безопасности от воздействия подобных лучей.

ВАЖНО! Несмотря на природную защиту, мы пользуемся в быту некоторыми изобретениями, являющимися источниками именно данного диапазона лучей. Это сварочные аппараты и ультрафиолетовые лампы, от которых, к сожалению, отказаться нельзя.

Биологически ультрафиолет воздействует на человеческую кожу как небольшое покраснение, загар, что является достаточно мягкой реакцией. Но стоит учитывать индивидуальную особенность кожи, которая может специфически отреагировать на УФ излучение.

Воздействие УФ лучей также неблагоприятно влияет на глаза. Многие осведомлены в том, что ультрафиолет так или иначе влияет на человеческий организм, но подробности известны не все, поэтому далее попробуем более детально разобраться в этой теме.

УФ мутагенез или как УФ воздействует на человеческую кожу

Полностью отказываться от попадания солнечных лучей на кожный покров нельзя, это привод к крайне неприятным последствиям.

Но также впадать в крайность и стараться приобрести привлекательный оттенок тела, изнуряя себя под беспощадными лучами солнца – противопоказано. Что может произойти в случае бесконтрольного пребывания под палящим солнцем?

Если обнаружилось покраснение кожи, это не является признаком того, что спустя некоторое время, оно пройдет и останется милый, шоколадный загар. Кожа темнее вследствие того, что организмом вырабатывается красящий пигмент, меланин, который борется с неблагоприятным воздействием УФ на наш организм.

Притом, покраснение на коже остается недолго, а вот эластичность она может утратить навсегда. Также могут начать разрастаться клетки эпителия, визуально отражающиеся в виде веснушек и пигментных пятен, что также останется надолго, а то и навсегда.

Проникая глубока в ткани, ультрафиолет может привести к ультрафиолетовому мутагенезу, что представляет собой повреждение клеток на генном уровне. Наиболее опасным может стать меланома, в случае метастазировании которой может наступить смерть.

Как защититься от ультрафиолетового излучения?

Можно ли защитить кожу от негативного воздействия ультрафиолета? Да, если, будучи на пляже, придерживаться всего нескольких правил:

  1. Находиться под палящим солнцем необходимо недолго и в строго определенные часы, когда приобретенный легкий загар выступит как фотозащита кожи.
  2. Обязательно использовать солнцезащитные крема. Прежде чем купить такого рода средство, обязательно проверьте, способно ли оно защитить вас от УФ-А и УФ-В.
  3. Стоит включить в рацион питания продукты, содержащие максимальное количество витаминов С и Е, а также богатые на антиоксиданты.

Если вы находитесь не на пляже, но вынуждены находится од открытым небом, стоит выбирать специальную одежду, способную защитить кожу от УФ.

Электроофтальмия – негативное влияние УФ-излучения на глаза

Электроофтальмия – явление, возникающие вследствие негативного воздействия ультрафиолета на структуру глаза. УФ волны со средним диапазонов в данном случае являются очень разрушающими для человеческого зрения.


Электроофтальмия

Данные явления чаще всего возникают, когда:

  • Человек наблюдает за солнцем, его местонахождением, не обезопасив глаза специальными приспособлениями;
  • Яркое солнце на открытом пространстве (пляж);
  • Человек находится в заснеженном районе, в горах;
  • В помещении, где находится человек, рассоложены кварцевые лампы.

Электроофтальмия может привести к ожогу роговицы, главными симптомами которого можно назвать:

  • Слезоточивость глаз;
  • Существенные рези;
  • Боязнь яркого света;
  • Покраснение белка;
  • Отёк эпителия роговицы и век.

О статистике глубокие слои роговицы не успевают подвергнуться поражению, поэтому, когда эпителий заживляется, зрение полностью восстанавливается.

Как оказать первую помощь при электроофтальмии?

Если человек столкнулся с вышеперечисленными симптомами, это не только эстетически неприятно, но и может доставить немыслимые страдания.

Оказание первой помощи довольно простое:

  • Сперва промыть глаза чистой водой;
  • Затем применить увлажняющие капли;
  • Надеть очки;

Чтобы избавиться от рези в глазах, достаточно сделать компресс из влажных пакетиков от черного чая, или же натереть сырой картофель. В случае, если эти способы не помогли, стоит сразу же обратиться за помощью к специалисту.

Чтобы избежать подобных ситуаций, достаточно приобрести социальные солнцезащитные очки. Маркировка UV-400 говорит о том, что данный аксессуар способен защитить глаза от всех УФ-излучений.

Как УФ-излучение используется в медицинской практике?

В медицине есть понятие «ультрафиолетового голодания», что может возникнуть в случае длительного избегания солнечного света. При этом могут возникнут неприятные патологии, избежать которые легко, используя искусственные источники ультрафиолета.

Их небольшое воздействие способно компенсировать дефицит зимней нехватки витамина D.

Помимо этого, подобная терапия применима в случае проблем с суставами, заболевания кожи и аллергических реакций.

При помощи УФ-излучения можно:

  • Повысить гемоглобин, но снизить уровень сахара;
  • Нормализовать работу щитовидки;
  • Улучшить и устранить проблемы дыхательной и эндокринной системы;
  • При помощи установок с ультрафиолетовым излучением дизенфицируют помещения и хирургические инструменты;
  • УФ-лучи обладают бактерицидными свойствами, что особенно полезно для больных с гнойными ранами.

ВАЖНО! Всегда, применяя подобные излучения на практике, стоит ознакомиться не только с положительными, но и с негативными сторонами их воздействия. Применять искусственное, как и природное УФ-излучение в качестве лечения категорически запрещается при онкологии, кровотечениях, гипертонии 1 и 2 стадии, туберкулёзе активной формы.

Спектр лучей, видимых глазом человека, не имеет резкой, четко определенной границы. Верхней границей видимого спектра одни исследователи называют 400 нм, другие 380, третьи сдвигают ее до 350...320 нм. Это объясняется различной световой чувствительностью зрения и указывает на наличие лучей не видимых глазом.
В 1801 г. И. Риттер (Германия) и У. Уола-стон (Англия) используя фотопластинку доказали наличие ультрафиолетовых лучей. За фиолетовой границей спектра она чернеет быстрее, чем под влиянием видимых лучей. Поскольку почернение пластинки происходит в результате фотохимической реакции, ученые пришли к выводу, что ультрафиолетовые лучи весьма активны.
Ультрафиолетовые лучи охватывают широкий диапазон излучений: 400...20 нм. Область излучения 180... 127 нм называется вакуумной. Посредством искусственных источников (ртутно-кварцевых, водородных и дуговых ламп), дающих как линейчатый, так и непрерывный спектр, получают ультрафиолетовые лучи с длиной волны до 180 нм. В 1914 г. Лайман исследовал диапазон до 50 нм.
Исследователи обнаружили тот факт, что спектр ультрафиолетовых лучей Солнца, достигающих земной поверхности, очень узок - 400...290 нм. Неужели солнце не излучает свет с длиной волны короче 290 нм?
Ответ на этот вопрос нашел А. Корню (Франция). Он установил, что озон поглощает ультрафиолетовые лучи короче 295 нм, после чего выдвинул предположение: Солнце излучает коротковолновые ультрафиолетовое излучение, под его действием молекулы кислорода распадаются на отдельные атомы, образуя молекулы озона, поэтому в верхних слоях атмосферы озон должен покрывать землю защитным экраном. Гипотеза Корню получила подтверждение тогда, когда люди поднялись в верхние слои атмосферы. Таким образом, в земных условиях спектр солнца ограничен пропусканием озонового слоя.
Количество ультрафиолетовых лучей, достигающих земной поверхности, зависит от высоты Солнца над горизонтом. В течение периода нормального освещения освещенность изменяется на 20%, тогда как количество ультрафиолетовых лучей достигающих земной поверхности уменьшается в 20 раз.
Специальными экспериментами установлено, что при подъеме вверх на каждые 100 м интенсивность ультрафиолетового излучения возрастает на 3...4%. На долю рассеянного ультрафиолета в летний полдень приходится 45...70% излучения, а достигающего земной поверхности - 30...55%. В пасмурные дни, когда диск Солнца закрыт тучами, поверхности Земли достигает главным образом рассеянная радиация. Поэтому можно хорошо загореть не только под прямыми лучами солнца, но и в тени, и в пасмурные дни.
Когда Солнце стоит в зените, в экваториальной области поверхности земли достигают лучи длиной 290...289 нм. В средних широтах коротковолновая граница, в летние месяцы, составляет примерно 297 нм. В период эффективного освещения верхняя граница спектра составляет порядка 300 нм. За полярным кругом земной поверхности достигают лучи с длиной волны 350...380 нм.

Влияние ультрафиолетового излучения на биосферу

Выше диапазона вакуумной радиации ультрафиолетовые лучи легко поглощаются водой, воздухом, стеклом, кварцем и не достигают биосферы Земли. В диапазоне 400... 180 нм влияние на живые организмы лучей различной длины волны не одинакова. Наиболее богатые энергией коротковолновые лучи сыграли существенную роль в образовании первых сложных органических соединений на Земле. Однако эти лучи способствуют не только образованию, но и распаду органических веществ. Поэтому прогресс жизненных форм на Земле наступил лишь после того, когда благодаря деятельности зеленых растений атмосфера обогатилась кислородом и, под действием ультрафиолетовых лучей, образовался защитный озоновый слой.
Для нас представляют интерес ультрафиолетовое излучение Солнца и искусственных источников ультрафиолетового излучения в диапазоне 400...180 нм. Внутри этого диапазона выделены три области:

А - 400...320 нм;
В - 320...275 нм;
С - 275...180нм.

В действии каждого из этих диапазонов на живой организм есть существенные различия. Ультрафиолетовые лучи действуют на вещество, в том числе и живое, по тем же законам, что и видимый свет. Часть поглощаемой энергии превращается в тепло, но тепловое действие ультрафиолетовых лучей не оказывает на организм заметного влияния. Другой способ передачи энергии - люминесценция.
Фотохимические реакции под действием ультрафиолетовых лучей проходят наиболее интенсивно. Энергия фотонов ультрафиолетового света очень велика, поэтому при их поглощении молекула ионизируется и распадается на части. Иногда фотон выбивает электрон за пределы атома. Чаще всего происходит возбуждение атомов и молекул. При поглощении одного кванта света с длиной волны 254 нм энергия молекулы возрастает до уровня, соответствующего энергии теплового движения при температуре 38000°С.
Основная часть солнечной энергии достигает земли в качестве видимого света и инфракрасного излучения и лишь незначительная часть - в виде ультрафиолета. Максимальных значений поток УФ достигает в середине лета на Южном полушарии (Земля на 5% ближе к Солнцу) и 50% от суточного количества УФ поступает в течение 4-х полуденных часов. Diffey установил, что для географических широт с температурой 20-60° человек, загорающий с 10:30 до 11:30 и затем с 16:30 до заката, получит только 19% от суточной дозы УФ. В полдень, интенсивность УФ (300 нм) в 10 раз выше, чем тремя часами раньше или позже: незагорелому человеку достаточно 25 минут для получения легкого загара в полдень, однако для достижения этого же эффекта после 15:00, ему понадобится лежать на солнце не менее 2-х часов.
Ультрафиолетовый спектр в свою очередь разделяют на ультрафиолет-А (UV-A) с длиной волны 315-400 nm, ультрафиолет-В (UV-B) -280-315 nm и ультрафиолет-С (UV-С)- 100-280 nm которые отличаются по проникающей способности и биологическому воздействию на организм.
UV-A не задерживается озоновым слоем, проходит сквозь стекло и роговой слой кожи. Поток UV-A (среднее значение в полдень) в два раза выше на уровне Полярного Круга, чем на экваторе, так что абсолютное его значение больше в высоких широтах. Не отмечается и существенных колебаний в интенсивности UV-A в разные времена года. За счет поглощения, отражения и рассеивания при прохождении через эпидермис, в дерму проникает только 20-30% UV-A и около 1% от общей его энергии достигает подкожной клетчатки.
Большая часть UV-B поглощается озоновым слоем, который "прозрачен" для UV-A. Так что доля UV-B во всей энергии ультрафиолетового излучения в летний полдень составляет всего около 3%. Он практически не проникает сквозь стекло, на 70% отражается роговым слоем, на 20% ослабляется при прохождении через эпидермис - в дерму проникает менее 10%.
Однако длительное время считалось, что доля UV-В в повреждающем действии ультрафиолета составляет 80%, поскольку именно этот спектр отвечает за возникновение эритемы солнечного ожога.
Необходимо учитывать и тот факт, что UV-В сильнее (меньшая длина волны) чем UV-А рассеивается при прохождении через атмосферу, что приводит и к изменению соотношения между этими фракциями с увеличением географической широтысеверных странах) и временем суток.
UV-С (200-280 нм) поглощается озоновым слоем. В случае использования искусственного источника ультрафиолета, он задерживается эпидермисом и не проникает в дерму.

Действие ультрафиолетового излучения на клетку

В действии коротковолнового излучения на живой организм наибольший интерес представляет влияние ультрафиолетовых лучей на биополимеры - белки и нуклеиновые кислоты. Молекулы биополимеров содержат кольцевые группы молекул, содержащие углерод и азот, которые интенсивно поглощают излучение с длиной волны 260...280 нм. Поглощенная энергия может мигрировать по цепи атомов в пределах молекулы без существенной потери, пока не достигнет слабых связей между атомами и не разрушит связь. В течение такого процесса, называемого фотолизом, образуются осколки молекул, оказывающие сильное действие на организм. Так, например, из аминокислоты гистидина образуется гистамин - вещество, расширяющее кровеносные капилляры и увеличивающее их проницаемость. Кроме фотолиза под действием ультрафиолетовых лучей в биополимерах происходит денатурация. При облучении светом определенной длины волны электрический заряд молекул уменьшается, они слипаются и теряют свою активность - ферментную, гормональную, антигенную и пр.
Процессы фотолиза и денатурации белков идут параллельно и независимо друг от друга. Они вызываются разными диапазонами излучения: лучи 280...302 нм вызывают главным образом фотолиз, а 250...265 нм - преимущественно денатурацию. Сочетание этих процессов определяет картину действия на клетку ультрафиолетовых лучей.
Самая чувствительная к действию ультрафиолетовых лучей функция клетки - деление. Облучение в дозе 10(-19) дж/м2 вызывает остановку деления около 90% бактериальных клеток. Но рост и жизнедеятельность клеток при этом не прекращается. Со временем восстанавливается их деление. Чтобы вызвать гибель 90% клеток, подавление синтеза нуклеиновых кислот и белков, образование мутаций, необходимо довести дозу облучения до 10(-18) дж/м2. Ультрафиолетовые лучи вызывают в нуклеиновых кислотах изменения, которые влияют на рост, деление, наследственность клеток, т.е. на основные проявления жизнедеятельности.
Значение механизма действия на нуклеиновую кислоту объясняется тем, что каждая молекула ДНК (дезоксирибонуклеиновой кислоты) уникальна. ДНК - это наследственная память клетки. В ее структуре зашифрована информация о строении и свойствах всех клеточных белков. Если любой белок присутствует в живой клетке в виде десятков и сотен одинаковых молекул, то ДНК хранит информацию об устройстве клетки в целом, о характере и направлении процессов обмена веществ в ней. Поэтому нарушения в структуре ДНК могут оказаться непоправимыми или привести к серьезному нарушению жизнедеятельности.

Действие ультрафиолетового излучения на кожу

Воздействие ультрафиолета на кожу заметно влияет на метаболизм нашего организма. Общеизвестно, что именно УФ-лучи инициируют процесс образования эргокальциферола (витамина Д), необходимого для всасывания кальция в кишечнике и обеспечения нормального развития костного скелета. Кроме того, ультрафиолет активно влияет на синтез мелатонина и серотонина - гормонов, отвечающих за циркадный (суточный) биологический ритм. Исследования немецких ученых показали, что при облучении УФ-лучами сыворотки крови в ней на 7 % увеличивалось содержание серотонина - "гормона бодрости", участвующего в регуляции эмоционального состояния. Его дефицит может приводить к депрессии, колебаниям настроения, сезонным функциональным расстройствам. При этом количество мелатонина, обладающего тормозящим действием на эндокринную и центральную нервную системы, снижалось на 28%. Именно таким двойным эффектом объясняется бодрящее действие весеннего солнца, поднимающего настроение и жизненный тонус.
Действие излучения на эпидермис - наружный поверхностный слой кожи позвоночных животных и человека, состоящий из многослойного плоского эпителия человека, представляет собой воспалительную реакцию называемую эритемой. Первое научное описание эритемы дал в 1889 г. А.Н. Макла-нов (Россия), который изучил также действие ультрафиолетовых лучей на глаз (фотоофтальмию) и установил, что в основе их лежат общие причины.
Различают калорическую и ультрафиолетовую эритему. Калорическая эритема обусловлена воздействием видимых и инфракрасных лучей на кожу и прилива к ней крови. Она исчезает почти сразу после прекращения действия облучения.
После прекращения воздействия УФ-облучения, через 2..8 часов появляется покраснение кожи (ультрафиолетовая эритема) одновременно с ощущением жжения. Эритема появляется после скрытого периода, в пределах облученного участка кожи, и сменяется загаром и шелушением. Длительность эритемы имеет продолжительность от 10... 12 часов до 3...4 дней. Покрасневшая кожа горяча на ощупь, чуть болезненна и кажется набухшей, слегка отечной.
По существу эритема представляет собой воспалительную реакцию, ожог кожи. Это особое, асептическое (Асептический - безгнилостный) воспаление. Если доза облучения слишком велика или кожа особенно чувствительна к ним, отечная жидкость, накапливаясь, отслаивает местами наружный покров кожи, образует пузыри. В тяжелых случаях появляются участки некроза (омертвения) эпидермиса. Через несколько дней после исчезновения эритемы кожа темнеет и начинает шелушиться. По мере шелушения слущивается часть клеток, содержащих меланин (Меланин - основной пигмент тела человека; придает цвет коже, волосам, радужной оболочке глаза. Он содержится и в пигментном слое сетчатки глаза, участвует в восприятии света), загар бледнеет. Толщина кожного покрова человека варьирует в зависимости от пола, возраста (у детей и стариков - тоньше) и локализации - в среднем 1..2 мм. Его назначение - защитить организм от повреждений, колебаний температуры, давления.
Основной слой эпидермиса прилегает к собственно коже (дерме), в которой проходят кровеносные сосуды и нервы. В основном слое идет непрерывный процесс деления клеток; более старые вытесняются наружу молодыми клетками и отмирают. Пласты мертвых и отмирающих клеток образуют наружный роговой слой эпидермиса толщиной 0,07...2,5 мм (На ладонях и подошвах, главным образом за счет рогового слоя, эпидермис толще, чем на других участках тела), который непрерывно слущивается снаружи и восстанавливается изнутри.
Если падающие на кожу лучи поглощаются мертвыми клетками рогового слоя, они не оказывают на организм никакого влияния. Эффект облучения зависит от проникающей способности лучей и от толщины рогового слоя. Чем короче длина волны излучения, тем меньше их проникающая способность. Лучи короче 310 нм не проникают глубже эпидермиса. Лучи с большей длиной волны достигают сосочкового слоя дермы, в котором проходят кровеносные сосуды. Таким образом, взаимодействие ультрафиолетовых лучей с веществом происходит исключительно в коже, главным образом в эпидермисе.
Основное количество ультрафиолетовых лучей поглощается в ростковом (основном) слое эпидермиса. Процессы фотолиза и денатурации приводят к гибели шиловидных клеток зародышевого слоя. Активные продукты фотолиза белков вызывают расширение сосудов, отек кожи, выход лейкоцитов и другие типичные признаки эритемы.
Продукты фотолиза, распространяясь по кровеносному руслу, раздражают также нервные окончания кожи и через центральную нервную систему рефлекторно воздействуют на все органы. Установлено, что в нерве, отходящем от облученного участка кожи, частота электрических импульсов повышается.
Эритема рассматривается как сложный рефлекс, в возникновении которого участвуют активные продукты фотолиза. Степень выраженности эритемы и возможность ее образования зависит от состояния нервной системы. На пораженных участках кожи, при обморожении, воспалении нервов эритема либо вовсе не появляется, либо выражена очень слабо, несмотря на действие ультрафиолетовых лучей. Угнетает образование эритемы сон, алкоголь, физическое и умственное утомление.
Н. Финзен (Дания) впервые применил ультрафиолетовое излучение для лечения ряда болезней в 1899 г. В настоящее время подробно изучены проявления действия разных участков ультрафиолетового излучения на организм. Из ультрафиолетовых лучей, содержащихся в солнечном свете, эритему вызывают лучи с длиной волны 297 нм. К лучам с большей или меньшей длиной волны эритемная чувствительность кожи снижается.
С помощью искусственных источников излучения эритему удалось вызвать лучами диапазона 250...255 нм. Лучи с длиной волны 255 нм дает резонансная линия излучения паров ртути, используемых в ртутно-кварцевых лампах.
Таким образом, кривая эритемной чувствительности кожи имеет два максимума. Впадина между двумя максимумами обеспечивается экранирующим действием ороговевшего слоя кожи.

Защитные функции организма

В естественных условиях вслед за эритемой развивается пигментация кожи - загар. Спектральный максимум пигментации (340 нм) не совпадает ни с одним из пиков эритемной чувствительности. Поэтому, подбирая источник излучения можно вызвать пигментацию без эритемы и наоборот.
Эритема и пигментация не являются стадиями одного процесса, хотя они и следуют одна за другой. Это проявление разных, связанных друг с другом процессов. В клетках самого нижнего слоя эпидермиса - меланобластах - образуется кожный пигмент меланин. Исходным материалом для образования меланина служат аминокислоты и продукты распада адреналина.
Меланин - не просто пигмент или пассивный защитный экран отгораживающий живые ткани. Молекулы меланина представляют собой огромные молекулы с сетчатой структурой. В звеньях этих молекул связываются и нейтрализуются осколки разрушенных ультрафиолетом молекул, не пропуская их в кровь и внутреннюю среду организма.
Функция загара заключается в защите клеток дермы, расположенных в ней сосудах и нервах от длинноволновых ультрафиолетовых, видимых и инфракрасных лучей, вызывающих перегрев и тепловой удар. Ближние инфракрасные лучи и видимый свет, особенно его длинноволновая, "красная" часть, могут проникать в ткани гораздо глубже, чем ультрафиолетовые лучи, - на глубину 3...4 мм. Гранулы меланина - темно-коричневого, почти черного пигмента - поглощают излучение в широкой области спектра, защищая от перегрева нежные, привыкшие к постоянной температуре внутренние органы.
Оперативный механизм защиты организма от перегрева - прилив крови к коже и расширение кровеносных сосудов. Это приводит к увеличению теплоотдачи посредством излучения и конвекции (Общая поверхность кожного покрова взрослого человека составляет 1,6 м2). Если воздух и окружающие предметы имеют высокую температуру, вступает в действие еще один механизм охлаждения - испарение за счет потоотделения. Эти механизмы терморегуляции предназначены для защиты от воздействия видимых и инфракрасных лучей Солнца.
Потоотделение, наряду с функцией терморегуляции, препятствует воздействию ультрафиолетового излучения на человека. Пот содержит урокановую кислоту, которая поглощает коротковолновое излучение благодаря наличию в ее молекулах бензольного кольца.

Световое голодание (дефицит естественного УФ-облучения)

Ультрафиолетовое излучение поставляет энергию для фотохимических реакций в организме. В нормальных условиях солнечный свет вызывает образование небольшого количества активных продуктов фотолиза, которые оказывают на организм благотворное действие. Ультрафиолетовые лучи в дозах, вызывающих образование эритемы, усиливают работу кроветворных органов, ретикуло-эндоте-лиальную систему (Физиологическая система соединительной ткани, вырабатывающая антитела разрушающие чужеродные организму тела и микробы), барьерные свойства кожного покрова, устраняют аллергию.
Под действием ультрафиолетового излучения в коже человека из стероидных веществ образуется жирорастворимый витамин D. В отличие от других витаминов он может поступать в организм не только с пищей, но и образовываться в нем из провитаминов. Под влиянием ультрафиолетовых лучей с длиной волны 280...313 нм провитамины, содержащиеся в кожной смазке выделяемой сальными железами, превращаются в витамин D и всасываются в организм.
Физиологическая роль витамина D заключается в том, что он способствует усвоению кальция. Кальций входит в состав костей, участвует в свертывании крови, уплотняет клеточные и тканевые мембраны, регулирует активность ферментов. Болезнь, возникающая при недостатке витамина D у детей первых лет жизни, которых заботливые родители прячут от Солнца, называется рахитом.
Кроме естественных источников витамина D используют и искусственные, облучая провитамины ультрафиолетовыми лучами. При использовании искусственных источников ультрафиолетового излучения следует помнить, что лучи короче 270 нм разрушают витамин D. Поэтому с помощью фильтров в световом потоке ультрафиолетовых ламп подавляется коротковолновая часть спектра. Солнечное голодание проявляется в раздражительности, бессоннице, быстрой утомляемости человека. В больших городах, где воздух загрязнен пылью, ультрафиолетовые лучи вызывающие эритему почти не достигают поверхности Земли. Длительная работа в шахтах, машинных отделениях и закрытых заводских цехах, труд ночью, а сон в дневные часы приводят к световому голоданию. Световому голоданию способствует оконное стекло, которое поглощает 90...95% ультрафиолетовых лучей и не пропускает лучи в диапазоне 310...340 нм. Окраска стен также имеет существенное значение. Например, желтая окраска полностью поглощает ультрафиолетовые лучи. Недостаток света, особенно ультрафиолетового излучения, ощущают люди, домашние животные, птицы и комнатные растения в осенний, зимний и весенний периоды.
Восполнить недостаток ультрафиолетовых лучей позволяют лампы, которые наряду с видимым светом излучают ультрафиолетовые лучи в диапазоне длин волн 300...340 нм. Следует иметь в виду, что ошибки при назначении дозы облучения, невнимание к таким вопросам, как спектральный состав ультрафиолетовых ламп, направление излучения и высота размещения ламп, длительность горения ламп, могут вместо пользы принести вред.

Бактерицидное действие ультрафиолетового излучения

Нельзя не отметить и бактерицидную функцию УФ-лучей. В медицинских учреждениях активно пользуются этим свойством для профилактики внутрибольничной инфекции и обеспечения стерильности оперблоков и перевязочных. Воздействие ультрафиолета на клетки бактерий, а именно на молекулы ДНК, и развитие в них дальнейших химических реакций приводит к гибели микроорганизмов.
Загрязнение воздуха пылью, газами, водяными парами оказывает вредное влияние на организм. Ультрафиолетовые лучи Солнца усиливают процесс естественного самоочищения атмосферы от загрязнений, способствуя быстрому окислению пыли, частичек дыма и копоти, уничтожая на пылинках микроорганизмы. Природная способность к самоочищению имеет пределы и при очень сильном загрязнении воздуха оказывается недостаточной.
Ультрафиолетовое излучение с длиной волны 253...267 нм наиболее эффективно уничтожает микроорганизмы. Если принять максимум эффекта за 100%, то активность лучей с длиной волны 290 нм составит 30%, 300 нм - 6%, а лучей лежащих на границе видимого света 400 нм,- 0,01% максимальной.
Микроорганизмы обладают различной чувствительностью к ультрафиолетовым лучам. Дрожжи, плесневые грибки и споры бактерий гораздо устойчивее к их действию, чем вегетативные формы бактерий. Споры отдельных грибков, окруженные толстой и плотной оболочкой, отлично себя чувствуют в высоких слоях атмосферы и, не исключена возможность, что они могут путешествовать даже в космосе.
Чувствительность микроорганизмов к ультрафиолетовым лучам особенно велика в период деления и непосредственно перед ним. Кривые бактерицидного эффекта, торможения и роста клеток практически совпадают с кривой поглощения нуклеиновыми кислотами. Следовательно, денатурация и фотолиз нуклеиновых кислот приводит к прекращению деления и роста клеток микроорганизмов, а в больших дозах к их гибели.
Бактерицидные свойства ультрафиолетовых лучей используются для дезинфекции воздуха, инструмента, посуды, с их помощью увеличивают сроки хранения пищевых продуктов, обеззараживают питьевую воду, инактивируют вирусы при приготовлении вакцин.

Негативное воздействие ультрафиолетового облучения

Хорошо известен и ряд негативных эффектов, возникающих при воздействии УФ-излучения на организм человека, которые могут приводить к ряду серьезных структурных и функциональных повреждений кожи. Как известно, эти повреждения можно разделить на:
  • острые, вызванные большой дозой облучения, полученной за короткое время (например, солнечный ожог или острые фотодерматозы). Они происходят преимущественно за счет лучей УФ-В, энергия которых многократно превосходит энергию лучей УФ-А. Солнечная радиация распределяется неравномерно: 70% дозы лучей УФ-В, получаемых человеком, приходится на лето и полуденное время дня, когда лучи падают почти отвесно, а не скользят по касательной - в этих условиях поглощается максимальное количество излучения. Такие повреждения вызваны непосредственным действием УФ-излучения на хромофоры - именно эти молекулы избирательно поглощают УФ-лучи.
  • отсроченные, вызванные длительным облучением умеренными (субэритемными) дозами (например, к таким повреждениям относятся фотостарение, новообразования кожи, некоторые фотодерматиты). Они возникают преимущественно за счет лучей спектра А, которые несут меньшую энергию, но способны глубже проникать в кожу, и их интенсивность мало меняется в течение дня и практически не зависит от времени года. Как правило, этот тип повреждений - результат воздействия продуктов свободнорадикальных реакций (напомним, что свободные радикалы - это высокореактивные молекулы, активно взаимодействующие с белками, липидами и генетическим материалом клеток).
    Роль УФ-лучей спектра А в этиологии фотостарения доказана работами многих зарубежных и российских ученых, но тем не менее, механизмы фотостарения продолжают изучаться с использованием современной научно-технической базы, клеточной инженерии, биохимии и методов клеточной функциональной диагностики.
    Слизистая оболочка глаза - коньюктива - не имеет защитного рогового слоя, поэтому она более чувствительна к уф-облучению, чем кожа. Резь в глазу, краснота, слезотечение, частичная слепота появляются в результате дегенерации и гибели клеток коньюктивы и роговицы. Клетки при этом становятся непрозрачными. Длинноволновые ультрафиолетовые лучи, достигая хрусталика, в больших дозах могут вызвать его помутнение - катаракту.

    Искусственные источники УФ-излучения в медицине

    Бактерицидные лампы
    В качестве источников УФ-излучения используются разрядные лампы, у которых в процессе электрического разряда генерируется излучение, содержащие в своем составе диапазон длин волн 205-315 нм (остальная область спектра излучения играет второстепенную роль). К таким лампам относятся ртутные лампы низкого и высокого давления, а также ксеноновые импульсные лампы.
    Ртутные лампы низкого давления конструктивно и по электрическим параметрам практически ни чем не отличаются от обычных осветительных люминесцентных ламп, за исключением того, что их колба выполнена из специального кварцевого или увиолевого стекла с высоким коэффициентом пропускания УФ-излучения, на внутренней поверхности которой не нанесен слой люминофора. Эти лампы выпускаются в широком диапазоне мощностей от 8 до 60 Вт. Основное достоинство ртутных ламп низкого давления состоит в том, что более 60 % излучения приходится на линию с длиной волны 254 нм, лежащей в спектральной области максимального бактерицидного действия. Они имеют большой срок службы 5.000-10.000 ч и мгновенную способность к работе после их зажигания.
    Колба ртутно-кварцевых ламп высокого давления выполнена из кварцевого стекла. Достоинство этих ламп состоит в том, что они имеют при небольших габаритах большую единичную мощность от 100 до 1.000 Вт, что позволяет уменьшить число ламп в помещении, но обладают низкой бактерицидной отдачей и малым сроком службы 500-1.000 ч. Кроме того, нормальный режим горения наступает через 5-10 минут после их зажигания.
    Существенным недостатком непрерывных излучательных ламп является наличие риска загрязнения парами ртути окружающей среды при разрушении лампы. В случае нарушения целостности бактерицидных ламп и попадания ртути в помещение должна быть проведена тщательная демеркуризация загрязненного помещения.
    В последние годы появилось новое поколение излучателей - короткоимпульсные, обладающие гораздо большей биоцидной активностью. Принцип их действия основан на высокоинтенсивном импульсном облучении воздуха и поверхностей УФ-излучением сплошного спектра. Импульсное излучение получают при помощи ксеноновых ламп, а также с помощью лазеров. Данные об отличии биоцидного действия импульсного УФ-излучения от такового при традиционном УФ-излучении на сегодняшний день отсутствуют.
    Преимущество ксеноновых импульсных ламп обусловлено более высокой бактерицидной активностью и меньшим временем экспозиции. Достоинством ксеноновых ламп является также то, что при случайном их разрушении окружающая среда не загрязняется парами ртути. Основными недостатками этих ламп, сдерживающими их широкое применение, является необходимость использования для их работы высоковольтной, сложной и дорогостоящей аппаратуры, а также ограниченный ресурс излучателя (в среднем1-1,5 года).
    Бактерицидные лампы разделяются на озонные и безозонные .
    У озонных ламп в спектре излучения присутствует спектральная линия с длиной волны 185 нм, которая в результате взаимодействия с молекулами кислорода образует озон в воздушной среде. Высокие концентрации озона могут оказать неблагоприятное воздействие на здоровье людей. Использование этих ламп требует контроля содержания озона в воздушной среде и тщательного проветривания помещения.
    Для исключения возможности генерации озона разработаны так называемые бактерицидные "безозонные" лампы. У таких ламп за счет изготовления колбы из специального материала (кварцевое стекло с покрытием) или её конструкции исключается выход излучения линии 185 нм.
    Бактерицидные лампы, отслужившие свой срок службы или вышедшие из строя, должны храниться запакованными в отдельном помещении и требуют специальной утилизации согласно требованиям соответствующих нормативных документов.

    Бактерицидные облучатели.
    Бактерицидный облучатель-это электротехническое устройство, в котором размещены: бактерицидная лампа, отражатель и другие вспомогательные элементы, а также приспособления для его крепления. Бактерицидные облучатели перераспределяют поток излучения в окружающее пространство в заданном направлении и подразделяются на две группы - открытые и закрытые.
    Открытые облучатели используют прямой бактерицидный поток от ламп и отражателя (или без него), который охватывает широкую зону пространства вокруг них. Устанавливаются на потолке или стене. Облучатели, устанавливаемые в дверных проемах, называются барьерными облучателями или ультрафиолетовыми завесами, у которых бактерицидный поток ограничен небольшим телесным углом.
    Особое место занимают открытые комбинированные облучатели. В этих облучателях, за счет поворотного экрана, бактерицидный поток от ламп можно направлять в верхнюю или нижнюю зону пространства. Однако эффективность таких устройств значительно ниже из-за изменения длины волны при отражении и некоторых других факторов. При использовании комбинированных облучателей бактерицидный поток от экранированных ламп должен направляться в верхнюю зону помещения таким образом, чтобы исключить выход прямого потока от лампы или отражателя в нижнюю зону. При этом облученность от отраженных потоков от потолка и стен на условной поверхности на высоте 1,5 м от пола не должна превышать 0,001 Вт/м2.
    У закрытых облучателей (рециркуляторов) бактерицидный поток от ламп распределяется в ограниченном небольшом замкнутом пространстве и не имеет выхода наружу, при этом обеззараживание воздуха осуществляется в процессе его прокачки через вентиляционные отверстия рециркулятора. При применении приточно-вытяжной вентиляции бактерицидные лампы размещаются в выходной камере. Скорость воздушного потока обеспечивается либо естественной конвекцией, либо принудительно с помощью вентилятора. Облучатели закрытого типа (рециркуляторы) должны размещаться в помещении на стенах по ходу основных потоков воздуха (в частности, вблизи отопительных приборов) на высоте не менее 2 м от пола.
    Согласно перечню типовых помещений, разбитых по категориям (ГОСТ), рекомендуется помещения I и II категорий оборудовать как закрытыми облучателями (или приточно-вытяжной вентиляцией), так и открытыми или комбинированными - при их включении в отсутствии людей.
    В помещениях для детей и легочных больных рекомендуется применять облучатели с безозонными лампами. Искусственное ультрафиолетовое облучение, даже непрямое, противопоказано детям с активной формой туберкулеза, нефрозо-нефрита, лихорадочным состоянием и резким истощением.
    Использование ультрафиолетовых бактерицидных установок требует строгого выполнения мер безопасности, исключающих возможное вредное воздействие на человека ультрафиолетового бактерицидного излучения, озона и паров ртути.

    Основные меры безопасности и противопоказания к использованию терапевтического УФ-облучения.

    Перед использованием УФ-облучения от искусственных источников необходимо посетить врача с целью подбора и установления минимальной эритемной дозы (МЭД), которая является сугубо индивидуальным параметром для каждого человека.
    Поскольку индивидуальная чувствительность людей широко варьируется, рекомендуется продолжительность первого сеанса сократить вдвое по сравнению с рекомендованным временем, с тем чтобы установить кожную реакцию пользователя. Если после первого сеанса обнаружится какая-либо неблагоприятная реакция, дальнейшее использование УФ-облучения не рекомендуется.
    Регулярное облучение в течение длительного времени (год и больше) не должно превышать 2 сеансов в неделю, причем в год может быть не более 30 сеансов или 30 минимальных эритемных доз (МЭД), какой бы малой ни была эритемно-эффективная облученность. Рекомендуется иногда прерывать регулярные сеансы облучения.
    Терапевтическое облучение необходимо проводить с обязательным использованием надежных защитных очков для глаз.
    Кожа и глаза любого человека могут стать "мишенью" для ультрафиолета. Считается, что люди со светлой кожей более восприимчивы к повреждению, однако и смуглые, темнокожие люди тоже не могут чувствовать себя в полной безопасности.

    Очень осторожным с естественным и искусственным УФ-облучением всего тела следует быть следующим категориям людей:

  • Гинекологическим больным (ультрафиолет может усилить воспалительные явления).
  • Имеющих большое количество родимых пятен на теле, или участки скопления родимых пятен, или большие родимые пятна
  • Лечившимся от рака кожи в прошлом
  • Работающим в течение недели в помещении, а затем длительно загорающим в выходные дни
  • Живущим или отдыхающим в тропиках и субтропиках
  • Имеющим веснушки или ожоги
  • Альбиносам, блондинам, русоволосым и рыжеволосым людям
  • Имеющим среди близких родственников больных раком кожи, особенно меланомой
  • Живущим или отдыхающим в горах (каждые 1000 метров над уровнем моря прибавляют 4% - 5% солнечной активности)
  • Длительно пребывающим, в силу различных причин, на свежем воздухе
  • Перенесшим трансплантацию какого-либо органа
  • Страдающим некоторыми хроническими заболеваниями, например, системной красной волчанкой
  • Принимающим следующие лекарственные препараты: Антибактериальные (тетрациклины, сульфаниламиды и некоторые другие) Нестероидные противовоспалительные средства, например, напроксен Фенотиазиды, используемые в качестве успокаивающих и противотошнотных средств Трициклические антидепрессанты Мочегонные из группы тиазидов, например, гипотиазид Препараты сульфомочевины, таблетки, снижающие глюкозу в крови Иммунодепрессанты
  • Особенно опасно длительное неконтролируемое воздействие ультрафиолета для детей и подростков, поскольку может стать причиной развития во взрослом возрасте меланомы, наиболее быстро прогрессирующего рака кожи.

    Всем известно, что Солнце — центр нашей системы планет и стареющая звезда — испускает лучи. Солнечное излучение состоит из ультрафиолетовых лучей (УФ / UV) типа А, или UVA — длинноволновых, типа В, или UVB — коротковолновых. Наше понимание того, какие виды повреждений они могут причинять коже и как лучше всего защититься от УФ, похоже, меняется каждый год — по мере появления новых исследований. Например, когда-то считалось, что только UVB вредны для кожи, но мы все больше и больше узнаем из исследований о повреждениях, вызванных UVA. Как следствие, появляются и улучшенные формы защиты от UVA, которые способны при правильном применении предотвратить повреждения от воздействия солнца.

    Что такое УФ-излучение?

    УФ-излучение является частью электромагнитного (светового) спектра, который достигает Земли от Солнца. Длина волн УФ-излучения меньше спектра видимого света, что делает его невидимым для невооруженного глаза. Излучение по длине волн делится на UVA, UVB и UVC, причем UVA — наиболее длинноволновое (320-400 нм, где нм — миллиардная часть метра). UVA подразделяется еще на два диапазона волн: UVA I (340-400 нм) и UVA II (320-340 нм). Диапазон UVB — от 290 до 320 нм. Более короткие лучи UVC поглощаются озоновым слоем и не достигают поверхности земли.

    Однако два типа лучей — UVA и UVB — проникают в атмосферу и являются причиной многих болезней — преждевременного старения кожи, повреждения глаз (включая катаракту) и рака кожи. Они также подавляют работу иммунной системы, уменьшая способность организма бороться с этими и другими заболеваниями.

    УФ-излучение и рак кожи

    Повреждая клеточную ДНК кожи, чрезмерное УФ-излучение вызывает генетические мутации, которые могут привести к раку кожи. Поэтому и Департамент здравоохранения и социальных служб США, и Всемирная организация здравоохранения признали УФ доказанным канцерогеном для человека. Ультрафиолетовое излучение считается основной причиной рака кожи немеланомы (NMSC), включая карциному базальной клетки (BCC) и плоскоклеточную карциному (SCC). Эти виды рака поражают ежегодно более миллиона людей в мире, из которых более 250 000 — граждане США. Многие эксперты считают, что, особенно для людей с бледной кожей, УФ-излучение часто играет ключевую роль в развитии меланомы — самой опасной формы рака кожи, которая ежегодно убивает более 8 000 американцев.

    УФ А-излучение

    Большинство из нас подвергается воздействию большого количества ультрафиолета на протяжении жизни. Лучи UVA составляют до 95 % УФ-излучения, достигающего поверхности Земли. Хотя они менее интенсивны, чем UVB, лучи UVA в 30-50 раз более распространены. Они присутствуют с относительно равной интенсивностью в течение всего светового дня в течение года и могут проникать сквозь облака и стекло.

    Именно UVA, которое проникает в кожу более глубоко, чем UVB, виновато в старении кожи и возникновении морщин (так называемая солнечная геродермия), но до недавнего времени ученые полагали, что UVА не наносило значительного ущерба эпидермису (самый внешний слой кожи), где локализуется большинство случаев рака кожи. Однако исследования последних двух десятилетий показывают, что именно UVA повреждает клетки кожи, называемые кератиноцитами, в базальном слое эпидермиса, где развивается большинство случаев рака кожи. Базальные и плоскоклеточные клетки — это разновидности кератиноцитов.

    Также именно UVA вызывает в основном загар, и теперь мы знаем, что загар (безразлично, где он получен — на открытом воздухе или в солярии) наносит коже ущерб, который усугубляется с течением времени, поскольку повреждаются ДНК кожи. Оказывается, кожа темнеет именно потому, что таким образом организм пытается предотвратить дальнейшее повреждение ДНК. Данные мутации могут привести к раку кожи.

    Вертикальный солярий в основном излучает UVA. Лампы, используемые в салонах для загара, излучают дозы UVA в 12 раз больше, чем солнце. Неудивительно, что у людей, которые используют салон для загара, в 2,5 раза чаще развивается плоскоклеточный рак и в 1,5 раза чаще — базально-клеточный рак. Согласно недавним исследованиям, первое воздействие солярия в молодом возрасте повышает риск меланомы на 75%.

    УФ В-излучение

    UVB, которые являются главной причиной покраснения кожи и солнечных ожогов, наносят в основном ущерб более поверхностным эпидермальным слоям кожи. UVB играет ключевую роль в развитии рака кожи, старении и потемнении кожи. Интенсивность излучения зависит от сезона, местоположения и времени суток. Самое значительное количество UVB поражает США в период с 10:00 до 16:00 с апреля по октябрь. Однако лучи UVB могут повреждать кожу круглый год, особенно на больших высотах и на отражающих поверхностях, таких как снег или лед, которые отдают назад до 80% лучей, так что они попадают на кожу дважды. Радует только то, что UVB практически не проникают через стекло.

    Защитные меры

    Помните, что защищаться от УФ-излучения следует как внутри помещений, так и снаружи. Всегда ищите тень на улице, особенно между 10:00 и 16:00. А поскольку UVA проникает через стекло, подумайте над укреплением тонированной UV-защитной пленки на верхних частях боковых и задних стекол вашего автомобиля, а также на окнах дома и офиса. Такая пленка блокирует до 99,9% УФ-излучения и пропускает до 80% видимого света.

    На открытом воздухе одевайте, чтобы ограничить воздействие УФ-излучения, специальную солнцезащитную одежду с UPF (коэффициент защиты от ультрафиолетового излучения). Чем выше значения UPF, тем лучше. Например, рубашка с UPF 30 означает, что только 1/30-я ультрафиолетового излучения Солнца может достичь кожи. Существуют и специальные добавки в средства для стирки, которые в обычных тканях обеспечивают более высокие значения UPF. Не игнорируйте возможность защититься — выбирайте те ткани, у которых лучшая защита от солнечных лучей. Например, яркая или темная блестящая одежда отражает больше УФ-излучения, чем светлые и отбеленные хлопчатобумажные ткани; правда, свободная одежда обеспечивает больший барьер между вашей кожей и солнечными лучами. Наконец, широкополые шляпы и солнцезащитные очки с УФ-защитой помогают защитить чувствительную кожу на лбу, шее и вокруг глаз — именно в этих областях обычно бывают наиболее тяжелые повреждения.

    Защитный фактор (SPF) и УФ В-излучение

    С появлением современных солнцезащитных кремов появилась традиция измерять их эффективность фактором защиты от солнца, или SPF. Как ни странно, SPF — это не фактор и не мера защиты как таковой.

    Эти числа просто указывают, сколько времени потребуется, чтобы UVB-лучи вызвали покраснение кожи при использовании солнцезащитного крема по сравнению с тем, как кожа будет краснеть без применения данного продукта. Например, пользуясь солнцезащитным кремом с SPF 15, человек продлит время безопасного нахождения на солнце в 15 раз по сравнению с пребыванием в аналогичных условиях без солнцезащитного крема. Солнцезащитный крем SPF 15 экранирует 93% солнечных лучей UVB; SPF 30 — 97%; и SPF 50 — до 98%. Крем с SPF 15 или даже выше необходимы для адекватной повседневной защиты кожи в солнечное время года. Для более длительного или интенсивного воздействия солнца, например нахождения на пляже, рекомендуется SPF 30 или выше.

    Солнцезащитный компонент

    Поскольку UVA и UVB вредны для кожи, то нужна защита от обоих видов лучей. Эффективная защита начинается с SPF от 15 или выше, также важны следующие ингредиенты: stabilized a avobenzone, ecamsule (также известный как Mexoryl TM), oxybenzone, titanium dioxide, и zinc oxide . На этикетках солнцезащитных средств можно прочесть фразы типа «защищает от нескольких спектров лучей», «с широким спектром защиты» или «защита от UVA/UVB — все это указывает на то, что предусмотрена защита от UVA. Однако такие фразы могут не совсем соответствовать действительности.

    В настоящее время 17 активных ингредиентов одобрены FDA (Управлением по контролю за качеством пищевых продуктов и лекарственных препаратов) для использования в солнцезащитных кремах. Эти фильтры делятся на две широкие категории: химические и физические. Большинство УФ-фильтров — химические, то есть они образуют тонкую защитную пленку на поверхности кожи и поглощают УФ-излучение, прежде чем лучи проникнут в кожу. Физические солнцезащитные средства чаще всего состоят из нерастворимых частиц, отражающих УФ-лучи от кожи. Большинство солнцезащитных кремов содержат смесь химических и физических фильтров.

    Солнцезащитные средства, одобренные FDA

    Название активного ингредиента / УФ-фильтра

    Диапазон охвата

    UVA1: 340-400 nm

    UVA2: 320-340 nm

    Химические абсорбенты :

    Aminobenzoic acid (PABA)

    Ecamsule (Mexoryl SX)

    Ensulizole (Phenylbenzimiazole Sulfonic Acid)

    Meradimate (Menthyl Anthranilate)

    Octinoxate (Octyl Methoxycinnamate)

    Octisalate (Octyl Salicylate)

    Trolamine Salicylate

    Физические фильтры :

    Titanium Dioxide

    • Ищите тень, особенно между 10:00 и 16:00.
    • Не обгорайте.
    • Избегайте интенсивного загара и вертикального солярия.
    • Носите закрытую одежду, в том числе широкополую шляпу и солнцезащитные очки с ультрафиолетовыми фильтрами.
    • Используйте солнцезащитный крем широкого спектра (UVA/UVB) с SPF 15 или выше каждый день. Для продолжительной активности на открытом воздухе используйте водостойкий солнцезащитный крем с широким спектром (UVA/UVB) с SPF 30 или выше.
    • Наносите достаточную порцию (2 столовые ложки минимум) солнцезащитного крема на все тело за 30 минут до выхода на улицу. Повторно применять крем следует каждые два часа или сразу после купания/чрезмерного потоотделения.
    • Берегите новорожденных от солнца, поскольку солнцезащитные кремы можно использовать только для младенцев старше шести месяцев.
    • Каждый месяц проверяйте свою кожу с ног до головы — если обнаружили что-то подозрительное, то бегом к доктору.
    • Ежегодно посещайте врача для профессионального обследования кожи.

    Понятие об ультрафиолетовых лучах впервые встречается у индийского философа 13-го века в его труде. Атмосфера описанной им местности Bhootakasha содержала фиолетовые лучи, которые невозможно увидеть невооружённым глазом.

    Вскоре после того, как было обнаружено инфракрасное излучение, немецкий физик Иоганн Вильгельм Риттер начал поиски излучения и в противоположном конце спектра, с длиной волны короче, чем у фиолетового цвета.В 1801 году он обнаружил, что хлорид серебра, разлагающийся под действием света, быстрее разлагается под действием невидимого излучения за пределами фиолетовой области спектра. Хлорид серебра белого цвета в течение нескольких минут темнеет на свету. Разные участки спектра по-разному влияют на скорость потемнения. Быстрее всего это происходит перед фиолетовой областью спектра. Тогда многие ученые, включая Риттера, пришли к соглашению, что свет состоит из трех отдельных компонентов: окислительного или теплового (инфракрасного) компонента, осветительного компонента (видимого света), и восстановительного (ультрафиолетового) компонента. В то время ультрафиолетовое излучение называли также актиническим излучением. Идеи о единстве трёх различных частей спектра были впервые озвучены лишь в 1842 году в трудах Александра Беккереля , Македонио Меллони и др.

    Подтипы

    Деградация полимеров и красителей

    Сфера применения

    Чёрный свет

    Химический анализ

    УФ - спектрометрия

    УФ-спектрофотометрия основана на облучении вещества монохроматическим УФ-излучением, длина волны которого изменяется со временем. Вещество в разной степени поглощает УФ-излучение с разными длинами волн. График, по оси ординат которого отложено количество пропущенного или отраженного излучения, а по оси абсцисс - длина волны, образует спектр . Спектры уникальны для каждого вещества, на этом основывается идентификация отдельных веществ в смеси, а также их количественное измерение.

    Анализ минералов

    Многие минералы содержат вещества, которые при освещении ультрафиолетовым излучением начинают испускать видимый свет. Каждая примесь светится по-своему, что позволяет по характеру свечения определять состав данного минерала. А. А. Малахов в своей книге «Занимательно о геологии» (М., «Молодая гвардия», 1969. 240 с) рассказывает об этом так: «Необычное свечение минералов вызывают и катодный, и ультрафиолетовый, и рентгеновский лучи. В мире мёртвого камня загораются и светят наиболее ярко те минералы, которые, попав в зону ультрафиолетового света, рассказывают о мельчайших примесях урана или марганца, включённых в состав породы. Странным „неземным“ цветом вспыхивают и многие другие минералы, не содержащие никаких примесей. Целый день я провёл в лаборатории, где наблюдал люминесцентное свечение минералов. Обычный бесцветный кальцит расцвечивался чудесным образом под влиянием различных источников света. Катодные лучи делали кристалл рубиново-красным, в ультрафиолете он загорался малиново-красными тонами. Два минерала - флюорит и циркон - не различались в рентгеновских лучах. Оба были зелёными. Но стоило подключить катодный свет, как флюорит становился фиолетовым, а циркон - лимонно-жёлтым.» (с. 11).

    Качественный хроматографический анализ

    Хроматограммы, полученные методом ТСХ , нередко просматривают в ультрафиолетовом свете, что позволяет идентифицировать ряд органических веществ по цвету свечения и индексу удерживания.

    Ловля насекомых

    Ультрафиолетовое излучение нередко применяется при ловле насекомых на свет (нередко в сочетании с лампами, излучающими в видимой части спектра). Это связано с тем, что у большинства насекомых видимый диапазон смещён, по сравнению с человеческим зрением, в коротковолновую часть спектра: насекомые не видят того, что человек воспринимает как красный, но видят мягкий ультрафиолетовый свет.

    Искусственный загар и «Горное солнце»

    При определённых дозировках искусственный загар позволяет улучшить состояние и внешний вид кожи человека, способствует образованию витамина D . В настоящее время популярны фотарии, которые в быту часто называют соляриями .

    Ультрафиолет в реставрации

    Один из главных инструментов экспертов - ультрафиолетовое, рентгеновское и инфракрасное излучение. Ультрафиолетовые лучи позволяют определить старение лаковой пленки - более свежий лак в ультрафиолете выглядит темнее. В свете большой лабораторной ультрафиолетовой лампы более темными пятнами проступают отреставрированные участки и кустарно переписанные подписи. Рентгеновские лучи задерживаются наиболее тяжелыми элементами. В человеческом теле это костная ткань, а на картине - белила. Основой белил в большинстве случаев является свинец, в XIX веке стали применять цинк, а в XX-м - титан. Все это тяжелые металлы. В конечном счете, на пленке мы получаем изображение белильного подмалевка. Подмалевок - это индивидуальный «почерк» художника, элемент его собственной уникальной техники. Для анализа подмалевка используются базы рентгенограмм картин великих мастеров. Также эти снимки применяются для распознания подлинности картины.

    Примечания

    1. ISO 21348 Process for Determining Solar Irradiances . Архивировано из первоисточника 23 июня 2012.
    2. Бобух, Евгений О зрении животных . Архивировано из первоисточника 7 ноября 2012. Проверено 6 ноября 2012.
    3. Советская энциклопедия
    4. В. К. Попов // УФН . - 1985. - Т. 147. - С. 587-604.
    5. А. К. Шуаибов, В. С. Шевера Ультрафиолетовый азотный лазер на 337,1 нм в режиме частых повторений // Украинский физический журнал . - 1977. - Т. 22. - № 1. - С. 157-158.
    6. А. Г. Молчанов
    error: