Два любых линейно независимых вектора называются. Линейная зависимость и независимость, свойства, исследование системы векторов на линейную зависимость, примеры и решения

линейная зависимость

соотношение вида С1u1+С2u2+... +Сnun?0, где С1, С2,..., Сn - числа, из которых хотя бы одно? 0, а u1, u2,..., un - какие-либо математические объекты, напр. векторы или функции.

Линейная зависимость

(матем.), соотношение вида

C11u1 + C2u2 + ... + Cnun = 0, (*)

где С1, C2, ..., Cn ≈ числа, из которых хотя бы одно отлично от нуля, а u1, u2, ..., un ≈ те или иные матем. объекты, для которых определены операции сложения и умножения на число. В соотношение (*) объекты u1, u2, ..., un входят в 1-й степени, т. е. линейно; поэтому описываемая этим соотношением зависимость между ними называется линейной. Знак равенства в формуле (*) может иметь различный смысл и в каждом конкретном случае должен быть разъяснён. Понятие Л. з. употребляется во многих разделах математики. Так, можно говорить о Л. з. между векторами, между функциями от одного или нескольких переменных, между элементами линейного пространства и т. д. Если между объектами u1, u2, ..., un имеется Л. з., то говорят, что эти объекты линейно зависимы; в противном случае их называется линейно независимыми. Если объекты u1, u2, ..., un линейно зависимы, то хотя бы один из них является линейной комбинацией остальных, т. е.

u1 = a 1u1 + ... + a i-1ui-1 + a i+1ui+1 + ... + a nun.

Непрерывные функции от одного переменного

u1 = j 1(х), u2 = j 2(х), ..., un = j n(x) называются линейно зависимыми, если между ними имеется соотношение вида (*), в котором знак равенства понимается как тождество относительно х. Для того чтобы функции j 1(x), j 2(x), ..., j n(x), заданные на некотором отрезке а £ х £ b, были линейно зависимы, необходимо и достаточно, чтобы обращался в нуль их определитель Грама

i, k = 1,2, ..., n.

Если же функции j1 (x), j2(x), ..., jn(x) являются решениями линейного дифференциального уравнения, то для существования Л. з. между ними необходимо и достаточно, чтобы вронскиан обращался в нуль хотя бы в одной точке.

══ Линейные формы от m переменных

u1 = ai1x1 + ai2x2 + ... + aimxm

(i = 1, 2, ..., n)

называются линейно зависимыми, если существует соотношение вида (*), в котором знак равенства понимается как тождество относительно всех переменных x1, x2, ..., xm. Для того чтобы n линейных форм от n переменных были линейно зависимы, необходимо и достаточно, чтобы обращался в нуль определитель

Задача. Пионерский отряд отправился из города в поход. Сейчас он находится в

5 км от города и идёт со скоростью 3 км в час. На каком расстоянии от города он будет через х часов?

Решение. За х часов отряд пройдет километров, Да ещё ранее он прошёл 5 км. Значит, через х часов расстояние от города будет равно километрам. Обозначив это расстояние через у, будем иметь;

Это равенство выражает зависимость пути от времени, но это уже не будет прямо пропорциональная зависимость, как легко видеть из следующей таблицы

Отношение пути ко времени здесь не равно одному и тому же числу.

Определение. Зависимость между двумя величинами х и у, выражающаяся формулой где к и - числа, называется линейной зависимостью.

В частности, если то

Значит, прямо пропорциональная зависимость является частным случаем линейной зависимости.

2. График линейной зависимости.

Построим график какой-либо данной линейной зависимости; положим, например,

Поступим следующим образом. Построим сначала график зависимости

Это будет прямая, проходящая через начало координат (черт. 26).

Посмотрим, как будут расположены относительно этой прямой точки графика линейной зависимости:

Составим, например, такую таблицу значений х и у:

Мы видим, что при любой абсциссе ордината точки второго графика на 3 единицы больше ординаты точки первого графика. Значит, и соответствующая точка второго графика будет на 3 единицы выше точки первого.

Построив эти точки, получим прямую, параллельную первой прямой (черт. 26).

Графиком линейной зависимости является прямая.

Отсюда следует, что для построения графика линейной зависимости достаточно найти две его точки.

Покажем это на рассмотренном примере

Положив получим . Итак, одну точку мы нашли. Положив ещё получим Вторая точка (2; 7). Построив эти точки и проведя через них прямую, получим искомый график, то есть график линейной зависимости, выраженной формулой

Обычно для построения графика линейной зависимости берут две точки, в которых прямая пересекает оси координат. Так, полагая получим Полагая получим Проведя прямую через точки получим искомый график (черт. 27).

Задача 1. Выяснить, является ли система векторов линейно независимой. Систему векторов будем задавать матрицей системы, столбцы которой состоят из координат векторов.

Решение. Пусть линейная комбинация равна нулю. Записав это равенство в координатах, получим следующую систему уравнений:

Такая система уравнений называется треугольной. Она имеет единственное решение . Следовательно, векторы линейно независимы.

Задача 2. Выяснить, является ли линейно независимой система векторов.

Решение. Векторы линейно независимы (см. задачу 1). Докажем, что вектор является линейной комбинацией векторов . Коэффициенты разложения по векторам определяются из системы уравнений

Эта система, как треугольная, имеет единственное решение.

Следовательно, система векторов линейно зависима.

Замечание . Матрицы, такого вида, как в задаче 1, называются треугольными , а в задаче 2 – ступенчато-треугольными . Вопрос о линейной зависимости системы векторов легко решается, если матрица, составленная из координат этих векторов, является ступенчато треугольной. Если матрица не имеет специального вида, то с помощью элементарных преобразований строк , сохраняющих линейные соотношения между столбцами, её можно привести к ступенчато-треугольному виду.

Элементарными преобразованиями строк матрицы(ЭПС) называются следующие операции над матрицей:

1) перестановка строк;

2) умножение строки на отличное от нуля число;

3) прибавление к строке другой строки, умноженной на произвольное число.

Задача 3. Найти максимальную линейно независимую подсистему и вычислить ранг системы векторов

Решение. Приведем матрицу системы с помощью ЭПС к ступенчато-треугольному виду. Чтобы объяснить порядок действий, строчку с номером преобразуемой матрицы обозначим символом . В столбце после стрелки указаны действия над строками преобразуемой матрицы, которые надо выполнить для получения строк новой матрицы.

Очевидно, что первые два столбца полученной матрицы линейно независимы, третий столбец является их линейной комбинацией, а четвертый не зависит от двух первых. Векторы называются базисными. Они образуют максимальную линейно независимую подсистему системы , а ранг системы равен трем.



Базис, координаты

Задача 4. Найти базис и координаты векторов в этом базисе на множестве геометрических векторов, координаты которых удовлетворяют условию .

Решение . Множество является плоскостью, проходящей через начало координат. Произвольный базис на плоскости состоит из двух неколлинеарных векторов. Координаты векторов в выбранном базисе определяются решением соответствующей системы линейных уравнений.

Существует и другой способ решения этой задачи, когда найти базис можно по координатам.

Координаты пространства не являются координатами на плоскости , так как они связаны соотношением , то есть не являются независимыми. Независимые переменные и (они называются свободными) однозначно определяют вектор на плоскости и, следовательно, они могут быть выбраны координатами в . Тогда базис состоит из векторов, лежащих в и соответствующих наборам свободных переменных и , то есть .

Задача 5. Найти базис и координаты векторов в этом базисе на множестве всех векторов пространства , у которых нечетные координаты равны между собой.

Решение . Выберем, как и в предыдущей задаче, координаты в пространстве .

Так как , то свободные переменные однозначно определяют вектор из и, следовательно, являются координатами. Соответствующий базис состоит из векторов .

Задача 6. Найти базис и координаты векторов в этом базисе на множестве всех матриц вида , где – произвольные числа.

Решение . Каждая матрица из однозначно представима в виде:

Это соотношение является разложением вектора из по базису с координатами .

Задача 7. Найти размерность и базис линейной оболочки системы векторов

Решение. Преобразуем с помощью ЭПС матрицу из координат векторов системы к ступенчато-треугольному виду.

Столбцы последней матрицы линейно независимы, а столбцы линейно выражаются через них. Следовательно, векторы образуют базис , и .

Замечание . Базис в выбирается неоднозначно. Например, векторы также образуют базис .

Линейная зависимость и независимость векторов

Определения линейно зависимой и независимой систем векторов

Определение 22

Пусть имеем систему из n-векторови имеем набор чисел , тогда

(11)

называется линейной комбинацией данной системы векторов с данным набором коэффициентов.

Определение 23

Система векторовназываетсялинейно зависимой, если существует такой набор коэффициентов, из которых хотя бы один не равен нулю, что линейная комбинация данной системы векторов с этим набором коэффициентов равна нулевому вектору:

Пусть , тогда

Определение 24 (через представление одного вектора системы в виде линейной комбинации остальных)

Система векторов называетсялинейно зависимой, если хотя бы один из векторов этой системы можно представить в виде линейной комбинации остальных векторов этой системы.

Утверждение 3

Определения 23 и 24 эквивалентны.

Определение 25 (через нулевую линейную комбинацию)

Система векторов называетсялинейно независимой, если нулевая линейная комбинация этой системы возможна лишь при всехравных нулю.

Определение 26 (через невозможность представления одного вектора системы в виде линейной комбинации остальных)

Система векторов называетсялинейно независимой, если не один из векторов этой системы нельзя представить в виде линейной комбинации других векторов этой системы.

Свойства линейно зависимой и независимой систем векторов

Теорема 2 (нулевой вектор в системе векторов)

Если в системе векторов имеется нулевой вектор, то система линейно зависима.

Пусть, тогда.

Получим , следовательно, по определению линейно зависимой системы векторов через нулевую линейную комбинацию(12) система линейно зависима.

Теорема 3 (зависимая подсистема в системе векторов)

Если в системе векторов имеется линейно зависимая подсистема, то и вся система линейно зависима.

 Пусть- линейно зависимая подсистема, среди которых хотя бы одно не равно нулю:

Значит, по определению 23, система линейно зависима. 

Теорема 4

Любая подсистема линейно независимой системы линейно независима.

 От противного. Пусть система линейно независима и в ней имеется линейно зависимая подсистема. Но тогда по теореме 3 вся система будет также линейно зависимой. Противоречие. Следовательно, подсистема линейно независимой системы не может быть линейно зависимой.

Геометрический смысл линейной зависимости и независимости системы векторов

Теорема 5

Два вектора илинейно зависимы тогда и только тогда, когда.

Необходимость.

и- линейно зависимы, что выполняется условие. Тогда, т.е..

Достаточность.

линейно зависимы. 

Следствие 5.1

Нулевой вектор коллинеарен любому вектору

Следствие 5.2

Для того чтобы два вектора были линейно независимы необходимо и достаточно, чтобы был не коллинеарен .

Теорема 6

Для того чтобы система из трёх векторов была линейно зависима необходимо и достаточно, чтобы эти векторы были компланарными.

Необходимость.

Линейно зависимы, следовательно, один вектор можно представить в виде линейной комбинации двух других.

где и. По правилу параллелограммаесть диагональ параллелограмма со сторонами, но параллелограмм – плоская фигуракомпланарны- тоже компланарны.

Достаточность .

Компланарны. Приложим три вектора к точке О:

– линейно зависимы

Следствие 6.1

Нулевой вектор компланарен любой паре векторов.

Следствие 6.2

Для того чтобы векторы были линейно независимы необходимо и достаточно, чтобы они были не компланарны.

Следствие 6.3

Любой вектор плоскости можно представить в виде линейной комбинации любых двух неколлинеарных векторов этой же плоскости.

Теорема 7

Любые четыре вектора в пространстве линейно зависимы.

 Рассмотрим 4 случая:

Проведем плоскость через векторы , затем плоскость через векторы и плоскость через векторы . Затем проведем плоскости, проходящие через точкуD, параллельные парам векторов ; ; соответственно. По линиям пересечения плоскостей строим параллелепипедOB 1 D 1 C 1 ABDC .

Рассмотрим OB 1 D 1 C 1 – параллелограмм по построению по правилу параллелограмма.

Рассмотрим OADD 1 – параллелограмм (из свойства параллелепипеда), тогда

EMBED Equation.3 .

По теореме 1 такие, что. Тогда, и по определению 24 система векторов линейно зависимая. 

Следствие 7.1

Суммой трёх некомпланарных векторов в пространстве является вектор, совпадающий с диагональю параллелепипеда, построенного на этих трёх векторах, приложенных к общему началу, причём начало вектора суммы совпадает с общим началом этих трёх векторов.

Следствие 7.2

Если в пространстве взять 3 некомпланарных вектора, то любой вектор этого пространства можно разложить в линейную комбинацию данных трёх векторов.

Важнейшим понятием в теории линейных пространств является линейная зависимость векторов. Прежде чем определить это понятие, рассмотрим несколько примеров.

Примеры. 1. Дана следующая система трех векторов из пространства Тк:

Легко заметить, что или

2. Возьмем теперь другую систему векторов из

Соотношение, аналогичное равенству (1), для этой системы векторов непосредственно усмотреть затруднительно. Однако нетрудно проверить, что

Коэффициенты 4, -7,5 соотношения (2) можно было бы найти следующим образом. Обозначим их через считая неизвестными, будем решать векторное уравнение:

Произведя указанные операции умножения и сложения и переходя к равенству компонент векторов в (2), получаем однородную систему линейных уравнений относительно

Одним из решений этой системы является:

3. Рассмотрим систему векторов:

Равенство

приводит к системе уравнений, имеющей единственное - нулевое - решение. (Проверьте!) Таким образом, из равенства (3) следует,

что Иначе говоря, равенство (3) выполняется только при

Системы векторов в примерах 1-2 являются линейно зависимыми, система примера 3 - линейно независимой.

Определение 3. Система векторов линейного пространства над полем называется линейно зависимой, если существуют не все равные нулю числа поля Я, такие, что

Если же для векторов равенство имеет место только при то система векторов называется линейно независимой.

Заметим, что свойство линейной зависимости и независимости является свойством системы векторов. Однако в литературе широко используют те же прилагательные в применении непосредственно к самим векторам и говорят, допуская вольность речи, «система линейно независимых векторов» и даже «векторы линейно независимы».

Если в системе имеется всего один вектор а, то при по свойству 6 (§ 2) из следует Значит, система, состоящая из одного ненулевого вектора, линейно независима. Напротив, любая система векторов содержащая нулевой вектор 0, линейно зависима. Например, если то

Если система двух векторов линейно зависима, то имеет место равенство при (или . Тогда

т. е. векторы пропорциональны. Верно и обратное, так как из следует Значит, система двух векторов линейно зависима тогда и только тогда, когда векторы пропорциональны.

Пропорциональные векторы из лежат на одной прямой; в связи с этим и в общем случае пропорциональные векторы иногда называют коллинеарными.

Отметим некоторые свойства линейной зависимости векторов.

Свойство 1. Система векторов, содержащая линейно зависимую подсистему, линейно зависима.

Пусть линейно зависима подсистема

Тогда существуют не все равные нулю числа такие, что

Добавив в левую часть этого равенства остальные векторы данной системы с нулевыми коэффициентами, получим требуемое.

Из свойства 1 следует, что всякая подсистема линейно независимой системы векторов линейно независима.

Свойство 2. Если система векторов

линейно независима, а система векторов

линейно зависима, то вектор линейно выражается через векторы системы (4).

Так как система векторов (5) линейно зависима, то существуют не все равные нулю числа такие, что

Если то и тогда ненулевые коэффициенты будут среди что означало бы линейную зависимость системы (4). Значит, и

Свойство 3. Упорядоченная система ненулевых векторов

линейно зависима тогда и только тогда, когда некоторый вектор является линейной комбинацией предшествующих векторов.

Пусть система линейно зависима. Так как то вектор линейно независим. Обозначим через наименьшее натуральное число, при котором система линейно зависима. (Такое существует: в крайнем случае, если системы линейно независимы, то Тогда существуют не все равные нулю числа такие, что выполняется равенство

Если бы то ненулевые коэффициенты были бы среди и выполнялось бы равенство

что означало бы линейную зависимость системы но это противоречило бы выбору числа Значит, и потому

Обратно, из равенства (7) по свойству 1 следует линейная зависимость системы

Из свойства 3 легко следует, что система векторов тогда и только тогда линейно зависима, когда хотя бы один ее вектор линейно выражается через остальные. В этом смысле и говорят, что понятие линейной зависимости эквивалентно понятию линейной выражаемости.

Свойство 4. Если вектор х линейно выражается через векторы системы

а вектор линейно выражается через остальные векторы системы (8), то вектор также линейно выражается через эти векторы системы (8).

В самом деле,

Теперь можно доказать одну из важнейших теорем о линейной зависимости векторов.

Теорема 1. Если каждый вектор линейно независимой системы

есть линейная комбинация векторов

то Другими словами, в линейно независимой системе векторов, являющихся линейными комбинациями векторов число векторов не может быть больше

Доказательство. 1-й шаг. Построим систему

По условию каждый вектор системы (9), в частности вектор линейно выражается через векторы (10), а потому система (11) линейно зависима. По свойству 3 в системе (11) некоторый вектор где линейно выражается через предшествующие векторы, а потому и через векторы системы

полученной из (11) удалением вектора Отсюда по свойству 4 имеем: каждый вектор системы (9) линейно выражается через векторы системы (12).

2-й шаг. Применяя те же рассуждения, что и на шаге, к системам векторов

и (12) и учитывая, что система векторов линейно независима, мы получим систему векторов

через которые линейно выражаются все векторы системы (9).

Если допустить, что то, продолжая этот процесс, мы через шагов исчерпаем все векторы и получим систему

такую, что каждый вектор системы (9), в частности линейно выражается через векторы системы (14). Тогда система (9) оказывается линейно зависимой, что противоречит условию. Остается принять, что

Рассмотрим теперь, что означает линейная зависимость векторов в различных пространствах.

1. Пространство Если система двух векторов линейно зависима, то или т. е. векторы коллинеарны. Верно и обратное. Система трех векторов пространства линейно зависима тогда и только тогда, когда они лежат в одной плоскости. (Докажите!) Система четырех векторов пространства всегда линейно зависима. В самом деле, если какая-либо подсистема нашей системы линейно зависима, то и вся система линейно зависима. Если же никакая собственная подсистема не является линейно зависимой, то по предыдущему это означает, что никакие три вектора нашей системы не лежат на одной плоскости. Тогда из геометрических соображений следует существование вещественных чисел таких, что параллелепипед с ребрами-векторами будет иметь диагональ т. е. в равенстве

error: