Что значит иррациональное число? Иррациональные числа, определение, примеры.

Понимание чисел, особенно натуральных чисел, является одним из старейших математических "умений". Многие цивилизации, даже современные, приписывали числам некие мистические свойства ввиду их огромной важности в описании природы. Хотя современная наука и математика не подтверждают эти "волшебные" свойства, значение теории чисел неоспоримо.

Исторически сначала появилось множество натуральных чисел, затем довольно скоро к ним добавились дроби и положительные иррациональные числа. Ноль и отрицательные числа были введены после этих подмножеств множества действительных чисел. Последнее множество, множество комплексных чисел, появилось только с развитием современной науки.

В современной математике числа вводят не в историческом порядке, хотя и в довольно близком к нему.

Натуральные числа $\mathbb{N}$

Множество натуральных чисел часто обозначается как $\mathbb{N}=\lbrace 1,2,3,4... \rbrace $, и часто его дополняют нулем, обозначая $\mathbb{N}_0$.

В $\mathbb{N}$ определены операции сложения (+) и умножения ($\cdot$) со следующими свойствами для любых $a,b,c\in \mathbb{N}$:

1. $a+b\in \mathbb{N}$, $a\cdot b \in \mathbb{N}$ множество $\mathbb{N}$ замкнуто относительно операций сложения и умножения
2. $a+b=b+a$, $a\cdot b=b\cdot a$ коммутативность
3. $(a+b)+c=a+(b+c)$, $(a\cdot b)\cdot c=a\cdot (b\cdot c)$ ассоциативность
4. $a\cdot (b+c)=a\cdot b+a\cdot c$ дистрибутивность
5. $a\cdot 1=a$ является нейтральным элементом для умножения

Поскольку множество $\mathbb{N}$ содержит нейтральный элемент для умножения, но не для сложения, добавление нуля к этому множеству обеспечивает включение в него нейтрального элемента для сложения.

Кроме этих двух операций, на множестве $\mathbb{N}$ определены отношения "меньше" ($

1. $a b$ трихотомия
2. если $a\leq b$ и $b\leq a$, то $a=b$ антисимметрия
3. если $a\leq b$ и $b\leq c$, то $a\leq c$ транзитивность
4. если $a\leq b$, то $a+c\leq b+c$
5. если $a\leq b$, то $a\cdot c\leq b\cdot c$

Целые числа $\mathbb{Z}$

Примеры целых чисел:
$1, -20, -100, 30, -40, 120...$

Решение уравнения $a+x=b$, где $a$ и $b$ - известные натуральные числа, а $x$ - неизвестное натуральное число, требует введения новой операции - вычитания(-). Если существует натуральное число $x$, удовлетворяющее этому уравнению, то $x=b-a$. Однако, это конкретное уравнение не обязательно имеет решение на множестве $\mathbb{N}$, поэтому практические соображения требуют расширения множества натуральных чисел таким образом, чтобы включить решения такого уравнения. Это приводит к введению множества целых чисел: $\mathbb{Z}=\lbrace 0,1,-1,2,-2,3,-3...\rbrace$.

Поскольку $\mathbb{N}\subset \mathbb{Z}$, логично предположить, что введенные ранее операции $+$ и $\cdot$ и отношения $ 1. $0+a=a+0=a$ существует нейтральный элемент для сложения
2. $a+(-a)=(-a)+a=0$ существует противоположное число $-a$ для $a$

Свойство 5.:
5. если $0\leq a$ и $0\leq b$, то $0\leq a\cdot b$

Множество $\mathbb{Z} $ замкнуто также и относительно операции вычитания, то есть $(\forall a,b\in \mathbb{Z})(a-b\in \mathbb{Z})$.

Рациональные числа $\mathbb{Q}$

Примеры рациональных чисел:
$\frac{1}{2}, \frac{4}{7}, -\frac{5}{8}, \frac{10}{20}...$

Теперь рассмотрим уравнения вида $a\cdot x=b$, где $a$ и $b$ - известные целые числа, а $x$ - неизвестное. Чтобы решение было возможным, необходимо ввести операцию деления ($:$), и решение приобретает вид $x=b:a$, то есть $x=\frac{b}{a}$. Опять возникает проблема, что $x$ не всегда принадлежит $\mathbb{Z}$, поэтому множество целых чисел необходимо расширить. Таким образом вводится множество рациональных чисел $\mathbb{Q}$ с элементами $\frac{p}{q}$, где $p\in \mathbb{Z}$ и $q\in \mathbb{N}$. Множество $\mathbb{Z}$ является подмножеством, в котором каждый элемент $q=1$, следовательно $\mathbb{Z}\subset \mathbb{Q}$ и операции сложения и умножения распространяются и на это множество по следующим правилам, которые сохраняют все вышеперечисленные свойства и на множестве $\mathbb{Q}$:
$\frac{p_1}{q_1}+\frac{p_2}{q_2}=\frac{p_1\cdot q_2+p_2\cdot q_1}{q_1\cdot q_2}$
$\frac{p-1}{q_1}\cdot \frac{p_2}{q_2}=\frac{p_1\cdot p_2}{q_1\cdot q_2}$

Деление вводится таким образом:
$\frac{p_1}{q_1}:\frac{p_2}{q_2}=\frac{p_1}{q_1}\cdot \frac{q_2}{p_2}$

На множестве $\mathbb{Q}$ уравнение $a\cdot x=b$ имеет единственное решение для каждого $a\neq 0$ (деление на ноль не определено). Это значит, что существует обратный элемент $\frac{1}{a}$ or $a^{-1}$:
$(\forall a\in \mathbb{Q}\setminus\lbrace 0\rbrace)(\exists \frac{1}{a})(a\cdot \frac{1}{a}=\frac{1}{a}\cdot a=a)$

Порядок множества $\mathbb{Q}$ можно расширить таким образом:
$\frac{p_1}{q_1}

Множество $\mathbb{Q}$ имеет одно важное свойство: между любыми двумя рациональными числами находится бесконечно много других рациональных чисел, следовательно, не существует двух соседних рациональных чисел, в отличие от множеств натуральных и целых чисел.

Иррациональные числа $\mathbb{I}$

Примеры иррациональных чисел:
$0.333333...$
$\sqrt{2} \approx 1.41422135...$
$\pi \approx 3.1415926535...$

Ввиду того, что между любыми двумя рациональными числами находится бесконечно много других рациональных чисел, легко можно сделать ошибочный вывод, что множество рациональных чисел настолько плотное, что нет необходимости в его дальнейшем расширении. Даже Пифагор в свое время сделал такую ошибку. Однако, уже его современники опровергли этот вывод при исследовании решений уравнения $x\cdot x=2$ ($x^2=2$) на множестве рациональных чисел. Для решения такого уравнения необходимо ввести понятие квадратного корня, и тогда решение этого уравнения имеет вид $x=\sqrt{2}$. Уравнение типа $x^2=a$, где $a$ - известное рациональное число, а $x$ - неизвестное, не всегда имеет решение на множестве рациональных чисел, и опять возникает необходимость в расширении множества. Возникает множество иррациональных чисел, и такие числа как $\sqrt{2}$, $\sqrt{3}$, $\pi$... принадлежат этому множеству.

Действительные числа $\mathbb{R}$

Объединением множеств рациональных и иррациональных чисел является множество действительных чисел. Поскольку $\mathbb{Q}\subset \mathbb{R}$, снова логично предположить, что введенные арифметические операции и отношения сохраняют свои свойства на новом множестве. Формальное доказательство этого весьма сложно, поэтому вышеупомянутые свойства арифметических операций и отношения на множестве действительных чисел вводятся как аксиомы. В алгебре такой объект называется полем, поэтому говорят, что множество действительных чисел является упорядоченным полем.

Для того, чтобы определение множества действительных чисел было полным, необходимо ввести дополнительную аксиому, различающую множества $\mathbb{Q}$ и $\mathbb{R}$. Предположим, что $S$ - непустое подмножество множества действительных чисел. Элемент $b\in \mathbb{R}$ называется верхней границей множества $S$, если $\forall x\in S$ справедливо $x\leq b$. Тогда говорят, что множество $S$ ограничено сверху. Наименьшая верхняя граница множества $S$ называется супремум и обозначается $\sup S$. Аналогично вводятся понятия нижней границы, множества, ограниченного снизу, и инфинума $\inf S$ . Теперь недостающая аксиома формулируется следующим образом:

Любое непустое и ограниченное сверху подмножество множества действительных чисел имеет супремум.
Также можно доказать, что поле действительных чисел, определенное вышеуказанным образом, является единственным.

Комплексные числа$\mathbb{C}$

Примеры комплексных чисел:
$(1, 2), (4, 5), (-9, 7), (-3, -20), (5, 19),...$
$1 + 5i, 2 - 4i, -7 + 6i...$ где $i = \sqrt{-1}$ или $i^2 = -1$

Множество комплексных чисел представляет собой все упорядоченные пары действительных чисел, то есть $\mathbb{C}=\mathbb{R}^2=\mathbb{R}\times \mathbb{R}$, на котором операции сложения и умножения определены следующим образом:
$(a,b)+(c,d)=(a+b,c+d)$
$(a,b)\cdot (c,d)=(ac-bd,ad+bc)$

Существует несколько форм записи комплексных чисел, из которых самая распространенная имеет вид $z=a+ib$, где $(a,b)$ - пара действительных чисел, а число $i=(0,1)$ называется мнимой единицей.

Легко показать, что $i^2=-1$. Расширение множества $\mathbb{R}$ на множество $\mathbb{C}$ позволяет определить квадратный корень из отрицательных чисел, что и послужило причиной введения множества комплексных чисел. Также легко показать, что подмножество множества $\mathbb{C}$, заданное как $\mathbb{C}_0=\lbrace (a,0)|a\in \mathbb{R}\rbrace$, удовлетворяет всем аксиомам для действительных чисел, следовательно $\mathbb{C}_0=\mathbb{R}$, или $R\subset\mathbb{C}$.

Алгебраическая структура множества $\mathbb{C}$ относительно операций сложения и умножения имеет следующие свойства:
1. коммутативность сложения и умножения
2. ассоциативность сложения и умножения
3. $0+i0$ - нейтральный элемент для сложения
4. $1+i0$ - нейтральный элемент для умножения
5. умножение дистрибутивно по отношению к сложению
6. существует единственный обратный элемент как для сложения, так и для умножения.

Натуральные числа

Натуральные числа определение - это целые положительные числа. Натуральные числа используют для счета предметов и многих иных целей. Вот эти числа:

Это натуральный ряд чисел.
Ноль натуральное число? Нет, ноль не является натуральным числом.
Сколько натуральных чисел существует? Существует бесконечное множество натуральных чисел.
Каково наименьшее натуральное число? Единица - это наименьшее натуральное число.
Каково наибольшее натуральное число? Его невозможно указать, ведь существует бесконечное множество натуральных чисел.

Сумма натуральных чисел есть натуральное число. Итак, сложение натуральных чисел a и b:

Произведение натуральных чисел есть натуральное число. Итак, произведение натуральных чисел a и b:

с - это всегда натуральное число.

Разность натуральных чисел Не всегда есть натуральное число. Если уменьшаемое больше вычитаемого, то разность натуральных чисел есть натуральное число, иначе - нет.

Частное натуральных чисел Не всегда есть натуральное число. Если для натуральных чисел a и b

где с - натуральное число, то это значит, что a делится на b нацело. В этом примере a - делимое, b - делитель, c - частное.

Делитель натурального числа - это натуральное число, на которое первое число делится нацело.

Каждое натуральное число делится на единицу и на себя.

Простые натуральные числа делятся только на единицу и на себя. Здесь имеется ввиду делятся нацело. Пример, числа 2; 3; 5; 7 делятся только на единицу и на себя. Это простые натуральные числа.

Единицу не считают простым числом.

Числа, которые больше единицы и которые не являются простыми, называют составными. Примеры составных чисел:

Единицу не считают составным числом.

Множество натуральных чисел составляют единица, простые числа и составные числа.

Множество натуральных чисел обозначается латинской буквой N.

Свойства сложения и умножения натуральных чисел:

переместительное свойство сложения

сочетательное свойство сложения

(a + b) + c = a + (b + c);

переместительное свойство умножения

сочетательное свойство умножения

(ab) c = a (bc);

распределительное свойство умножения

A (b + c) = ab + ac;

Целые числа

Целые числа - это натуральные числа, ноль и числа, противоположные натуральным.

Числа, противоположные натуральным - это целые отрицательные числа, например:

1; -2; -3; -4;...

Множество целых чисел обозначается латинской буквой Z.

Рациональные числа

Рациональные числа - это целые числа и дроби.

Любое рациональное число может быть представлено в виде периодической дроби. Примеры:

1,(0); 3,(6); 0,(0);...

Из примеров видно, что любое целое число есть периодическая дробь с периодом ноль.

Любое рациональное число может быть представлено в виде дроби m/n, где m целое число,n натуральное число. Представим в виде такой дроби число 3,(6) из предыдущего примера.

Множество всех натуральных чисел обозначают буквой N. Натуральные числа, это числа которые мы используем для счета предметов: 1,2,3,4, … В некоторых источниках, к натуральным числам относят также число 0.

Множество всех целых чисел обозначается буквой Z. Целые числа это все натуральные числа, нуль и отрицательные числа:

1,-2,-3, -4, …

Теперь присоединим к множеству всех целых чисел множество всех обыкновенных дробей: 2/3, 18/17, -4/5 и та далее. Тогда мы получим множество всех рациональных чисел.

Множество рациональных чисел

Множество всех рациональных чисел обозначается буквой Q. Множество всех рациональных чисел (Q) - это множество, состоящее из чисел вида m/n, -m/n и числа 0. В качестве n,m может выступать любое натуральное число. Следует отметить, что все рациональные числа, можно представить в виде конечной или бесконечной ПЕРЕОДИЧЕСКОЙ десятичной дроби. Верно и обратное, что любую конечную или бесконечную периодическую десятичную дробь можно записать в виде рационального числа.

А как же быть например с числом 2.0100100010… ? Оно является бесконечно НЕПЕРЕОДИЧСЕКОЙ десятичной дробью. И оно не относится к рациональным числам.

В школьном курсе алгебры изучаются только вещественные (или действительные) числа. Множество всех действительных чисел обозначается буквой R. Множество R состоит из всех рациональных и всех иррациональных чисел.

Понятие иррациональных чисел

Иррациональные числа - это все бесконечные десятичные непериодические дроби. Иррациональные числа не имеют специального обозначения.

Например, все числа полученные извлечением квадратного корня из натуральных чисел, не являющихся квадратами натуральных чисел - будут иррациональными. (√2, √3, √5, √6, и т.д.).

Но не стоит думать, что иррациональные числа получаются только извлечением квадратных корней. Например, число «пи» тоже является иррациональным, а оно получено делением. И как вы не старайтесь, вы не сможете получить его, извлекая квадратный корень из любого натурального числа.

С отрезком единичной длины, знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа .

Иррациональными являются:

Примеры доказательства иррациональности

Корень из 2

Допустим противное: рационален , то есть представляется в виде несократимой дроби , где и - целые числа . Возведём предполагаемое равенство в квадрат:

.

Отсюда следует, что чётно, значит, чётно и . Пускай , где целое. Тогда

Следовательно, чётно, значит, чётно и . Мы получили, что и чётны, что противоречит несократимости дроби . Значит, исходное предположение было неверным, и - иррациональное число.

Двоичный логарифм числа 3

Допустим противное: рационален , то есть представляется в виде дроби , где и - целые числа . Поскольку , и могут быть выбраны положительными. Тогда

Но чётно, а нечётно. Получаем противоречие.

e

История

Концепция иррациональных чисел была неявным образом воспринята индийскими математиками в VII веке до нашей эры, когда Манава (ок. 750 г. до н. э. - ок. 690 г. до н. э.) выяснил, что квадратные корни некоторых натуральных чисел, таких как 2 и 61, не могут быть явно выражены.

Первое доказательство существования иррациональных чисел обычно приписывается Гиппасу из Метапонта (ок. 500 гг. до н. э.), пифагорейцу , который нашёл это доказательство, изучая длины сторон пентаграммы. Во времена пифагорейцев считалось, что существует единая единица длины, достаточно малая и неделимая, которая целое число раз входит в любой отрезок. Однако Гиппас обосновал, что не существует единой единицы длины, поскольку предположение о её существовании приводит к противоречию. Он показал, что если гипотенуза равнобедренного прямоугольного треугольника содержит целое число единичных отрезков, то это число должно быть одновременно и четным, и нечетным. Доказательство выглядело следующим образом:

  • Отношение длины гипотенузы к длине катета равнобедренного прямоугольного треугольника может быть выражено как a :b , где a и b выбраны наименьшими из возможных.
  • По теореме Пифагора: a ² = 2b ².
  • Так как a ² четное, a должно быть четным (так как квадрат нечетного числа был бы нечетным).
  • Поскольку a :b несократима, b обязано быть нечетным.
  • Так как a четное, обозначим a = 2y .
  • Тогда a ² = 4y ² = 2b ².
  • b ² = 2y ², следовательно b ² четное, тогда и b четно.
  • Однако было доказано, что b нечетное. Противоречие.

Греческие математики назвали это отношение несоизмеримых величин алогос (невыразимым), однако согласно легендам не воздали Гиппасу должного уважения. Существует легенда, что Гиппас совершил открытие, находясь в морском походе, и был выброшен за борт другими пифагорейцами «за создание элемента вселенной, который отрицает доктрину, что все сущности во вселенной могут быть сведены к целым числам и их отношениям». Открытие Гиппаса поставило перед пифагорейской математикой серьёзную проблему, разрушив лежавшее в основе всей теории предположение, что числа и геометрические объекты едины и неразделимы.

См. также

Примечания

Инструкция

Прежде чем избавиться от иррациональности в знаменателе , следует ее тип, и в зависимости от этого продолжать решение. И хотя любая иррациональность следует из простого присутствия , различные их комбинации и степени предполагают разные алгоритмы.

Наличие под чертой дроби корня дробной степени вида m/n, причем n>mЭто выражение выглядит следующим образом:a/√(b^m/n).

Избавьтесь от подобной иррациональности также путем ввода множителя, на этот раз более сложного: b^(n-m)/n, т.е. из показателя степени самого корня нужно степень выражения под его знаком. Тогда в знаменателе останется только :a/(b^m/n) → a √(b^(n-m)/n)/b.Пример 2: 5/(4^3/5) → 5 √(4^2/5)/4 = 5 √(16^1/5)/4.

Сумма квадратных корнейУмножьте обе составляющих дроби на аналогичную разность. Тогда из иррационального сложения корней знаменатель преобразуется в / под знаком корня:a/(√b + √c) → a (√b - √c)/(b - c).Пример 3: 9/(√13 + √23) → 9 (√13 - √23)/(13 - 23) = 9 (√23 - √13)/10.

Сумма/разность кубических корнейВыберите в качестве дополнительного множителя неполный квадрат разности, если в знаменателе стоит сумма, и соответственно неполный квадрат суммы для разности корней:a/(∛b ± ∛c) → a (∛b² ∓ ∛(b c) + ∛c²)/ ((∛b ± ∛c) ∛b² ∓ ∛(b c) + ∛c²) →a (∛b² ∓ ∛(b c) + ∛c²)/(b ± c).Пример 4: 7/(∛5 + ∛4) → 7 (∛25- ∛20 + ∛16)/9.

Если в задаче присутствует и квадратный и , тогда разделите решение на два этапа: последовательно выведите из знаменателя квадратный корень, а затем кубический. Делается это по уже известным вам методам: в первом действии нужно выбрать множитель разности/суммы корней, во втором – неполный квадрат суммы/разности.

Видео по теме

Источники:

  • как избавиться от иррациональности в дроби

Совет 2: Как избавиться от иррациональности в знаменателе

Корректная запись дробного числа не содержит иррациональности в знаменателе . Такая запись и легче воспринимается на вид, поэтому при появлении иррациональности в знаменателе разумно от нее избавиться. В этом случае иррациональность может перейти в числитель.

Инструкция

Для начала можно рассмотреть простейший - 1/sqrt(2). Квадратный корень из двух - число в .В этом случае необходимо домножить числитель и знаменатель на ее знаменатель. Это обеспечит в знаменателе . Действительно, sqrt(2)*sqrt(2) = sqrt(4) = 2. Умножение двух одинаковых квадратных корней друг на друга даст в итоге то, что находится под каждым из корней: в данном случае - двойку.В итоге: 1/sqrt(2) = (1*sqrt(2))/(sqrt(2)*sqrt(2)) = sqrt(2)/2. Этот алгоритм подходит также к дробям, в знаменателе которых корень умножается на рациональное число. Числитель и знаменатель в этом случае нужно умножить на корень, находящийся в знаменателе .Пример: 1/(2*sqrt(3)) = (1*sqrt(3))/(2*sqrt(3)*sqrt(3)) = sqrt(3)/(2*3) = sqrt(3)/6.

Абсолютно аналогично нужно действовать, если в знаменателе находится не корень, а, скажем кубический или любой другой степени. Корень в знаменателе нужно умножать на точно такой же корень, на этот же корень умножать и числитель. Тогда корень перейдет в числитель.

В более случае в знаменателе присутствует сумма или иррационального и или двух иррациональных чисел.В случае суммы (разности) двух квадратных корней или квадратного корня и рационального числа можно воспользоваться хорошо известной формулой (x+y)(x-y) = (x^2)-(y^2). Она поможет избавиться от в знаменателе . Если в знаменателе разность, то домножать числитель и знаменатель нужно на сумму таких же чисел, если сумма - то на разность. Эта домножаемая сумма или разность будет называться сопряженной к выражению, стоящему в знаменателе .Эффект этой хорошо виден на примере: 1/(sqrt(2)+1) = (sqrt(2)-1)/(sqrt(2)+1)(sqrt(2)-1) = (sqrt(2)-1)/((sqrt(2)^2)-(1^2)) = (sqrt(2)-1)/(2-1) = sqrt(2)-1.

Если в знаменателе присутствует сумма (разность), в которой присутствует корень большей степени, то ситуация становится нетривиальной и избавление от иррациональности в знаменателе не всегда возможно

Источники:

  • избавиться от корня в знаменателе в 2019

Совет 3: Как освободиться от иррациональности в знаменателе дроби

Дробь состоит из числителя, расположенного сверху линии, и знаменателя, на который он делится, расположенного внизу. Иррациональным называется число, которое не может быть представлено в виде дроби с целым числом в числителе и натуральным в знаменателе . Такими числами являются, например, квадратный корень из двух или пи. Обычно, когда говорят об иррациональности в знаменателе , подразумевается корень.

Инструкция

Избавьтесь от умножением на знаменатель. Таким образом будет перенесена в числитель. При умножении числителя и знаменателя на одно и то же число, значение дроби не меняется. Воспользуйтесь этим вариантом, если весь знаменатель представляет собой корень.

Умножьте числитель и знаменатель на знаменатель нужное число раз, в зависимости от корня. Если корень квадратный, то один раз.

Умножьте числитель и знаменатель дроби на знаменатель, то есть на √(x+2). Изначальный пример (56-y)/√(x+2) превратится в ((56-y)*√(x+2))/(√(x+2)*√(x+2)). В итоге получится ((56-y)*√(x+2))/(x+2). Теперь корень находится в числителе, а в знаменателе нет иррациональности .

Умножьте знаменатель на сумму корней. Умножьте на то же самое числитель, чтобы значение дроби не изменилось. Дробь примет вид ((56-y)*(√(x+2)+√y))/((√(x+2)-√y)*(√(x+2)+√y)).

Воспользуйтесь вышеупомянутым свойством (x+y)*(x-y)=x²-y² и освободите знаменатель от иррациональности . В результате получится ((56-y)*(√(x+2)+√y))/(x+2-y). Теперь корень находится в числителе, а знаменатель избавился от иррациональности .

В сложных случаях повторяйте оба этих варианта, применяя по необходимости. Учтите, что не всегда возможно избавиться от иррациональности в знаменателе .

Источники:

Алгебраическая дробь - это выражение вида А/В, где буквы А и В обозначают любые числовые или буквенные выражения. Зачастую числитель и знаменатель в алгебраических дробях имеют громоздкий вид, но действия с такими дробями следует совершать по тем же правилам, что и действия с обыкновенными, где числитель и знаменатель - целые положительные числа.

Инструкция

Если даны дроби , переведите их (дробь, в которой числитель больше знаменателя): умножьте знаменатель на целую часть и прибавьте числитель. Так число 2 1/3 превратится в 7/3. Для этого 3 умножают на 2 и прибавляют единицу.

Если надо перевести дробь в неправильную, то представьте ее как числа без запятой на единицу со столькими нулями, сколько чисел стоит после запятой. Например, число 2,5 представьте как 25/10 (если сократить, то получится 5/2), а число 3,61 - как 361/100. Оперировать с неправильными зачастую легче, чем со смешанными или десятичными.

Если надо или вычесть одну дробь из другой, а они имеют разные знаменатели, приведите дроби к общему знаменателю. Для этого найдите число, которое будет наименьшим общим кратным (НОК) обоим знаменателям или нескольким, если дробей больше двух. НОК - это число, которое разделится на знаменатели всех данных дробей. К примеру, для 2 и 5 это число 10.

После знака «равно» проведите горизонтальную черту и запишите в знаменатель это число (НОК). Проставьте к каждому слагаемому дополнительные множители - то число, на которое надо домножить и числитель, и знаменатель, чтобы получить НОК. Последовательно умножайте числители на дополнительные множители, сохраняя знак сложения или вычитания.

Посчитайте результат, сократите его при необходимости или выделите целую часть. Для примера - необходимо сложить ⅓ и ¼. НОК для обеих дробей - 12. Тогда дополнительный множитель к первой дроби - 4, ко второй - 3. Итого: ⅓+¼=(1·4+1·3)/12=7/12.

Если дан на умножение, перемножьте между собой числители (это будет числитель результата) и знаменатели (получится знаменатель результата). В этом случае к общему знаменателю их приводить не надо.

Раскладывайте числитель и знаменатель на множители, если это требуется. Например, выносите общий множитель за скобку или раскладывайте по формулам сокращённого умножения, чтобы затем можно было при необходимости сократить числитель и знаменатель на НОД - наименьший общий делитель.

Обратите внимание

Числа складывайте с числами, буквы одного рода с буквами того же рода. Например, нельзя сложить 3a и 4b, значит в числителе так и останется их сумма или разность - 3a±4b.

Источники:

  • Умножение и деление дробей

В быту чаще всего встречаются не натуральные числа: 1, 2, 3, 4 и т.д. (5 кг. картофеля), а дробные, нецелые числа (5,4 кг лука). Большинство из них представлены в виде десятичных дробей. Но десятичную дробь представить в виде дроби достаточно просто.

Инструкция

Например, дано число "0,12". Если не эту дробь и представить ее так, как есть, то выглядеть она будет так: 12/100 ("двенадцать "). Чтобы избавиться от сотни в , нужно и числитель, и знаменатель поделить на число, которое делит их числа. Это число 4. Тогда, поделив числитель и знаменатель, получается число: 3/25.

Если рассматривать более бытовую , то часто на ценнике у видно, что вес его составляет, к примеру, 0,478 кг или пр. Такое число тоже легко представить в виде дроби :
478/1000 = 239/500. Дробь эта достаточно некрасивая, и если бы была возможность, то эту десятичную дробь можно было бы сокращать и далее. И все тем же методом: подбора числа, которое делит как числитель, так и знаменатель. Это число наибольшим общим множителем. "Наибольшим" множитель потому, что гораздо удобнее и числитель, и знаменатель сразу поделить на 4 (как в первом примере), чем делить дважды на 2.

error: