Что такое наклонная проведенная. Свойства наклонных

ТРЕУГОЛЬНИКИ.

§ 31.ПЕРПЕНДИКУЛЯР И НАКЛОННАЯ К ПРЯМОЙ.

1. Проекция отрезка на прямую.

Если через какую-нибудь точку, взятую вне прямой, провести прямую, перпендикулярную к ней, то отрезок от данной точки до прямой для краткости называют одним словом перпендикуляр .

Отрезок СО - перпендикуляр к прямой АВ. Точка О называется основанием перпендикуляра СО (черт. 168).

Если прямая, проведённая через данную точку, пересекает другую прямую, но не перпендикулярна к ней, то отрезок её от данной точки до точки пересечения с другой прямой называют наклонной к этой прямой.

Отрезок ВС - наклонная к прямой АО. Точка С называется основанием наклонной (черт. 169).

Если из концов какого-нибудь отрезка опустим перпендикуляры на произвольную прямую, то отрезок прямой, заключённый между основаниями перпендикуляров, называется проекцией отрезка на эту прямую.

Отрезок А"В" - проекция отрезка АВ на ЕС. Отрезок ОМ" - также называется проекцией отрезка ОМ на ЕС.

Проекцией отрезка КР, перпендикулярного к ЕС, будет точка К" (черт. 170).

2. Свойства перпендикуляра и наклонных.

Теорема 1. Перпендикуляр, проведённый из какой-нибудь точки к прямой, меньше всякой наклонной, проведённой из той же точки к этой прямой.

Отрезок АС (черт. 171) является перпендикуляром к прямой ОВ, а АМ - одна из наклонных, проведённых из точки А к прямой ОВ. Требуется доказать, что АМ > АС.

В /\ МАС отрезок АМ является гипотенузой, а гипотенуза больше каждого из катетов этого треугольника (§ 30). Следовательно, АМ > АС. Так как наклонная АМ взята нами произвольно, то можно утверждать, что всякая наклонная к прямой больше перпендикуляра к этой прямой (а перпендикуляр короче всякой наклонной), если они проведены к ней из одной и той же точки.

Верно и обратное утверждение, а именно: если отрезок АС (черт. 171) меньше всякого другого отрезка, соединяющего точку АС любой точкой прямой ОВ, то он является перпендикуляром к ОВ. В самом деле, отрезок АС не может быть наклонной к ОВ, так как тогда он не был бы самым коротким из отрезков, соединяющих точку А с точками прямой ОВ. Значит, он может быть только перпендикуляром к ОВ.

Длина перпендикуляра, опущенного из данной точки на прямую, принимается за расстояние от данной точки до этой прямой.

Теорема 2. Если две наклонные, проведённые к прямой из одной и той же точки, равны, то равны и их проекции.

Пусть ВА и ВС - наклонные, проведённые из точки В к прямой АС (черт. 172), причём АВ = ВС. Нужно доказать, что равны и их проекции.

Для доказательства опустим из точки В перпендикуляр ВО на АС. Тогда АО и ОС будут проекции наклонных АВ и ВС на прямую АС. Треугольник АВС равнобедренный по условию теоремы. ВО - высота этого треугольника. Но высота в равнобедренном треугольнике, проведённая к основанию, является в то же время и медианой этого треугольника (§ 18).

Поэтому АО = ОС.

Теорема 3 (обратная). Если две наклонные, проведённые к прямой из одной и той же точки, имеют равные проекции, то они равны между собой.

Пусть АС и СВ - наклонные к прямой АВ (черт. 173). СО_|_ АВ и АО = ОВ.

Требуется доказать, что АС = ВС.

В прямоугольных треугольниках АОС и ВОС катеты АО и ОВ равны. СО - общий катет этих треугольников. Следовательно, /\ AOС = /\ ВОС. Из равенcтва треугольников вытекает, что АС = ВС.

Теорема 4. Если из одной и той же точки проведены к прямой две наклонные, то та из них больше, которая имеет большую проекцию на эту прямую.

Пусть АВ и ВС - наклонные к прямой АО; ВО_|_АО и АО>СО. Требуется доказать, что АВ > ВС.

1) Наклонные расположены по одну сторону перпендикуляра.

Угол АСЕ внешний по отношению к прямоугольному треугольнику СОВ (черт. 174), а поэтому / АСВ > / СОВ, т. е. он тупой. Отсюда следует, что АВ > СВ.

2) Наклонные расположены по обе стороны перпендикуляра. Для доказательства отложим на АО от точки О отрезок ОК = ОС и соединим точку К с точкой В (черт. 175). Тогда по теореме 3 имеем: ВК = ВС, но АВ > ВК, следовательно, АВ > ВС, т. е. теорема справедлива и в этом случае.

Теорема 5 (обратная). Если из одной и той же точки проведены к прямой две наклонные, то большая наклонная имеет и большую проекцию на эту прямую.

Пусть КС и ВС - наклонные к прямой КВ (черт. 176), СО_|_КВ и КС > ВС. Требуется доказать, что КО > ОВ.

Между отрезками КО и ОВ может быть только одно из трёх соотношений:

1) КО < ОВ,
2) КО = ОВ,
3) КО > ОВ.

КО не может быть меньше ОВ, так как тогда по теореме 4 наклонная КС была бы меньше наклонной ВС, а это противоречит условию теоремы.

Точно так же КО не может равняться ОВ, так как в этом случае по теореме 3 КС = ВС, что также противоречит условию теоремы.

Следовательно, остаётся верным только последнее соотношение, а именно, что
КО > ОВ.

Теорема . Если из одной точки вне плоскости проведены перпендикуляр и наклонные, то:

1) наклонные, имеющие равные проекции, равны;

2) из двух наклонных больше та, проекция которой больше;

3) равные наклонные имеют равные проекции;

4) из двух проекций больше та, которая соответствует большей наклонной.

Теорема о трех перпендикулярах . Для того чтобы прямая, лежащая в плоскости, была перпендикулярна наклонной, необходимо и достаточно, чтобы эта прямая была перпендикулярна проекции наклонной (рис. 12.3).

Теорема о площади ортогональной проекции многоугольника на плоскость. Площадь ортогональной проекции многоугольника на плоскость равна произведению площади многоугольника на косинус угла между плоскостью многоугольника и плоскостью проекции.

Пример 1 . Через данную точку провести прямую, параллельную данной плоскости.

Решение. Анализ. Предположим, что прямая построена (рис. 12.4). Прямая параллельна плоскости, если она параллельна какой-нибудь прямой, лежащей в плоскости (по признаку параллельности прямой и плоскости). Две параллельные прямые лежат в одной плоскости. Значит, построив плоскость, проходящую через данную точку и произвольную прямую в данной плоскости, можно будет построить параллельную прямую.

Построение.

1. На плоскости проводим прямую а .

3. В плоскости через точку А проведем прямую b , параллельную прямой а .

4. Построена прямая b , параллельная плоскости .

Доказательство. По признаку параллельности прямой и плоскости прямая b параллельна плоскости , так как она параллельна прямой а , принадлежащей плоскости .

Исследование. Задача имеет бесконечное множество решений, так как прямая а в плоскости выбирается произвольно.

Пример 2. Определите, на каком расстоянии от плоскости находится точка А , если прямая АВ пересекает плоскость под углом 45º, расстояние от точки А до точки В , принадлежащей плоскости, равно
см.

Решение. Сделаем рисунок (рис. 12.5):

АС – перпендикуляр к плоскости , АВ – наклонная, угол АВС – угол между прямой АВ и плоскостью . Треугольник АВС – прямоугольный,
так какАС – перпендикуляр. Искомое расстояние от точки А до плоскости – это катет АС прямоугольного треугольника. Зная угол
и гипотенузу
найдем катетАС :

В ответе получаем: АС = 3 см.

Пример 3. Определите, на каком расстоянии от плоскости равнобедренного треугольника находится точка, удаленная от каждой из вершин треугольника на 13 см, если основание и высота треугольника равны по 8 см.

Решение. Сделаем рисунок (рис. 12.6). Точка S удалена от точек А , В и С на одинаковое расстояние. Значит, наклонные SA , SB и SC равные, SO – общий перпендикуляр этих наклонных. По теореме о наклонных и проекциях АО = ВО = СО.

Точка О – центр окружности, описанной около треугольника АВС . Найдем ее радиус:

где ВС – основание; AD – высота данного равнобедренного треугольника.

Находим стороны треугольника АВС из прямоугольного треугольника ABD по теореме Пифагора:

Теперь находим ОВ :

Рассмотрим треугольник SOB :
SB = 13 см, ОВ = 5 см. Находим длину перпендикуляра SO по теореме Пифагора:

В ответе получаем: SO = 12 см.

Пример 4. Даны параллельные плоскости и . Через точку М , не принадлежащую ни одной из них, проведены прямые а и b , которые пересекают плоскость в точках А 1 и В 1 , а плоскость – в точках А 2 и В 2 . Найти А 1 В 1 , если известно, что МА 1 = 8 см, А 1 А 2 = 12 см, А 2 В 2 = 25 см.

Решение. Так как в условии не сказано, как расположена относительно обеих плоскостей точка М , то возможны два варианта: (рис. 12.7, а, б). Рассмотрим каждый из них. Две пересекающиеся прямые а и b задают плоскость. Эта плоскость пересекает две параллельные плоскости и по параллельным прямым А 1 В 1 и А 2 В 2 согласно теореме 5 о параллельных прямых и параллельных плоскостях.

Треугольники МА 1 В 1 и МА 2 В 2 подобны (углы А 2 МВ 2 и А 1 МВ 1 – вертикальные, углы МА 1 В 1 и МА 2 В 2 – внутренние накрест лежащие при параллельных прямых А 1 В 1 и А 2 В 2 и секущей А 1 А 2). Из подобия треугольников следует пропорциональность сторон:

Отсюда

Вариант а):

Вариант б):

Получаем ответ: 10 см и 50 см.

Пример 5. Через точку А плоскости проведена прямая АВ , образующая с плоскостью угол . Через прямую АВ проведена плоскость , образующая с плоскостью угол . Найти угол между проекцией прямой АВ на плоскость и плоскостью .

Решение. Сделаем рисунок (рис. 12.8). Из точки В опустим перпендикуляр на плоскость .
Линейный угол двугранного угла между плоскостями и – это угол
ПрямаяAD DBC , по признаку перпендикулярности прямой и плоскости, так как
и
По признаку перпендикулярности плоскостей плоскость перпендикулярна плоскости треугольника DBC , так как она проходит через прямую AD . Искомый угол построим, опустив перпендикуляр из точки С на плоскость , обозначим его
Найдем синус этого угла прямоугольного треугольникаСАМ . Введем вспомогательный отрезок ВС = а . Из треугольника АВС :
Из треугольникаВМС (


) найдем.

Урок геометрии в 10 классе

На одном из предыдущих уроков вы познакомились с понятием проекции точки на данную плоскость параллельно данной прямой.

На этом уроке вы продолжите изучение прямых и плоскостей; узнаете, как находится угол между прямой и плоскостью. Вы познакомитесь с понятием ортогональной проекции на плоскость и рассмотрите ее свойства. На уроке будут даны определения расстояния от точки до плоскости и от точки до прямой, угла между прямой и плоскостью. Будет доказана знаменитая теорема о трех перпендикулярах.

Ортогональная проекция

Ортогональная проекция точки и фигуры.

Ортогональная проекция детали.

Ортогональной проекцией точки Ана данную плоскость называется проекция точки на эту плоскость параллельно

прямой, перпендикулярной этой плоскости. Ортогональная проекция

фигуры на данную плоскость p состоит из ортогональных проекций на плоскость p всех точек этой фигуры. Ортогональная проекция часто используется для изображения пространственных тел на плоскости, особенно в технических чертежах. Она дает более реалистическое изображение, чем произвольная параллельная проекция, особенно круглых тел.

Перпендикуляр и наклонная

Пусть через точку А, не принадлежащую плоскости p, проведена прямая, перпендикулярная этой плоскости и пересекающая ее в точке В. Тогда

отрезок АВ называется

перпендикуляром, опущенным из точки

А на эту плоскость, а сама точка В - основанием этого перпендикуляра. Любой отрезокАС, где С -

произвольная точка плоскости p, отличная от В, называется наклонной к

этой плоскости.

Заметим, что точка В в этом определении является ортогональной

проекцией точки А, а отрезокАС -Перпендикуляр и наклонная. ортогональной проекцией наклонной AВ.

Ортогональные проекции обладают всеми свойствами обычных параллельных проекций, но имеют и ряд новых свойств.

Пусть из одной точки к плоскости проведены перпендикуляр и несколько наклонных. Тогда справедливы следующие утверждения.

1. Любая наклонная длиннее как перпендикуляра, так и ортогональной проекции наклонной на эту плоскость.

2. Равные наклонные имеют и равные ортогональные проекции, и наоборот, наклонные, имеющие равные проекции, также равны.

3. Одна наклонная длиннее другой тогда и только тогда, когда ортогональная проекция первой наклонной длиннее ортогональной проекции второй наклонной.

Свойства ортогональной проекции

Доказательство.

Пусть из точки А к плоскости p проведены перпендикулярАВ и две наклонныеАС и AD; тогда отрезки ВС иBD - ортогональные проекции этих отрезков на плоскость p.

Докажем первое утверждение: любая наклонная длиннее как перпендикуляра, так и ортогональной проекции наклонной на эту плоскость. Рассмотрим, например, наклонную AС и треугольник ABC, образованный перпендикуляром AВ, этой наклонной AС, и ее ортогональной проекцией ВС. Этот треугольник прямоугольный с прямым углом в вершине В и гипотенузой AС, которая, как мы знаем из планиметрии, длиннее каждого из катетов, т.е. и перпендикуляра AВ, и проекции ВС.

Из точки А к плоскости pi проведены перпендикуляр АВ и две наклонные AC и AD.

Свойства ортогональной проекции

Треугольники

ABC и ABD

равны по катету и гипотенузе.

Теперь докажем второе утверждение, а именно: равные наклонные имеют и равные ортогональные проекции, и наоборот, наклонные, имеющие равные проекции, также равны.

Рассмотрим прямоугольные треугольники AВС и ABD. Они

имеют общий катет AВ. Если наклонные AС и AD равны, то прямоугольные треугольники AВС и AВD равны по катету и гипотенузе, и тогда BC=BD. Обратно, если равны проекции ВС и BD, то эти же треугольники равны по двум катетам, и тогда у них равны и гипотенузы AС иAD. ВС < BD, как мы только что доказали,АС < AD, что опять противоречит условию.

Остается третья возможность: ВС > BD. Теорема доказана.

Если ВС больше BD,

то АС больше стороны

АЕ, равной AD.

Свойства наклонных, выходящих из одной точки. 1. Перпендикуляр всегда короче наклонной, если они проведены из одной точки. 2. Если наклонные равны, то равны и их проекции, и наоборот. 3. Большей наклонной соответствует большая проекция и наоборот.

Слайд 10 из презентации «Перпендикуляр и наклонная к плоскости» . Размер архива с презентацией 327 КБ.

Геометрия 10 класс

краткое содержание других презентаций

«Задачи на параллелограмм» - Геометрия. Точки. Высота параллелограмма. Площадь. Доказательство. Касательная к окружности. Признаки параллелограмма. Периметр параллелограмма. Окружность. Часть. Средняя линяя. Центры окружностей. Углы. Параллелограмм. Найдите площадь параллелограмма. Две окружности. Свойства параллелограмма. Острый угол. Площадь параллелограмма. Диагонали параллелограмма. Диагональ. Четырехугольник. Треугольники.

«Методы построения сечений» - Формирование умений и навыков построения сечений. Рассмотрим четыре случая построения сечений параллелепипеда. Построить сечения тетраэдра. Метод внутреннего проектирования. Работа с дисками. Параллелепипед имеет шесть граней. Секущая плоскость. Построение сечений многогранников. Следом называют прямую пересечения плоскости сечения и плоскости какой-либо грани многогранника. Метод следов. Памятка.

««Правильные многогранники» 10 класс» - Прогнозируемый результат. Тетраэдр, описанный около сферы орбиты Марса. Центр О, ось а и плоскость. Грани многогранника. Радиолария. Содержание. Правильные многогранники. Правильные многогранники в философской картине мира Платона. Феодария. Правильные многогранники встречаются в живой природе. Ход урока. Точка (прямая, плоскость) называется центром (осью, плоскостью). Какое из перечисленных геометрических тел не является правильным многогранником.

«Определение двугранных углов» - Точка К удалена от каждой стороны. Точки М и К лежат в разных гранях. Градусная мера угла. Свойство трёхгранного угла. Замечания к решению задач. В одной из граней двугранного угла, равного 30, расположена точка М. Построение линейного угла. Провести перпендикуляр. Прямая, проведенная в данной плоскости. Двугранные углы в пирамидах. Решение задач. Точка К. Данная пирамида. Точка на ребре может быть произвольная.

«Методы построения сечений многогранников» - Любая плоскость. Художники. Законы геометрии. Блиц-опрос. Взаимное расположение плоскости и многогранника. Построить сечение многогранника. Многоугольники. Аксиоматический метод. Задачи. Корабль. Задача. Аксиомы. Построение сечений многогранников. Сечения различными плоскостями. Древняя китайская пословица. Самостоятельная работа. Диагональные сечения. Закрепление полученных знаний. Секущая плоскость.

«Равносторонние многоугольники» - Гексаэдр (Куб) Куб составлен из шести квадратов. Октаэдр Октаэдр составлен из восьми равносторонних треугольников. Тетраэдр имеет 4 грани, 4 вершины и 6 ребер. Существует 5 видов правильных многогранников. Правильные Многоугольники. Додекаэдр имеет 12 граней, 20 вершин и 30 ребер. Икосаэдр имеет 20 граней, 12 вершин и 30 ребер. Таким образом, куб имеет 6 граней, 8 вершин и 12 ребер. Тетраэдр Тетраэдр составлен из четырех равносторонних треугольников.

Геометрия

Стереометрия

Перпендикуляр и наклонная

Перпендикуляром , опущенным из данной точки на данную плоскость, называется отрезок, соединяющий данную точку с точкой плоскости и лежащий на прямой, перпендикулярной к плоскости. Конец этого отрезка, лежащий в плоскости, называется основанием перпендикуляра . Расстоянием от точки до плоскости называется длина перпендикуляра, опущенного из этой точки на плоскость.
На рисунке AB - перпендикуляр; AC - наклонная; BC - проекция.

Расстоянием от прямой до параллельной ей плоскости называется расстояние от любой точки этой прямой до плоскости.
Расстоянием между параллельными плоскостями называется расстояние от любой точки одной плоскости до другой плоскости.
Наклонной , проведенной из данной точки к данной плоскости, называется любой отрезок, соединяющий данную точку с точкой плоскости и не является перпендикуляром к плоскости. Конец отрезка, лежащий в плоскости, называется основанием наклонной .
Отрезок, соединяющий основания перпендикуляра и наклонной, проведенных из одной и той же точки, называется проекцией наклонной .

Свойства наклонных, проведенных из одной точки к одной плоскости
1. Наклонные, проведенные к плоскости из одной точки (рисунок ниже слева), равны тогда и только тогда, когда они имеют равные проекции.
2. Если из точки к плоскости проведены две наклонные, то больше та из них, которая имеет большую проекцию, и наоборот, большая наклонная имеет большую проекцию.
Обратите внимание, что эти свойства сохраняются для наклонных, проведенных к плоскости из разных точек, но имеют одинаковую длину перпендикуляра (рисунок справа).
error: