Основные типы электростанций в России подразделяются на

Свидетельствует ли высокий уровень потребления энергии о хозяйственной мощи и уровне развития страны?

Электроэнергетика - другая составная часть топливно-энергетического комплекса (рис. 24), задача которой - выработка электроэнергии на электростанциях и передача ее потребителям по линиям электропередачи (ЛЭП).

Зачем создаются энергосистемы?

Попробуем вообразить, что из нашей жизни исчезла электроэнергия. Что бы случилось? Везде бы погас свет, остановились трамваи, троллейбусы, электрички и поезда метро; прекратили работу лифты и эскалаторы, почти все машины на фабриках и заводах, превратились в груду железа все электробытовые приборы (холодильники, стиральные машины, электроплиты и другие), «зависли» компьютеры, замолчали радиоприемники и телевизоры, прекратилась подача воды и тепла в квартиры (ведь насосы водопровода и котельных тоже приводятся в действие электродвигателями) и т. д. К сожалению, это не просто фантазия: порой такое случается из-за перебоев в подаче электроэнергии, чаще всего вследствие аварии. Поэтому главное требование к электроэнергетике - надежность электроснабжения. Для этого все электростанции стараются «закольцевать» - соединить линиями электропередачи, чтобы внезапный выход из строя одной из них мог быть компенсирован другими.

Электроэнергетика - единственная отрасль промышленности, продукцию которой нельзя хранить, нельзя «запасать впрок» (в отличие, например, от топлива, которое в нашей стране запасать на зиму просто необходимо). В каждую минуту должно производиться ровно столько электроэнергии, сколько потребляется, иначе неминуема авария либо придется отключать потребителей. Поэтому в энергосистеме обязательно предусматриваются резервные мощности. Для этого в энергосистему линиями электропередачи объединяются электростанции разных типов. Так образуется Единая энергетическая система страны (ЕЭС), действующая на большей части ее территории в пределах Главной полосы расселения.

Каковы особенности различных типов электростанций?


Рис. 31. Типы электростанций и их различия

Существуют ли закономерности в географии электроэнергетики?

В нашей стране большая часть электроэнергии вырабатывается на ТЭС. Наибольшее распространение получил один из видов этих электростанций - крупные государственные районные электростанции (ГРЭС), обслуживающие значительные территории. Наиболее мощные из них расположены в Центральной России, на Урале и в Сибири.

Рис. 32. Производство электроэнергии на станциях разного типа

Как выдумаете, изменится ли соотношение производимой электроэнергии на станциях разного типа в будущем?

Рис. 33. ТЭЦ в Москве

Другой вид ТЭС - теплоэлектроцентрали (ТЭЦ), вырабатывающие не только электроэнергию, но также пар и горячую воду. Как правило, они строятся в городах, так как горячую воду и пар нельзя передавать на большие расстояния.

Рис. 34. Билибинская АЭС

ТЭС размещены практически повсеместно в освоенных районах, АЭС - главным образом в европейской части России, а крупнейшие ГЭС - в Восточной Сибири, которая обладает наибольшими гидроэнергоресурсами.

Рис. 35. Зейская ГЭС

Показатели энергопотребления в России, как на производстве, так и в домашнем хозяйстве, одни из самых высоких в мире. Кажущееся изобилие ресурсов не выработало у россиян привычки экономить тепло и энергию. Дома в России часто строились с тонкими стенами, двойные рамы в окнах заменялись на одинарные. Во всех странах мира основное внимание сейчас направлено больше на экономию электроэнергии, чем на увеличение показателей ее производства, по этому пути должна идти и Россия.

Выводы

Размеры территории, географическое положение, климатические условия, особенности топливной промышленности, размещение населения и хозяйства, его структура определили специфику географии электроэнергетики России:

  • высокий внутренний спрос на электроэнергию;
  • преобладание ТЭС в энергетическом хозяйстве;
  • объединение электростанций в Единую энергетическую систему.

Россия - одна из немногих стран мира, полностью обеспеченных всеми видами топлива (нефтью, газом, углем), имеющих большие запасы гидроэлектроэнергии, месторождения урановых руд, собственную атомную промышленность и атомное машиностроение. «Мирный атом», освоение которого впервые в мире началось в нашей стране, - одно из перспективных направлений развития российской промышленности.

Вопросы и задания

  • Объясните значение новых терминов: «электроэнергетика», «Единая энергосистема».
  • Используя рисунок 31, проанализируйте положительные и отрицательные особенности электростанций разных типов. Какие социальные последствия вызывает отрицательное воздействие электростанций на окружающую среду?
  • Каково географическое положение вашего места жительства (села, города) по отношению к районам добычи топливных ресурсов и ближайшим электростанциям? Какими путями поступает к вам топливо и электроэнергия? Газифицирован ли ваш населенный пункт? Во сколько обходится за год потребление топлива и электроэнергии вашей семье?
  • Как можно добиться значительной экономии электроэнергии в стране? Какие шаги, на ваш взгляд, должны предприниматься со стороны государства, а какие каждым из нас?
  • Говоря об основных источниках энергии, нельзя забывать и об альтернативных - энергии ветра, приливов, Солнца, внутреннего тепла Земли и т. д. На основании ваших знаний о природе страны скажите, в каких районах России возможно их использование.
  • 6.Суточные графики нагрузки и мощности. Каким образом они покрываются электростанциями разного вида?
  • 7.Электроэнергетика и экология (сравнить тэс и гэс).
  • 8. Что изучает инженерная гидрология? Основные гидрологические понятия. Примеры гидрографа реки средней полосы для многоводного и маловодного года.
  • 9. Использование водной энергии. Напор и расход. Мощность водного потока. От чего зависит выработка электроэнергии?
  • 10. Способы создания напора.
  • 11. Что такое деривационная гэс?
  • 12. Водноэнергетические ресурсы- валовой, технический и экономический потенциалы, их примерное соотношение.
  • 13. Гидроузлы- основные виды сооружений, входящих в их состав, и в чем выражается комплексный характер гидроузлов.
  • 14. Водохранилища: основные параметры его и проблемы при создании и эксплуатации.
  • 15. Водохранилища многолетнего, годичного и суточного регулирования, чем определяется возможность его создания?
  • 16. Основные сооружения гэс и виды компоновок гэс.
  • 17. Основания гидротехнический сооружений и способы его улучшения.
  • 18. Типы грунтовых плотин- их характерные конструктивные элементы. От чего, прежде всего, необходимо защитить грунтовую плотину?
  • 19. Гравитационные бетонные плотины-типы конструкций и основные элементы.
  • 20. Контрфорсные бетонные плотины, принцип работы и конструкции напорных граней.
  • 22. Противофильтрационные устройства в бетонных плотинах – назначение и виды
  • 23. Подземный контур плотины- назначение и основные конструктивные элементы.
  • 24. Что такое фильтрация, начертите эпюру давления фильтрующейся воды на подошву Плотины? Что такое обходная фильтрация и чем она опасно?
  • 25.Судоподъемник-основные элементы и принцип работы.
  • 26. Шлюз- основные элементы и принцип работы.
  • 27. Для чего проводят изыскательские работы, и их основные виды. Выбор створа будущей гэс.
  • 28. Что такое перекрытие реки, и какие есть способы перекрытия рек?
  • 29.Эксплуатация гтс – контроль состояния и ремонты. Виды натурных наблюдений, проводимых на гэс, и их назначение.
  • 30. Для чего устраивают холостые сбросы? способы гашения водной энергии и основные водогасящие сооружения и конструкции?
  • 31.Нб Гэс. Для чего необходимы кривые связи унб и сбрасываемого гэс расходы воды.
  • 32.Водяное колесо, что его отличает от турбины, типы турбин?
  • 33.Схемы установки гидротурбин, типы рабочих колес? Читать стр 59-72
  • 34.Гидротурбины активного типа - принцип действия, область применения, чем регулируется их мощность?
  • 35.Гидротурбины реактивного типа – принцип действия, область применения?
  • 36.Осевые и радиально – осевые турбины, в чем отличие и какие применяют при больших напорах?
  • 37.Основные элементы проточного(турбинного) тракта гэс и их функции.
  • 38.Направляющий аппарат- назначение, принцип работы.
  • 39.Как устроена мну(маслонапорная установка) и какую основную функцию выполняет?
  • 40.Назначение подпятника, его основные элементы, и где он устанавливается.
  • 41.В чем отличие гидрогенераторов зонтичного и подвесного типов?
  • 42.Для чего необходимы турбинный и генераторный подшипники, и чем они отличаются?
  • 43.Затворы гэс – назначение, основные типы, где устанавливаются?
  • 44. Важнейшие свойства электроэнергии и обусловленные ими технические и социально-экономические результаты.
  • 45.Опишите процесс выработки электроэнергии на гэс.
  • 46. Как регулируется мощность турбины?
  • 48. Каким образом, и в какой части гидрогенератора возникает электрический ток?
  • 49. Начертите простейшую электрическую схему гэс.
  • 50. Каким образом получают 3-х фазный ток? Что такое соединение «звезда» и «треугольник»?
  • 51) На какой параметр электрического тока влияет скорость вращения гидрогенератора?
  • 57. Ору и зру – их функции. Для чего применяют высоковольтные выключатели? Чем отличаются элегазовый и воздушный выключатели?
  • 58.Что такое короткое замыкание, и что при этом происходит в электрической цепи?
  • 59.Релейная защита-назначение и основные функции.
  • 1.Основные виды электростанций и их характерные отличия.

    Тепловые электростанции . Среди них главную роль играют ГРЭС – государственные районные электростанции, которые обеспечивают потребности экономического района, работающие в энергосистемах. Большинство городов России снабжаются ТЭС. Часто в городах используются ТЭЦ - теплоэлектроцентрали, производящие не только электроэнергию, но и тепло в виде горячей воды. На размещение тепловых электростанций оказывает основное влияние топливный и потребительский факторы.

    Гидроэлектростанции . ГЭС производят наиболее дешевую электроэнергию, но имеют довольно-таки большую себестоимость постройки. Более перспективным является строительство гидроаккумулирующих электростанций - ГАЭС. Их действие основано на цикличном перемещении одного и того же объема воды между двумя бассейнами: верхним и нижним. В ночные часы, когда потребность электроэнергии мала, вода перекачивается из нижнего водохранилища в верхний бассейн, потребляя при этом излишки энергии, производимой электростанциями ночью. Днем, когда резко возрастает потребление электричества, вода сбрасывается из верхнего бассейна вниз через турбины, вырабатывая при этом энергию. Это выгодно, так как остановки ТЭС в ночное время невозможны. Таким образом, ГАЭС позволяет решать проблемы пиковых нагрузок. Важным недостатком ГЭС является сезонность их работы, столь неудобная для промышленности.

    Атомные электростанции . АЭС являются наиболее современным видом электростанций и имеют ряд существенных преимуществ перед другими видами электростанций:

      При нормальных условиях функционирования они абсолютно не загрязняют окружающую среду;

      Не требуют привязки к источнику сырья и соответственно могут быть размещены практически везде.

    Однако работа АЭС сопровождается рядом негативных последствий:

      Существующие трудности в использовании атомной энергии – захоронение радиоактивных отходов. Для вывоза со станций сооружаются контейнеры с мощной защитой и системой охлаждения. Захоронение производится в земле, на больших глубинах в геологических стабильных пластах.

      Катастрофические последствия аварий на наших АЭС – следствие несовершенной защиты системы.

      Тепловое загрязнение используемых АЭС водоёмов

    2. Типы гидравлических электростанций и принцип их работы.

    1. ГЭС. Принцип работы ГЭС. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

    Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией(Деривацияв гидротехнике - отвод воды от русла реки по каналу. В более широком смысле - это совокупность гидротехнических сооружений, отводящих воду из реки, водохранилища или другого водоёма и подводящих её к другим гидротехническим сооружениям . Различаются такие типы деривационных сооружений - безнапорные (канал, тоннель, лоток) и напорные (трубопровод, напорный туннель). Современные деривационные каналы и водотоки имеют протяженность в десятки км, с пропускной способностью в несколько тысяч м.куб./сек.) - естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию.

    Непосредственно в самом здании гидроэлектростанции располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию тока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля над работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.

    2. ГАЭС-гидроаккумулирующие электростанции -предназначаются для покрытия пиков графика электрической нагрузки энергосистемы с использованием электроэнергии в период глубоких провалов нагрузки. ГАЭС практически не нуждается в постоянном водотоке, поскольку работает, используя воду, накопленную в водохранилище и таким водохранилищем (верхний бассейн) может быть озеро, море или искусственный бассейн, заполненный водами снеготаяния или реками с очень малыми расходами,т.е.такое водохранилище нуждается в подпитке лишь на потери. Но для работы необходим еще один-нижний бассейн. Между 2-мя этими бассейнами и образуется напор, необходимый для работы, как гидростанции, вырабатывающей электроэнергию в часы пика нагрузки в энергосистеме. В этот период вода из верхнего бассейна через турбины срабатывается в нижний бассейн. В часы провала нагрузки, когда появляется «свободная» электроэнергия, ГАЭС работает как насосная станция, перекачивая воду из нижнего бассейна в верхний.

    3. ПЭС для выработки электроэнергии используют энергию приливов. Приливы являются следствием взаимного притяжения системы Земля-Луна-Солнце. Они поднимают уровень морей у берегов от нескольких см. до нескольких м. с периодичностью 12 час. 25мин. Идея ПЭС заключается: залив (губа,фиорд) отсекается от моря плотиной с водопропускными отверстиями. Во время прилива отверстия открыты, в залив поступает вода и уровень повышается. К началу отлива отверстия закрывается. В открытом море при отливе уровень понижается. А в заливе при открытых отверстиях-нет. В створе плотины образуется перепад уровней(напор),который используется для производства электроэнергии.

    При развитии энергетики огромное значение придается вопросам правильного размещения электроэнергетического хозяйства. Важнейшим условием рационального размещения электрических станций является всесторонний учет потребности в электроэнергии всех отраслей народного хозяйства страны и нужд населения, а также экономического района на перспективу.

    Одним из принципов размещения электроэнергетики на современном этапе развития рыночного хозяйства является преимущественное строительство набольших по мощности тепловых электростанций, внедрение новых видов топлива, развитие сети дальних высоковольтных электропередач.

    Существенная особенность развития и размещения электроэнергетики – широкое строительство теплоэлектроцентралей (ТЭЦ) для теплофикации (централизованное снабжение теплом городов и промышленных предприятий с одновременным производством электроэнергии)различных отраслей промышленности и коммунального хозяйства.

    Особенностью развития электроэнергетики было строительство атомных электростанций, в первую очередь в районах, дефицитных по топливу Атомные электростанции в своем размещении учитывают потребительский фактор. Преимущество атомных электростанций перед другими тепловыми и гидростанциями состоит в том, что их можно строить в любом районе независимо от его топливных или водных ресурсов.

    Теплоэлектроцентрали (ТЭЦ) размещаются в пунктах потребления пара и горячей воды, поскольку передача тепла по трубопроводам экономически целесообразна лишь на небольшие расстояния. При проектировании и сооружении тепловых электростанций учитываются климатические условия отдельных районов страны.

    Важным направлением в развитии электроэнергетики является также строительство гидроэлектростанций. В практической работе по размещению электростанций значение имеет кооперирование гидроэлектростанций с тепловыми электростанциями. Это обусловлено тем, что выработка электроэнергии на гидростанциях сильно колеблется в течение года в связи с изменениями водного режима рек. Объединение тепловых и гидравлических электростанций в одной энергосистеме позволяет компенсировать недостаток в выработке энергии на гидростанциях в маловодные периоды года за счет электроэнергии, вырабатываемой на тепловых электростанциях.4, 251

    3. Типы электростанций

    Основной тип электростанций в России- тепловые, работающие на органическом топливе (уголь, газ, мазута, сланцы, торф). На их долю приходится около 67 % производства электроэнергии. Основную роль играют мощные (более 2 млн кВт) ГРЭС – государственные районные электростанции, обеспечивающие потребности экономического района и работающие в энергосистемах.

    Анализируя производство электроэнергии по видам электростанций, можно сказать, что основную долю в производстве электроэнергии занимают тепловые электростанции – 66,34%, затем гидроэлектростанции – 17,16%, наименьшую долю в производстве электроэнергии занимают атомные электростанции – 16,5%. На размещение тепловых электростанций оказывают основное влияние топливный и потребительский факторы. Наиболее мощные из них располагаются, как правило, в местах добычи топлива: чем крупнее электростанция, тем дальше она может передавать электроэнергию.

    Тепловые электростанции

    Тепловые электростанции ориентированы на потребителя и одновременно находятся у источников топливных ресурсов. Потребительскую ориентацию имеют электростанции, использующие высококалорийное топливо, которое экономически выгодно транспортировать. Электростанции, работающие на мазуте, располагаются преимущественно в центрах нефтеперерабатывающей промышленности.

    Крупными тепловыми электростанциями являются Березовская ГРЭС-1 и ГРЭС-2, работающие на углях Канско-Ачинского бассейна, Сургутская ГРЭС-1 и ГРЭС-2, Уренгойская ГРЭС – на газе.

    Преимущества: относительно свободное размещение, связанное с широким распространением топливных ресурсов в России; способность вырабатывать электроэнергию без сезонных колебаний.

    Недостатки: использование невозобновимых топливных ресурсов, низкий КПД, крайне неблагоприятное воздействие на окружающую среду КПД обычной ТЭС – 37-39%. Несколько больший КПД имеют ТЭЦ – теплоэлектроцентрали, обеспечивающие теплом предприятия и жилье с одновременным производством электроэнергии – 60 %. Топливный баланс тепловых электростанций РФ характеризуется преобладанием газа и мазута.

    Тепловые электростанции всего мира выбрасывают в атмосферу ежегодно 200-250 млн т золы и около 60 млн т сернистого ангидрида; кроме того они поглощают огромное количество кислорода.

    Гидравлические электростанции (ГЭС)

    ГЭС занимают второе место по количеству вырабатываемой электроэнергии. Гидроэлектростанции это эффективный источник энергии, поскольку используют возобновимые ресурсы, они просты в управлении (количество персонала на ГЭС в 15-20 раз меньше, чем на ГРЭС) и имеют высокий КПД – более 80%. В результате производимая на ГЭС энергия – самая дешевая.

    Преимущества: маневренность, т.е. возможность практически мгновенного автоматического запуска и отключения любого требуемого количества агрегатов, что позволяет использовать мощные ГЭС либо в качестве максимально маневренных «пиковых» электростанций, обеспечивающих устойчивую работу крупных энергосистем, либо «покрывать» плановые пики суточного графика нагрузки энергосистемы, когда имеющихся в наличии мощностей ТЭС не хватает.

    Наиболее мощные ГЭС построены в Сибири, где освоение гидроресурсов наиболее эффективно: удельные капиталовложения в 2-3 раза ниже и себестоимость электроэнергии в 4-5 раз меньше, чем в Европейской части страны. Гидростроительство в нашей стране характеризовалось сооружением на реках каскадов гидроэлектростанций. Каскад – групп ГЭС, расположенных ступенями по течению водного потока для последовательного использования его энергии. Помимо получения электроэнергии каскады решили проблемы снабжения населения и производства водой, устранения упадков, улучшения транспортных условий. Саамы крупные ГЭС в стране входят в состав Ангаро-Енисейского каскада: Саяно-Шушенская, Красноярская – на Енисее; Иркутская, Братская, Усть-Илимская – на Ангаре; строится Богучанская ГЭС. В Европейской части страны создан крупный каскад ГЭС на Волге. В его состав входят Иваньковская, Угличская, Рыбинская, Городецкая, Чебоксарская, Волжская (вблизи Самары), Саратовская, Волжская. Весьма перспективным является строительство гидроаккумулирующих электростанций (ГАЭС). Их действие основано на цикличном перемещении одного и того же объема воды между двумя бассейнами – верхним и нижним. ГАЭС позволяют решать проблемы пиковых нагрузок, маневренности использования мощностей энергосетей. В России, остро стоит проблема создания маневренности электростанций, в том числе ГАЭС. Гидроэнергетику также нельзя считать экологически чистой. Строительство плотин и водохранилищ резко меняет режим рек, замедлят течения, а это разрушает водные экосистемы.

    Атомные электростанции (АЭС)

    Доля АЭС в суммарной выработке электроэнергии – более 14 % (в США-149,6%, в Великобритании – 18,9%, в ФРГ – 34%, в Бельгии-65%, во Франции – свыше 76%). Фактически удельный вес АЭС достиг только 12,3 %. Чернобыльская катастрофа вызвала сокращение программы атомного строительства, с 1986 г. в эксплуатацию были введены только четыре энергоблока. В настоящее время ситуация меняется. Правительством РФ было принято специальное постановление, фактически утвердившее программу строительства новых АЭС до 2010 г. Первоначальный ее этап – модернизация действующих энергоблоков и ввод в эксплуатацию новых, которые должны заменить выбывающие после 2000 г. блоки Билибинской, Нововоронежской и Кольской АЭС. Сейчас в России действует 9 АЭС. Еще 14 АЭС и АСТ (атомных станций теплоснабжения) находятся в стадии проектирования, строительства или временно законсервированы.

    Были пересмотрены принципы размещения АЭС с учетом потребности района, природных условий (в частности, достаточного количества воды), плотности населения, возможности обеспечения защиты людей от недопустимого радиационного воздействия при тех или иных ситуациях. Принимается во внимание вероятность возникновения на предполагаемой территории землетрясений, наводнений, наличие близких грунтовых вод. АЭС должны размещаться не ближе 25 км от городов с численностью более 100 тыс. жителей, АСТ – не ближе 5 км. Ограничивается суммарная мощность электростанций: АЭС- 8 млн кВт, АСТ – 2 млн кВт.

    Преимущества:

    их можно строить в любом районе независимо от его энергетических ресурсов;

    атомное топливо отличается большим содержанием энергии (в 1 кг основного ядерного топлива – урана – содержится энергии столько же, сколько в 2500 т угля). АЭС не дают выбросов в атмосферу в условиях безаварийной работы (в отличие от ТЭС), не поглощают кислород.

    Недостатки:

      Трудности в захоронении радиоактивных отходов (для их вывоза со станции сооружаются контейнеры с мощной защитой и системой охлаждения, захоронение производится в земле на больших глубинах в геологически стабильных пластах)

      Катастрофические последствия аварий на наших АЭС вследствие несовершенной системы защиты;

      Тепловое загрязнение используемых АЭС водоемов.

    Функционирование АЭС как объектов повышенной опасности требует участи государственных органов власти и управления в формировании направлений развития, выделений необходимых средств.5, 344

    Альтернативные источники энергии

    В последние годы в России возрос интерес к использованию альтернативных источников энергии – солнца, ветра, внутреннего тепла Земли, морских проливов. Уже построены опытные электростанции на нетрадиционных источниках энергии. Так, на энергии приливов работают Кислогубская и Мезенская электростанции на Кольском полуострове.

    Термальные горячие воды используются для горячего водоснабжения гражданских объектов и в теплично-парниковых хозяйствах. На Камчатке на р. Паужетка построена геотермальная электростанция.

    Крупными объектами геотермального теплоснабжения являются теплично-парниковые комбинаты – Паратунский на Камчатке и Тернапрский в Дагестане. В перспективе использование термальных вод будет возрастать.

    Ветровые установки в поселках Крайнего Севера используют для защиты от коррозии магистральных газо- и нефтепроводов, на морских промыслах.

    На юге России, в Кисловодске, предполагается сооружение первой в стране опытно-экспериментальной электростанции, работающей на солнечной энергии. Ведутся работы по вовлечению в хозяйственный оборот такого источника энергии, как биомасса.

    Эле́ктроэнерге́тика - отрасль энергетики, включающая в себя производство, передачу и сбыт электроэнергии. Электроэнергетика является наиболее важной отраслью энергетики, что объясняется такими преимуществами электроэнергии перед энергией других видов, как относительная лёгкость передачи на большие расстояния, распределения между потребителями, а также преобразования в другие виды энергии (механическую, тепловую, химическую, световую и др.). Отличительной чертой электрической энергии является практическая одновременность её генерирования и потребления, так как электрический ток распространяется по сетям со скоростью, близкой к скорости света.

    Электроэнергетика-ведущая составляющая часть энергетики, обеспечивающая электрификацию хозяйства страны на основе рационального производства и распределения электроэнергии. Электроэнергетика-имеет важное значение в хозяйстве любой промышленно развитой страны, что объясняется такими преимуществами электроэнергии перед энергией других видов, как относительная лёгкость передачи на большие расстояния, распределения между потребителями, а также преобразования в другие виды энергии (механическую, тепловую, химическую, световую и др.). Отличительной чертой электроэнергии является одновременность её генерирования и потребления.

    Основная часть электроэнергии вырабатывается крупными Электростанциями: тепловыми (ТЭС), гидравлическими (ГЭС), атомными (АЭС). Электростанции, объединённые между собой и с потребителями высоковольтными линиями электропередачи (См. Линия электропередачи) (ЛЭП), образуют Электрические системы.

    В Советском Союзе вопросы развития электроэнергетики всегда были в числе основных вопросов развития народного хозяйства. Советская Э. занимает передовые позиции в мире.

    Электрификация страны базируется, с одной стороны, на научных достижениях, с другой - на успехах промышленности. В начале 20-х гг. 20 в. в плане ГОЭЛРО были четко сформулированы две ведущие тенденции Э.: концентрация производства электроэнергии путём сооружения крупных районных электростанций и централизация распределения электроэнергии. Становление Э. определялось, с одной стороны, созданием электростанций и топливной базы для них, сооружением линий электропередачи и разработкой электрической аппаратуры и энергетического оборудования, с другой - развитием теоретических основ электротехники - необходимого условия для научного обоснования энергетического строительства. В этих целях были осуществлены важные исследования в области техники высоких напряжении, теории устойчивости электрических систем, разработаны методы расчёта мощных генераторов, трансформаторов и других электрических машин, электропривода, электрических аппаратов; создана электротехнология, внедрено автоматизированное управление электрическими системами, использованы методы физического и математического моделирования при расчёте и изучении электроэнергетических систем.

    Теплова́я электроста́нция

    Теплова́я электроста́нция (или теплова́я электри́ческая ста́нция) - электростанция, вырабатывающая электрическую энергию за счет преобразования химической энергии топлива в механическую энергию вращения вала электрогенератора.

    Тепловая электростанция (ТЭС) - электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Первые ТЭС появились в конце 19 в. (в 1882 - в Нью-Йорке, 1883 - в Петербурге, 1884 - в Берлине) и получили преимущественное распространение. В середине 70-х гг. 20 в. ТЭС - основной вид электрических станций. Доля вырабатываемой ими электроэнергии составляла: в СССР и США св. 80% (1975), в мире около 76% (1973).

    Среди ТЭС преобладают тепловые паротурбинные электростанции (ТПЭС), на которых тепловая энергия используется в парогенераторе для получения водяного пара высокого давления, приводящего во вращение ротор паровой турбины, соединённый с ротором электрического генератора (обычно синхронного генератора). В СССР на ТПЭС производится (1975) ~99% электроэнергии, вырабатываемой ТЭС. В качестве топлива на таких ТЭС используют уголь (преимущественно), мазут, природный газ, лигнит, торф, сланцы. Их кпд достигает 40%. мощность - 3 Гвт, в СССР создавались ТПЭС полной проектной мощностью до 5-6 Гвт.ТПЭС, имеющие в качестве привода электрогенераторов конденсационные турбины и не использующие тепло отработавшего пара для снабжения тепловой энергией внешних потребителей, называются конденсационными электростанциями (официальное название в СССР - Государственная районная электрическая станция, или ГРЭС). На ГРЭС вырабатывается около электроэнергии, производимой на ТЭС. ТПЭС, оснащенные теплофикационными турбинами и отдающие тепло отработавшего пара промышленным или коммунально-бытовым потребителям, называемым теплоэлектроцентралями (ТЭЦ); ими вырабатывается около электроэнергии, производимой на ТЭС.

    ТЭС с приводом электрогенератора от газовой турбины называются газотурбинными электростанциями (ГТЭС). В камере сгорания ГТЭС сжигают газ или жидкое топливо; продукты сгорания с температурой 750-900 °С поступают в газовую турбину, вращающую электрогенератор. Кпд таких ТЭС обычно составляет 26-28%, мощность - до нескольких сотен Мвт. ГТЭС обычно применяются для покрытия пиков электрической нагрузки (см. Пиковая электростанция).

    Тепловые Электростанции работает на традиционном топливе:уголь ,мазут,газ,торф,горячие сланцы.

    1.Угольная энергетика -72% электроэнергии в Казахстане вырабатывают 37 тепловых электростанций, работающих на углях Экибастузского, Майкубинского, Тургайского и Карагандинского бассейнов. Крупнейшая из построенных в Казахстане - ГРЭС-1 Экибастуза - 8 энергоблоков с установочной мощностью 500 МВт каждый, работающих на бурых углях местных угольных разрезов, однако, в настоящее время располагаемая мощность станции составляет 2250 МВт. Наибольшую выработку электроэнергии осуществляет Аксусская (Ермаковская) ГРЭС. В 2006 году эта станция выработала 16 % всей электроэнергии, произведённой в Казахстане. Таким образом ресурс имеющейся мощности используется только на 55%. Мешает полному использованию два основных фактора: низкий уровень добычи углей и неразвитость казахстанской инфраструктуры ЛЭП, когда электрическая энергия не может быть эффективно доставлена на всю территорию страны. Это привело к такой ситуации, когда значительная часть электрической энергии экспортируется в Россию по ЛЭП, построенным еще в советское время.

    Угольная энергетика, к сожалению, дает и основное загрязнение природной среды. Так как в Экибастузе используется бурый уголь с высоким, более 30% содержанием минеральных веществ, то шлейф выбросов угольных тепловых электростанций распространяется на весь северо-восток Казахстана, Сибирь и Монголию. Среди этих минеральных веществ много экологически очень вредных, ядовитых.

    Альтернативной технологией является подземная газификация угля, которая позволяет:

    Исключить подземные (шахтные и карьерные) работы, а значит исключить травматизм и жертвы среди шахтеров;

    Более полно вырабатывать месторождения угля;

    Существенно меньше затрачивать средств на разработку месторождений угля;

    Сохранять нетронутым природный ландшафт в местности разработки;

    Получать ценное сырье для химической промышленности.

    Комплексная технология газификации угля заключается в поджиге угольного пласта через скважины, извлечение горючего газа, образующегося при нагреве угольного пласта, выделения из него от него конденсированием ценных органических веществ и использование газа для получения электроэнергии на тепловой газовой электростанции.

    2. Гидроэлектроэнергия

    В Казахстане имеются значительные гидроресурсы, теоретически мощность всех гидроресурсов страны составляют 170 млрд кВт·ч в год, то есть только незначительная часть гидроэнергоресурсов используется в настоящее время.

    Основные реки: Иртыш, Или и Сырдарья. Экономически эффективные гидроресурсы сосредоточены в основном на востоке (горный Алтай) и на юге страны. Крупнейшие ГЭС: Бухтарминская, Шульбинская, Усть-Каменогорская (на реке Иртыш) и Капчагайская (на реке Или) обеспечивающие 10 % потребностей страны.

    В Казахстане планируется увеличение использования гидроресурсов в среднесрочном периоде. В стадии строительства находится Мойнакская ГЭС (300 МВт), проектируются Булакская ГЭС (78 МВт), Кербулакская ГЭС (50 МВт) и ряд малых ГЭС.

    К сожалению, постройка гидроэлектростанций часто связана с нарушением природной среды: из оборота изымается много сельскохозяйственных и заповедных земель, нарушается нерест рыбы и вся речная экология, вырубаются леса под строительство ЛЭП.

    3.Электроэнергия из природного газа

    В Казахстане имеются значительные ресурсы попутного газа, добываемого вместе с нефтью. Его сжигание дает до 10% электроэнергии страны, составляя основную ее часть на западе Казахстана.Хотя электростанции на газе высокоэкологичны, но сжигание такого ценного для химической промышленности продукта совершенно нерационально и полностью соответствует фразе великого химика Д.И. Менделеева, который сравнивал такое сжигание с использованием банковских ассигнаций в качестве топлива.

    4.Электроэнергия из мазута, нефтяных отходов

    Электроэнергия из мазута, нефтяных отходов к сожалению, Казахстан экспортирует большую часть своей нефти в сыром виде. Это несет в себе многократный ущерб:

    фактически отнимается собственность будущих поколений, продаваемая за рубеж по цене как минимум на порядок ниже той, которая будет в будущем,

    из-за отсутствия переработки основной части нефти в Казахстане теряется выгода от продажи готовых дорогих продуктов крекинга,

    теряется возможность развития собственной нефтехимии на базе продуктов перегонки нефти.

    теряется возможность развития мазутной и нефтешламовой электроэнергетики, которая в Казахстане составляет менее 5% от вырабатываемой электроэнергии, тогда как, к примеру, в США этот сектор энергетики является основным. В результате США имеет очень дешевую электроэнергию и ее мировой максимум на душу населения.

    Альтернативным рачительным и экологичным решением может быть постройка нефтеперегонных заводов, производящих с помощью крекинга - разделения нефтяных фракций более дорогих и готовых к употреблению нефтепродуктов, и веществ для химической промышленности, а для энергетики - производство дешевого и более экологичного, чем бурый уголь, топлива - мазута.

    5.Торф (устар. турф) - горючее полезное ископаемое и агроруда; образовано скоплением остатков мхов, подвергшихся неполному разложению в условиях болот. Для болота характерно отложение на поверхности почвы неполно разложившегося органического вещества, превращающегося в дальнейшем в торф.Содержит 50-60 % углерода. Теплота сгорания (максимальная) 24 МДж/кг. Используется комплексно как топливо, удобрение, теплоизоляционный материал и др. Торф также является важным газоносным материалом.

    6.Горючий сланец - полезное ископаемое из группы твёрдых каустобиолитов, дающее при сухой перегонке значительное количество смолы (близкой по составу к нефти). Сланцы в основном образовались 450 миллионов лет тому назад на дне моря из растительных и животных остатков.Горючий сланец – метаморфическая горная порода из группы твердых каустобиолитов.

    Структура сланцеватая. Легко распадается на плитки. Легкий. Загорается от спички и издает запах жженой резины, сильно коптит.

    Глинистые или мергелистые сланцы, обогащенные органическими веществами и имеющие в силу этого черный цвет; иногда цвет желтый.

    ГЭС-гидравлические электростанции .

    Гидроэлектроста́нция (ГЭС) - электростанция, в качестве источника энергии использующая энергию водного потока. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища.Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки, благоприятствуют гидростроительству каньонообразные виды рельефа.

    Гидроэлектрические станции также разделяются в зависимости от принципа использования природных ресурсов, и, соответственно, образующейся концентрации воды. Здесь можно выделить следующие ГЭС:русловые и плотинные ГЭС. Это наиболее распространенные виды гидроэлектрических станций. Напор воды в них создается посредством установки плотины, полностью перегораживающей реку, или поднимающей уровень воды в ней на необходимую отметку. Такие гидроэлектростанции строят на многоводных равнинных реках, а также на горных реках, в местах, где русло реки более узкое, сжатое.

    приплотинные ГЭС. Строятся при более высоких напорах воды. В этом случае река полностью перегораживается плотиной, а само здание ГЭС располагается за плотиной, в нижней её части. Вода, в этом случае, подводится к турбинам через специальные напорные тоннели, а не непосредственно, как в русловых ГЭС.

    деривационные гидроэлектростанции. Такие электростанции строят в тех местах, где велик уклон реки. Необходимая концентрация воды в ГЭС такого типа создается посредством деривации. Вода отводится из речного русла через специальные водоотводы. Последние - спрямлены, и их уклон значительно меньший, нежели средний уклон реки. В итоге вода подводится непосредственно к зданию ГЭС. Деривационные ГЭС могут быть разного вида - безнапорные или с напорной деривацией. В случае с напорной деривацией, водовод прокладывается с большим продольным уклоном. В другом случае в начале деривации на реке создается более высокая плотина, и создается водохранилище - такая схема еще называется смешанной деривацией, так как используются оба метода создания необходимой концентрации воды.

    гидроаккумулирующие электростанции. Такие ГАЭС способны аккумулировать вырабатываемую электроэнергию и пускать её в ход в моменты пиковых нагрузок. Принцип работы таких электростанций следующий: в определенные периоды (не пиковой нагрузки), агрегаты ГАЭС работают как насосы от внешних источников энергии и закачивают воду в специально оборудованные верхние бассейны. Когда возникает потребность, вода из них поступает в напорный трубопровод и приводит в действие турбины.

    В состав гидроэлектрических станций, в зависимости от их назначения, также могут входить дополнительные сооружения, такие как шлюзы или судоподъёмники, способствующие навигации по водоему, рыбопропускные, водозаборные сооружения, используемые для ирригации, и многое другое.Ценность гидроэлектрической станции состоит в том, что для производства электрической энергии они используют возобновляемые природные ресурсы. Ввиду того, что потребности в дополнительном топливе для ГЭС нет, конечная стоимость получаемой электроэнергии значительно ниже, чем при использовании других видов электростанций.

    АЭС-Атомные электростанции.

    А́томная электроста́нция (АЭС) - ядерная установка для производства энергии в заданных режимах и условиях применения, располагающаяся в пределах определённой проектом территории, на которой для осуществления этой цели используются ядерный реактор (реакторы) и комплекс необходимых систем, устройств, оборудования и сооружений с необходимыми работниками (персоналом).Атомная электростанция (АЭС), электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую. Генератором энергии на АЭС является атомный реактор (см. Ядерный реактор). Тепло, которое выделяется в реакторе в результате цепной реакции деления ядер некоторых тяжёлых элементов, затем так же, как и на обычных тепловых электростанциях (ТЭС), преобразуется в электроэнергию. В отличие от ТЭС, работающих на органическом топливе, АЭС работает на ядерном горючем.При делении 1 г изотопов урана или плутония высвобождается 22 500 квт ч, что эквивалентно энергии, содержащейся в 2800 кг условного топлива. Установлено, что мировые энергетические ресурсы ядерного горючего (уран, плутоний и др.) существенно превышают энергоресурсы природных запасов органического топлива (нефть, уголь, природный газ и др.). Это открывает широкие перспективы для удовлетворения быстро растущих потребностей в топливе. Кроме того, необходимо учитывать всё увеличивающийся объём потребления угля и нефти для технологических целей мировой химической промышленности, которая становится серьёзным конкурентом тепловых электростанций. Несмотря на открытие новых месторождений органического топлива и совершенствование способов его добычи, в мире наблюдается тенденция к относит увеличению его стоимости. Это создаёт наиболее тяжёлые условия для стран, имеющих ограниченные запасы топлива органического происхождения. Очевидна необходимость быстрейшего развития атомной энергетики, которая уже занимает заметное место в энергетическом балансе ряда промышленных стран мира.

    Первая в мире АЭС опытно-промышленного назначения (рис. 1) мощностью 5 Мвт была пущена в СССР 27 июня 1954 г. в г. Обнинске. До этого энергия атомного ядра использовалась преимущественно в военных целях. Пуск первой АЭС ознаменовал открытие нового направления в энергетике, получившего признание на 1-й Международной научно-технической конференции по мирному использованию атомной энергии.Во второй половине 40-х гг., ещё до окончания работ по созданию первой советской атомной бомбы (её испытание состоялось 29 августа 1949 года), советские учёные приступили к разработке первых проектов мирного использования атомной энергии, генеральным направлением которого сразу же стала электроэнергетика.

    Термоядерная энергетика - ещё более интересной, хотя и относительно отдалённой перспективой выглядит использование энергии ядерного синтеза. Термоядерные реакторы, по расчётам, будут потреблять меньше топлива на единицу энергии, и как само это топливо (дейтерий, литий, гелий-3), так и продукты их синтеза не радиоактивны и, следовательно, экологически безопасны.

    Ветряные электростанции .

    Ветровая электростанция - несколько ВЭУ, собранных в одном или нескольких местах и объединённых в единую сеть. Крупные ветровые электростанции могут состоять из 100 и более ветрогенераторов. Иногда ветровые электростанции называют «ветряными фермами» (от англ. Wind farm).

    Самый распространённый в настоящее время тип ветряных электростанций. Ветрогенераторы устанавливаются на холмах или возвышенностяхПромышленный ветрогенератор строится на подготовленной площадке за 7-10 дней. Получение разрешений регулирующих органов на строительство ветряной электростанции может занимать год и более.

    Для строительства необходима дорога до строительной площадки, тяжёлая подъёмная техника с выносом стрелы более 50 метров, так как гондолы устанавливаются на высоте около 50 метров.

    Электростанция соединяется кабелем с передающей электрической сетью.

    Крупнейшей на данный момент ветряной электростанцией является электростанция Альта, расположенная в штате Калифорния, США. Полная мощность - 1550 МВт.

    Прибрежная -строительство прибрежной электростанции в Германии.Прибрежные ветряные электростанции строят на небольшом удалении от берега моря или океана. На побережье с суточной периодичностью дует бриз, что вызвано неравномерным нагреванием поверхности суши и водоёма. Дневной, или морской бриз, движется с водной поверхности на сушу, а ночной, или береговой - с остывшего побережья к водоёму.

    Шельфовые ветряные электростанции строят в море: 10-60 километров от берега. Шельфовые ветряные электростанции обладают рядом преимуществ:

    их практически не видно с берега;они не занимают землю;они имеют большую эффективность из-за регулярных морских ветров.

    Шельфовые электростанции строят на участках моря с небольшой глубиной. Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров. Электроэнергия передаётся на землю по подводным кабелям.

    Солнечные электростанции .

    Солнечная электростанция - инженерное сооружение, служащее преобразованию солнечной радиации в электрическую энергию. Способы преобразования солнечной радиации различны и зависят от конструкции электростанции.

    СЭС башенного типа .Данные электростанции основаны на принципе получения водяного пара с использованием солнечной радиации. В центре станции стоит башня высотой от 18 до 24 метров (в зависимости от мощности и некоторых других параметров высота может быть больше либо меньше), на вершине которой находится резервуар с водой. Этот резервуар покрашен в чёрный цвет для поглощения теплового излучения. Также в этой башне находится насосная группа, доставляющая пар на турбогенератор, который находится вне башни. По кругу от башни на некотором расстоянии располагаются гелиостаты. Гелиостат - зеркало площадью в несколько квадратных метров, закреплённое на опоре и подключённое к общей системе позиционирования. То есть, в зависимости от положения солнца, зеркало будет менять свою ориентацию в пространстве. Основная и самая трудная задача - это позиционирование всех зеркал станции так, чтобы в любой момент времени все отраженные лучи от них попали на резервуар. В ясную солнечную погоду температура в резервуаре может достигать 700 градусов. Такие температурные параметры используются на большинстве традиционных тепловых электростанций, поэтому для получения энергии используются стандартные турбины. Фактически на станциях такого типа можно получить сравнительно большой КПД (около 20 %) и высокие мощности.

    СЭС тарельчатого типа .Данный тип СЭС использует принцип получения электроэнергии, схожий с таковым у Башенных СЭС, но есть отличия в конструкции самой станции. Станция состоит из отдельных модулей. Модуль состоит из опоры, на которую крепится ферменная конструкция приемника и отражателя. Приемник находится на некотором удалении от отражателя, и в нем концентрируются отраженные лучи солнца. Отражатель состоит из зеркал в форме тарелок (отсюда название), радиально расположенных на ферме. Диаметры этих зеркал достигают 2 метров, а количество зеркал - нескольких десятков (в зависимости от мощности модуля). Такие станции могут состоять как из одного модуля (автономные), так и из нескольких десятков (работа параллельно с сетью).

    СЭС, использующие фотобатареи .Основная статья: Фотовольтаическая станция

    СЭС этого типа в настоящее время очень распространены, так как в общем случае СЭС состоит из большого числа отдельных модулей (фотобатарей) различной мощности и выходных параметров. Данные СЭС широко применяются для энергообеспечения как малых, так и крупных объектов (частные коттеджи, пансионаты, санатории, промышленные здания и т. д.). Устанавливаться фотобатареи могут практически везде, начиная от кровли и фасада здания и заканчивая специально выделенными территориями. Установленные мощности тоже колеблются в широком диапазоне, начиная от снабжения отдельных насосов, заканчивая электроснабжением небольшого посёлка.

    СЭС, использующие параболоцилиндрические концентраторы. Принцип работы данных СЭС заключается в нагревании теплоносителя до параметров, пригодных к использованию в турбогенераторе.

    Конструкция СЭС : на ферменной конструкции устанавливается параболоцилиндрическое зеркало большой длины, а в фокусе параболы устанавливается трубка, по которой течет теплоноситель (чаще всего масло). Пройдя весь путь, теплоноситель разогревается и в теплообменных аппаратах отдаёт теплоту воде, которая превращается в пар и поступает на турбогенератор.

    СЭС, использующие двигатель Стирлинга

    Представляют собой СЭС с параболическими концентраторами, у которых в фокусе установлен двигатель Стирлинга. Существуют конструкции двигателей Стирлинга, которые непосредственно преобразуют колебания поршня в электрическую энергию, без использования кривошипно-шатунного механизма. Это позволяет достичь высокой эффективности преобразования энергии. Эффективность таких электростанций достигает 31,25%. В качестве рабочего тела используется водород или гелий.

    Комбинированные СЭС [править | править исходный текст]

    Часто на СЭС различных типов дополнительно устанавливают теплообменные аппараты для получения горячей воды, которая используется как для технических нужд, так и для горячего водоснабжения и отопления. В этом и состоит суть комбинированных СЭС. Также на одной территории возможна параллельная установка концентраторов и фотобатарей, что тоже считается комбинированной СЭС.

    Солнечно-вакуумные электростанции .Используют энергию воздушного потока, искусственно создаваемого путем использования разности температур воздуха в приземном слое воздуха, нагреваемого солнечными лучами в закрытом прозрачными стеклами участке, и на некоторой высоте. Состоят из накрытого стеклянной крышей участка земли и высокой башни, у основания которой расположена воздушная турбина с электрогенератором. Вырабатываемая мощность растет с ростом разности температур, которая увеличивается с высотой башни. Путём испоользования энергии нагретой почвы способны работать почти круглосуточно, что является их серъёзным преимуществом.

    Казахстан обладает крупными запасами энергетических ресурсов (нефть, газ, уголь, уран) и является сырьевой страной, живущей за счет продажи природных запасов энергоносителей. До 2010 года Казахстан являлся нетто-экспортёром электроэнергии, а после 2010 года является нетто-импортером, то есть потребляет больше электроэнергии, чем производит. Север Казахстана экспортирует электроэнергию, производимую на построенной еще в советское время Экибастузской ГРЭС-1, в Россию, а юг покупает её у Киргизии и Узбекистана.

    Производство электроэнергии

    Казахстан обладает крупными запасами энергетических ресурсов (нефть, газ, уголь, уран) и является сырьевой страной, живущей за счет продажи природных запасов энергоносителей. До 2010 года Казахстан являлся нетто-экспортёром электроэнергии, а после 2010 года является нетто-импортером, то есть потребляет больше электроэнергии, чем производит. Север Казахстана экспортирует электроэнергию, производимую на построенной еще в советское время Экибастузской ГРЭС-1, в Россию, а юг покупает её у Киргизии и Узбекистана.Суммарная установленная мощность всех электростанций Казахстана составляет 19 тысяч МВт, а фактическая мощность - 14 558,0 МВт. Казахстан вырабатывает 87,2 млрд. КВтчас электроэнергии в год (данные 2012 г., против 1053 млрд. КВтчас Россией, и 3900 млрд. КВтчас - США, 4744 млрд. КВтчас - Китаем), то есть электровооруженность Казахстана 3,9 МВтчас/чел в год против 6,7 - в России, 14 - США, 3,2 - в КНР. К сожалению, выработка большинства электростанций не достигает установленной мощности (уровень выработки 1990 года - 87,4 млрд. КВтчас). Выработка по типу электростанций распределяется следующим образом:

    ТЭС (тепловые электростанции) - 87,7 %, в том числе:

    КЭС (конденсационные электростанции) - 48,9 %;

    ТЭЦ (теплоэлектроцентрали) - 36,6 %;

    ГТЭС (газотурбинные электростанции) - 2,3 %;

    error: