Признак четности функции. Четность и нечетность функции

Определение 1. Функцияназываетсячетной (нечетной ), если вместе с каждым значением переменной
значение –х также принадлежит
и выполняется равенство

Таким образом, функция может быть четной или нечетной только тогда, когда ее область определения симметрична относительно начала координат на числовой прямой (числа х и –х одновременно принадлежат
). Например, функция
не является четной и нечетной, так как ее область определения
не симметрична относительно начала координат.

Функция
четная, так как
симметрична относительно начала координат и.

Функция
нечетная, так как
и
.

Функция
не является четной и нечетной, так как хотя
и симметрична относительно начала координат, равенства (11.1) не выполняются. Например,.

График четной функции симметричен относительно оси Оу , так как если точка

тоже принадлежит графику. График нечетной функции симметричен относительно начала координат, так как если
принадлежит графику, то и точка
тоже принадлежит графику.

При доказательстве четности или нечетности функции бывают полезны следующие утверждения.

Теорема 1. а) Сумма двух четных (нечетных) функций есть функция четная (нечетная).

б) Произведение двух четных (нечетных) функций есть функция четная.

в) Произведение четной и нечетной функций есть функция нечетная.

г) Если f – четная функция на множествеХ , а функцияg определена на множестве
, то функция
– четная.

д) Если f – нечетная функция на множествеХ , а функцияg определена на множестве
и четная (нечетная), то функция
– четная (нечетная).

Доказательство . Докажем, например, б) и г).

б) Пусть
и
– четные функции. Тогда, поэтому. Аналогично рассматривается случай нечетных функций
и
.

г) Пусть f – четная функция. Тогда.

Остальные утверждения теоремы доказываются аналогично. Теорема доказана.

Теорема 2. Любую функцию
, заданную на множествеХ , симметричном относительно начала координат, можно представить в виде суммы четной и нечетной функций.

Доказательство . Функцию
можно записать в виде

.

Функция
– четная, так как
, а функция
– нечетная, поскольку. Таким образом,
, где
– четная, а
– нечетная функции. Теорема доказана.

Определение 2. Функция
называетсяпериодической , если существует число
, такое, что при любом
числа
и
также принадлежат области определения
и выполняются равенства

Такое число T называетсяпериодом функции
.

Из определения 1 следует, что если Т – период функции
, то и число –Т тоже является периодом функции
(так как при заменеТ на –Т равенство сохраняется). С помощью метода математической индукции можно показать, что еслиТ – период функцииf , то и
, тоже является периодом. Отсюда следует, что если функция имеет период, то она имеет бесконечно много периодов.

Определение 3. Наименьший из положительных периодов функции называется ееосновным периодом.

Теорема 3. ЕслиТ – основной период функцииf , то остальные периоды кратны ему.

Доказательство . Предположим противное, то есть что существует периодфункцииf (>0), не кратныйТ . Тогда, разделивнаТ с остатком, получим
, где
. Поэтому

то есть – период функцииf , причем
, а это противоречит тому, чтоТ – основной период функцииf . Из полученного противоречия следует утверждение теоремы. Теорема доказана.

Хорошо известно, что тригонометрические функции являются периодическими. Основной период
и
равен
,
и
. Найдем период функции
. Пусть
- период этой функции. Тогда

(так как
.

илиилиили
.

Значение T , определяемое из первого равенства, не может быть периодом, так как зависит отх , т.е. является функцией отх , а не постоянным числом. Период определяется из второго равенства:
. Периодов бесконечно много, при
наименьший положительный период получается при
:
. Это – основной период функции
.

Примером более сложной периодической функции является функция Дирихле

Заметим, что если T – рациональное число, то
и
являются рациональными числами при рациональномх и иррациональными при иррациональномх . Поэтому

при любом рациональном числе T . Следовательно, любое рациональное числоT является периодом функции Дирихле. Ясно, что основного периода у этой функции нет, так как есть положительные рациональные числа, сколь угодно близкие к нулю (например, рациональное числоможно сделать выборомn сколь угодно близким к нулю).

Теорема 4. Если функцияf задана на множествеХ и имеет периодТ , а функцияg задана на множестве
, то сложная функция
тоже имеет периодТ .

Доказательство . Имеем, поэтому

то есть утверждение теоремы доказано.

Например, так как cos x имеет период
, то и функции
имеют период
.

Определение 4. Функции, не являющиеся периодическими, называютсянепериодическими .

Графики четной и нечетной функции обладают следующими особенностями:

Если функция является четной, то ее график симметричен относительно оси ординат. Если функция является нечетной, то ее график симметричен относительно начала координат.

Пример. Построить график функции \(y=\left|x \right|\).

Решение. Рассмотрим функцию: \(f\left(x \right)=\left|x \right|\) и подставим вместо \(x \) противоположное \(-x \). В результате не сложных преобразований получим: $$f\left(-x \right)=\left|-x \right|=\left|x \right|=f\left(x \right)$$ Другими словами, если аргумент заменить на противоположный по знаку, функция не изменится.

Значит эта функция - четная, а ее график будет симметричен относительно оси ординат (вертикальной оси). График этой функции приведен на рисунке слева. Это означает что при построении графика, можно строить только половину, а вторую часть (левее вертикальной оси рисовать уже симметрично правой части). Определив симметричность функции перед началом построения ее графика, можно намного упростить процесс построения или исследования функции. Если сложно выполнять проверку в общем виде, можно поступить проще: подставить в уравнение одинаковые значения разных знаков. Например -5 и 5. Если значения функции получатся одинаковыми, то можно надеяться что функция будет четной. С математической точки зрения такой подход не совсем правильный, но с практической - удобный. Чтобы увеличить достоверность результата можно подставить несколько пар таких противоположных значений.


Пример. Построить график функции \(y=x\left|x \right|\).

Решение. Выполним проверку так же как в предыдущем примере: $$f\left(-x \right)=x\left|-x \right|=-x\left|x \right|=-f\left(x \right)$$ Это означает, что исходная функция является нечетной (знак функции поменялся на противоположный).

Вывод: функция симметрична относительно начала координат. Можно строить только одн половину, а вторую рисовать симметрично. Такую симметрию рисовать сложнее. Это означает, что вы смотрите на график с другой строны листа да еще и перевернув вверх ногами. А можно еще так: берем нарисованную часть и вращаем ее вокруг начала координат на 180 градусов против часовой стрелки.


Пример. Построить график функции \(y=x^3+x^2\).

Решение. Выполним такую же проверку на смену знака, как и в предыдущих двух примерах. $$f\left(-x \right)=\left(-x \right)^3+\left(-x \right)^2=-x^2+x^2$$ В результате получим, что: $$f\left(-x \right)\not=f\left(x \right),f\left(-x \right)\not=-f\left(x \right)$$ А это означает, что функция не является ни четной, ни нечетной.

Вывод: функция не симметрична ни относительно начала координат ни относительно центра системы координат. Это произошло потому, что она представляет собой сумму двух функций: четной и не четной. Такая же ситуация будет если вычитать две разные функции. А вот умножение или деление приведет к другому результату. Например, произведение четной и нечетной функций дает нечетную. Или частное двух нечетных приводит к четной функции.

Преобразование графиков.

Словесное описание функции.

Графический способ.

Графический способ задания функции является наиболее наглядным и часто применяется в технике. В математическом анализе графический способ задания функций используется в качестве иллюстрации.

Графиком функции f называют множество всех точек (x;y) координатной плоскости, где y=f(x), а x «пробегает» всю область определения данной функции.

Подмножество координатной плоскости является графиком какой-либо функции, если оно имеет не более одной общей точки с любой прямой, параллельной оси Оу.

Пример. Является ли графиками функций фигуры, изображенные ниже?

Преимуществом графического задания является его наглядность. Сразу видно, как ведёт себя функция, где возрастает, где убывает. По графику сразу можно узнать некоторые важные характеристики функции.

Вообще, аналитический и графический способы задания функции идут рука об руку. Работа с формулой помогает построить график. А график частенько подсказывает решения, которые в формуле и не заметишь.

Почти любой ученик знает три способа задания функции, которые мы только что рассмотрели.

Попытаемся ответить на вопрос: "А существуют ли другие способы задания функции?"

Такой способ есть.

Функцию можно вполне однозначно задать словами.

Например, функцию у=2х можно задать следующим словесным описанием: каждому действительному значению аргумента х ставится в соответствие его удвоенное значение. Правило установлено, функция задана.

Более того, словесно можно задать функцию, которую формулой задать крайне затруднительно, а то и невозможно.

Например: каждому значению натурального аргумента х ставится в соответствие сумма цифр, из которых состоит значение х. Например, если х=3, то у=3. Если х=257, то у=2+5+7=14. И так далее. Формулой это записать проблематично. А вот табличку легко составить.

Способ словесного описания - достаточно редко используемый способ. Но иногда встречается.

Если есть закон однозначного соответствия между х и у - значит, есть функция. Какой закон, в какой форме он выражен - формулой, табличкой, графиком, словами – сути дела не меняет.

Рассмотрим функции, области определения которых симметричны относительно начала координат, т.е. для любого х из области определения число (-х ) также принадлежит области определения. Среди таких функций выделяют четные и нечетные .

Определение. Функция f называется четной , если для любого х из ее области определения

Пример. Рассмотрим функцию

Она является четной. Проверим это.



Для любого х выполнены равенства

Таким образом, у нас выполняются оба условия, значит функция четная. Ниже представлен график этой функции.

Определение. Функция f называется нечетной , если для любого х из ее области определения

Пример. Рассмотрим функцию

Она является нечетной. Проверим это.

Область определения вся числовая ось, а значит, она симметрична относительно точки (0;0).

Для любого х выполнены равенства

Таким образом, у нас выполняются оба условия, значит функция нечетная. Ниже представлен график этой функции.

Графики, изображенные на первом и третьем рисунках симметричны относительно оси ординат, а графики, изображенные на втором и четвертом рисункам симметричны относительно начала координат.

Какие из функций, графики которых изображены на рисунках являются четными, а какие нечетными?

Исследование функции.

1) D(y) – Область опрделения: множество всех тех значений переменной х. при которых алгебраические выражения f(x) и g(x) имеют смысл.

Если функция задана формулой, то область определения состоит из всех значений независимой переменной, при которых формула имеет смысл.

2) Свойства функции: четность/нечетность, периодичность:

Нечётными и чётными называются функции, графики которых обладают симметрией относительно изменения знака аргумента.

    Нечётная функция - функция, меняющая значение на противоположное при изменении знака независимой переменной (симметричная относительно центра координат).

    Чётная функция - функция, не изменяющая своего значения при изменении знака независимой переменной (симметричная относительно оси ординат).

    Ни чётная ни нечётная функция (функция общего вида) - функция, не обладающая симметрией. В эту категорию относят функции, не подпадающие под предыдущие 2 категории.

    Функции, не принадлежащие ни одной из категорий выше, называются ни чётными ни нечётными (или функциями общего вида).

Нечётные функции

Нечётная степень где - произвольное целое число.

Чётные функции

Чётная степень где - произвольное целое число.

Периоди́ческая фу́нкция ― функция, повторяющая свои значения через некоторый регулярный интервал аргумента, то есть не меняющая своего значения при добавлении к аргументу некоторого фиксированного ненулевого числа (пери́ода функции) на всей области определения.

3) Нули (корни) функции - точки, где она обращается в ноль.

Нахождение точки пересечения графика с осью Oy . Для этого нужно вычислить значение f (0). Найти также точки пересечения графика с осью Ox , для чего найти корни уравнения f (x ) = 0 (или убедиться в отсутствии корней).

Точки, в которых график пересекает ось , называют нулями функции . Чтобы найти нули функции нужно решить уравнение , то есть найти те значения «икс» , при которых функция обращается в ноль.

4) Промежутки постоянства знаков, знаки в них.

Промежутки, где функция f(x) сохраняет знак.

Интервал знакопостоянства – это интервал, в каждой точке которого функция положительна либо отрицательна.

ВЫШЕ оси абсцисс.

НИЖЕ оси .

5) Непрерывность (точки разрыва, характер разрыва, ассимптоты).

Непрерывная функция - функция без «скачков», то есть такая, у которой малые изменения аргумента приводят к малым изменениям значения функции.

Устранимые точки разрыва

Если предел функции существует , но функция не определена в этой точке, либо предел не совпадает со значением функции в данной точке:

,

то точка называется точкой устранимого разрыва функции (в комплексном анализе -устранимая особая точка).

Если «поправить» функцию в точке устранимого разрыва и положить , то получится функция, непрерывная в данной точке. Такая операция над функцией называется доопределением функции до непрерывной или доопределением функции по непрерывности , что и обосновывает название точки, как точки устранимого разрыва.

Точки разрыва первого и второго рода

Если функция имеет разрыв в данной точке (то есть предел функции в данной точке отсутствует или не совпадает со значением функции в данной точке), то для числовых функций возникает два возможных варианта, связанных с существованием у числовых функций односторонних пределов :

    если оба односторонних предела существуют и конечны, то такую точку называют точкой разрыва первого рода . Точки устранимого разрыва являются точками разрыва первого рода;

    если хотя бы один из односторонних пределов не существует или не является конечной величиной, то такую точку называют точкой разрыва второго рода .

Аси́мпто́та - прямая , обладающая тем свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви вбесконечность.

Вертикальная

Вертикальная асимптота - прямая предела .

Как правило, при определении вертикальной асимптоты ищут не один предел, а два односторонних (левый и правый). Это делается с целью определить, как функция ведёт себя по мере приближения к вертикальной асимптоте с разных сторон. Например:

Горизонтальная

Горизонтальная асимптота - прямая вида при условии существования предела

.

Наклонная

Наклонная асимптота - прямая вида при условии существования пределов

Замечание: функция может иметь не более двух наклонных (горизонтальных) асимптот.

Замечание: если хотя бы один из двух упомянутых выше пределов не существует (или равен ), то наклонной асимптоты при (или ) не существует.

если в п. 2.), то , и предел находится по формуле горизонтальной асимптоты, .

6) Нахождение промежутков монотонности. Найти интервалы монотонности функции f (x )(то есть интервалы возрастания и убывания). Это делается с помощью исследования знака производной f (x ). Для этого находят производную f (x ) и решают неравенство f (x )0. На промежутках, где это неравенство выполнено, функция f (x )возрастает. Там, где выполнено обратное неравенство f (x )0, функция f (x )убывает.

Нахождение локального экстремума. Найдя интервалы монотонности, мы можем сразу определить точки локального экстремума там, где возрастание сменяется убыванием, располагаются локальные максимумы, а там, где убывание сменяется возрастанием - локальные минимумы. Вычислить значение функции в этих точках. Если функция имеет критические точки, не являющиеся точками локального экстремума, то полезно вычислить значение функции и в этих точках.

Нахождение наибольшего и наименьшего значений функции y = f(x) на отрезке (продолжение)

1. Найти производную функции: f (x ).

2. Найти точки, в которых производная равна нулю: f (x )=0x 1, x 2 ,...

3. Определить принадлежность точек х 1 , х 2 ,отрезку [a ; b ]: пусть x 1a ;b , а x 2a ;b .

Четность и нечетность функции являются одним из основных ее свойств, и на четность занимает внушительную часть школьного курса по математике. Она во много определяет характер поведения функции и значительно облегчает построение соответствующего графика.

Определим четность функции. Вообще говоря, исследуемую функцию считают четной, если для противоположных значений независимой переменной (x), находящихся в ее области определения, соответствующие значения y (функции) окажутся равными.

Дадим более строгое определение. Рассмотрим некоторую функцию f (x), которая задана в области D. Она будет четной, если для любой точки x, находящейся в области определения:

  • -x (противоположная точка) также лежит в данной области определения,
  • f (-x) = f (x).

Из приведенного определения следует условие, необходимое для области определения подобной функции, а именно, симметричность относительно точки О, являющейся началом координат, поскольку если некоторая точка b содержится в области определения четной функции, то соответствующая точка - b тоже лежит в этой области. Из вышесказанного, таким образом, вытекает вывод: четная функция имеет симметричный по отношению к оси ординат (Oy) вид.

Как на практике определить четность функции?

Пусть задается с помощью формулы h(x)=11^x+11^(-x). Следуя алгоритму, вытекающему непосредственно из определения, исследуем прежде всего ее область определения. Очевидно, что она определена для всех значений аргумента, то есть первое условие выполнено.

Следующим шагом подставим вместо аргумента (x) его противоположное значение (-x).
Получаем:
h(-x) = 11^(-x) + 11^x.
Поскольку сложение удовлетворяет коммутативному (переместительному) закону, то очевидно, h(-x) = h(x) и заданная функциональная зависимость - четная.

Проверим четность функции h(x)=11^x-11^(-x). Следуя тому же алгоритму, получаем, что h(-x) = 11^(-x) -11^x. Вынеся минус, в итоге, имеем
h(-x)=-(11^x-11^(-x))=- h(x). Следовательно, h(x) - нечетная.

Кстати, следует напомнить, что есть функции, которые невозможно классифицировать по этим признакам, их называют ни четными, ни нечетными.

Четные функции обладают рядом интересных свойств:

  • в результате сложения подобных функций получают четную;
  • в результате вычитания таких функций получают четную;
  • четной, также четная;
  • в результате умножения двух таких функций получают четную;
  • в результате умножения нечетной и четной функций получают нечетную;
  • в результате деления нечетной и четной функций получают нечетную;
  • производная такой функции - нечетная;
  • если возвести нечетную функцию в квадрат, получим четную.

Четность функции можно использовать при решении уравнений.

Чтобы решить уравнение типа g(x) = 0, где левая часть уравнения представляет из себя четную функцию, будет вполне достаточно найти ее решения для неотрицательных значений переменной. Полученные корни уравнения необходимо объединить с противоположными числами. Один из них подлежит проверке.

Это же успешно применяют для решения нестандартных задач с параметром.

Например, есть ли какое-либо значение параметра a, при котором уравнение 2x^6-x^4-ax^2=1 будет иметь три корня?

Если учесть, что переменная входит в уравнение в четных степенях, то понятно, что замена х на - х заданное уравнение не изменит. Отсюда следует, что если некоторое число является его корнем, то им же является и противоположное число. Вывод очевиден: корни уравнения, отличные от нуля, входят в множество его решений «парами».

Ясно, что само число 0 не является, то есть число корней подобного уравнения может быть только четным и, естественно, ни при каком значении параметра оно не может иметь трех корней.

А вот число корней уравнения 2^x+ 2^(-x)=ax^4+2x^2+2 может быть нечетным, причем для любого значения параметра. Действительно, легко проверить, что множество корней данного уравнения содержит решения «парами». Проверим, является ли 0 корнем. При подстановке его в уравнение, получаем 2=2 . Таким образом, кроме «парных» 0 также является корнем, что и доказывает их нечетное количество.

error: