Классическая (ньютоновская) механика. Классическая механика (механика Ньютона)

Механика - раздел физики, который изучает одну из простейших и наиболее общих форм движения в природе, называемую механическим движением.

Механическое движение заключается в изменении с течением времени положения тел или их частей друг относительно друга. Так механическое движение совершают планеты, обращающиеся по замкнутым орбитам вокруг Солнца; различные тела, перемещающиеся по поверхности Земли; электроны, движущиеся под действием электромагнитного поля и т.д. Механическое движение присутствует в других более сложных формах материи как составная, но не исчерпывающая часть.

В зависимости от характера изучаемых объектов механика подразделяется на механику материальной точки, механику твердого тела и механику сплошной среды.

Принципы механики впервые были сформулированы И. Ньютоном (1687 год) на основе экспериментального изучения движения макротел с малыми по сравнению со скоростью света в вакууме (3·10 8 м/с) скоростями.

Макротелами называют обычные тела, окружающие нас, то есть тела, состоящие из громадного количества молекул и атомов.

Механику, изучающую движение макротел со скоростями намного меньшими скорости света в вакууме, называют классической.

В основе классической механики лежат следующие представления Ньютона о свойствах пространства и времени.

Любой физический процесс протекает в пространстве и времени. Это видно хотя бы из того, что во всех областях физических явлений каждый закон явно или неявно содержит пространственно-временные величины - расстояния и промежутки времени.

Пространство, имеющее три измерения, подчиняется эвклидовой геометрии, то есть является плоским.

Расстояния измеряются масштабами, основным свойством которых является то, что два однажды совпавших по длине масштаба всегда остаются равными друг другу, то есть при каждом последующем наложении совпадают.

Промежутки времени измеряются часами, причем роль последних может выполнять любая система, совершающая повторяющийся процесс.

Основной чертой представлений классической механики о размерах тел и промежутках времени является их абсолютность : масштаб всегда имеет одну и туже длину, независимо от того, как он движется относительно наблюдателя; двое часов, имеющих одинаковый ход и приведенные однажды в соответствие друг другу, показывают одно и тоже время независимо от того, как они движутся.

Пространство и время обладают замечательными свойствами симметрии , налагающими ограничения на протекание в них тех или иных процессов. Эти свойства установлены на опыте и кажутся на первый взгляд столь очевидными, что, вроде бы, и нет надобности выделять их и заниматься ими. А между тем, не будь пространственной и временной симметрии, никакая физическая наука не могла бы ни возникнуть, ни развиваться.

Оказывается, пространство однородно и изотропно , а время - однородно .

Однородность пространства состоит в том, что одинаковые физические явления в одних и тех же условиях совершаются одинаково в различных частях пространства. Все точки пространства, таким образом, совершенно неразличимы, равноправны и любая из них может быть принята за начало системы координат. Однородность пространства проявляется в законе сохранения импульса .

Пространство обладает еще и изотропностью: одинаковостью свойств во всех направлениях. Изотропность пространства проявляется в законе сохранения момента импульса .

Однородность времени заключается в том, что все моменты времени также равноправны, эквивалентны, то есть протекание одинаковых явлений в одних и тех же условия одинаково, безотносительно ко времени их осуществления и наблюдения.

Однородность времени проявляется в законе сохранения энергии .

Не будь этих свойств однородности, установленный в Минске физический закон был бы несправедлив в Москве, а открытый сегодня в том же месте мог бы быть несправедлив завтра.

В классической механике признается справедливость закона инерции Галилея-Ньютона, согласно которому тело, не подверженное действию со стороны других тел, движется прямолинейно и равномерно. Этот закон утверждает существование инерциальных систем отсчета, в которых выполняются законы Ньютона (а также принцип относительности Галилея). Принцип относительности Галилея утверждает, что все инерциальные системы отсчета эквивалентны друг другу в механическом отношении , все законы механики одинаковы в этих системах отсчета, или, другими словами, инвариантны относительно преобразований Галилея, выражающих пространственно-временную связь любого события в разных инерциальных системах отсчета. Преобразования Галилея показывают, что координаты любого события относительны, то есть имеют разные значения в разных системах отсчета; моменты же времени, когда событие произошло, одинаковы в разных системах. Последнее означает, что время течет одинаковым образом в разных системах отсчета. Это обстоятельство казалось столь очевидным, что даже не оговаривалось как специальный постулат.

В классической механике соблюдается принцип дальнодействия: взаимодействия тел, распространяются мгновенно, то есть с бесконечно большой скоростью .

В зависимости от того, с какими скоростями происходят перемещения тел и каковы размеры самих тел, механика подразделяется на классическую, релятивистскую, квантовую.

Как уже указывалось, законы классической механики применимы лишь к движению макротел, масса которых гораздо больше массы атома, с малыми скоростями по сравнению со скоростью света в вакууме.

Релятивистская механика рассматривает движение макротел со скоростями, близкими к скорости света в вакууме.

Квантовая механика - механика микрочастиц, движущихся со скоростями намного меньшими скорости света в вакууме.

Релятивистская квантовая механика - механика микрочастиц, движущихся со скоростями, приближающимися к скорости света в вакууме.

Чтобы определить принадлежит ли частица к макроскопическим, применимы ли к ней классические формулы, нужно воспользоваться принципом неопределенности Гейзенберга . Согласно квантовой механики реальные частицы могут быть охарактеризованы с помощью координаты и импульса лишь с некоторой точностью. Предел этой точности определяется так

где
ΔX - неопределенность координаты;
ΔP x - неопределенность проекции на ось импульса;
h - постоянная Планка, равная 1,05·10 -34 Дж·с;
"≥" - больше величины, порядка …

Заменив импульс произведением массы на скорость, можно написать

Из формулы видно, что чем меньше масса частицы, тем менее определенными делаются ее координаты и скорость. Для макроскопических тел практическая применимость классического способа описания движения не вызывает сомнений. Допустим, например, что речь идет о движении шарика с массой в 1 г. Обычно положение шарика практически может быть определено с точностью до десятой или сотой доли миллиметра. Во всяком случае, вряд ли имеет смысл говорить об ошибке в определении положения шарика, меньшей размеров атома. Положим поэтому ΔX=10 -10 м. Тогда из соотношения неопределенностей найдем

Одновременная малость величин ΔX и ΔV x и является доказательством практической применимости классического способа описания движения макротел.

Рассмотрим движение электрона в атоме водорода. Масса электрона 9,1·10 -31 кг. Ошибка в положении электрона ΔX во всяком случае не должна превышать размеры атома, то есть ΔX<10 -10 м. Но тогда из соотношения неопределенностей получаем

Эта величина даже больше скорости электрона в атоме, которая по порядку величины равна 10 6 м/с. При таком положении классическая картина движения теряет всякий смысл.

Механику подразделяют на кинематику, статику и динамику . Кинематика описывает движение тел, не интересуясь причинами, обусловившими это движение; статика рассматривает условия равновесия тел; динамика изучает движение тел в связи с теми причинами (взаимодействиями между телами), которые обусловливают тот или иной характер движения.

Реальные движения тел настолько сложны, что, изучая их, необходимо отвлечься от несущественных для рассматриваемого движения деталей (в противном случае задача так усложнилась бы, что решить ее практически было бы невозможно). С этой целью используют понятия (абстракции, идеализации), применимость которых зависит от конкретного характера интересующей нас задачи, а также от степени точности, с которой мы хотим получить результат. Среди этих понятий большую роль играют понятия материальной точки, системы материальных точек, абсолютно твердого тела.

Материальная точка - это физическое понятие, с помощью которого описывается поступательное движение тела, если только его линейные размеры малы в сравнении с линейными размерами других тел в рамках заданной точности определения координаты тела, причем, ей приписывается масса тела.

В природе материальных точек не существует. Одно и то же тело в зависимости от условий можно рассматривать или как материальную точку, или как тело конечных размеров. Так, Землю, движущуюся вокруг Солнца, можно считать материальной точкой. Но при изучении вращения Земли вокруг своей оси ее уже нельзя считать материальной точкой, так как на характер этого движения существенно влияют форма и размеры Земли, и путь, проходимый какой-либо точкой земной поверхности за время, равное периоду ее обращения вокруг своей оси, сравним с линейными размерами земного шара. Самолет можно рассматривать как материальную точку, если изучать движение его центра масс. Но если необходимо учитывать влияние среды или определить усилия в отдельных частях самолета, то мы должны рассматривать самолет как абсолютно твердое тело.

Абсолютно твердым телом называют тело, деформациями которого в условиях данной задачи можно пренебречь.

Система материальных точек - это совокупность рассматриваемых тел, представляющих собой материальные точки.

Изучение движения произвольной системы тел сводится к изучению системы взаимодействующих материальных точек. Естественно, поэтому начать изучение классической механики с механики одной материальной точки, а затем перейти к изучению системы материальных точек.

Вершиной научного творчества И. Ньютона является его бессмертный труд “Математические начала натуральной философии”, впервые опубликованный в 1687 году. В нем он обобщил результаты, полученные его предшественниками и свои собственные исследования и создал впервые единую стройную систему земной и небесной механики, которая легла в основу всей классической физики.

Здесь Ньютон дал определения исходных понятий – количества материи, эквивалентного массе, плотности; количества движения, эквивалентного импульсу, и различных видов силы. Формулируя понятие количества материи, он исходил из представления о том, что атомы состоят из некой единой первичной материи; плотность понимал как степень заполнения единицы объема тела первичной материей.

В этой работе изложено учение Ньютона о всемирном тяготении, на основе которого он разработал теорию движения планет, спутников и комет, образующих солнечную систему. Опираясь на этот закон, он объяснил явление приливов и сжатие Юпитера. Концепция Ньютона явилась основой для многих технических достижений в течение длительного времени. На ее фундаменте сформировались многие методы научных исследований в различных областях естествознания.

Результатом развития классической механики явилось создание единой механической картины мира, в рамках которой все качественное многообразие мира объяснялось различиями в движении тел, подчиняющемся законам ньютоновской механики.

Механика Ньютона, в отличие от предшествующих механических концепций, давало возможность решать задачу о любой стадии движения, как предшествующей, так и последующей, и в любой точке пространства при известных фактах, обусловливающих это движение, а также обратную задачу определения величины и направления действия этих факторов в любой точке при известных основных элементах движения. Благодаря этому механика Ньютона могла использоваться в качестве метода количественного анализа механического движения.

Закон Всемирного тяготения.

Закон всемирного тяготения был открыт И.Ньютоном в 1682 году. По его гипотезе между всеми телами Вселенной действуют силы притяжения, направленные по линии, соединяющей центры масс. У тела в виде однородного шара центр масс совпадает с центром шара.

В последующие годы Ньютон пытался найти физическое объяснение законам движения планет, открытых И.Кеплером в начале XVII века, и дать количественное выражение для гравитационных сил. Так, зная как движутся планеты, Ньютон хотел определить, какие силы на них действуют. Такой путь носит название обратной задачи механики.

Если основной задачей механики является определение координат тела известной массы и его скорости в любой момент времени по известным силам, действующим на тело, то при решении обратной задачи необходимо определить действующие на тело силы, если известно, как оно движется.

Решение этой задачи и привело Ньютона к открытию закона всемирного тяготения: «Все тела притягиваются друг к другу с силой, прямо пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними».

Относительно этого закона нужно сделать несколько важных замечаний.

1, его действие в явной форме распространяется на все без исключения физические материальные тела во Вселенной.

2 сила притяжения Земли у ее поверхности в равной мере воздействует на все материальные тела, находящиеся в любой точке земного шара. Прямо сейчас на нас действует сила земного притяжения, и мы ее реально ощущаем как свой вес. Если мы что-нибудь уроним, оно под действием всё той же силы равноускоренно устремится к земле.

Действием сил всемирного тяготения в природе объясняются многие явления: движение планет в Солнечной системе, искусственных спутников Земли - все они находят объяснение на основе закона всемирного тяготения и законов динамики.

Ньютон первый высказал мысль о том, что гравитационные силы определяют не только движение планет Солнечной системы; они действуют между любыми телами Вселенной. Одним из проявлений силы всемирного тяготения является сила тяжести - так принято называть силу притяжения тел к Земле вблизи ее поверхности.

Сила тяжести направлена к центру Земли. В отсутствие других сил тело свободно падает на Землю с ускорением свободного падения.

Три начала механики.

Ньютона законы механики, три закона, лежащие в основе т. н. классической механики. Сформулированы И. Ньютоном (1687).

Первый закон: «Всякое тело продолжает удерживаться в своём состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние».

Второй закон: «Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует».

Третий закон: «Действию всегда есть равное и противоположное противодействие, иначе, взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны». Н. з. м. появились как результат обобщения многочисленных наблюдений, опытов и теоретических исследований Г. Галилея, Х. Гюйгенса, самого Ньютона и др.

Согласно современным представлениям и терминологии, в первом и втором законах под телом следует понимать материальную точку, а под движением - движение относительно инерциальной системы отсчёта. Математическое выражение второго закона в классической механике имеет вид или mw = F, где m - масса точки, u - её скорость, a w - ускорение, F - действующая сила.

Н. з. м. перестают быть справедливыми для движения объектов очень малых размеров (элементарные частицы) и при движениях со скоростями, близкими к скорости света


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-04

Основная цель данной главы состоит в обеспечении понимания студентом концептуального устройства классической механики. В результате изучения материала данной главы студент должен:

знать

  • основные концепты классической механики и способы управления ими;
  • принципы наименьшего действия и инвариантности, законы Ньютона, концепты силы, детерминизма, массы, протяженности, длительности, времени, пространства;

уметь

  • определять место любого концепта в составе классической механики;
  • давать любому механическому феномену концептуальное истолкование;
  • объяснять механические явления посредством динамики;

владеть

  • концептуальным осмыслением актуальных проблемных ситуаций, связанных с истолкованием физических концептов;
  • критическим отношением к воззрениям различных авторов;
  • теорией концептуальной трансдукции.

Ключевые слова: принцип наименьшего действия, законы Ньютона, пространство, время, динамика, кинематика.

Создание классической механики

Мало кто сомневается, что созданием классической механики Ньютон совершил научный подвиг. Заключался он в том, что впервые был представлен дифференциальный закон движения физических объектов. Благодаря трудам Ньютона физическое знание было поднято на такую высоту, на которой оно никогда не было ранее. Он сумел создать теоретический шедевр, который определял магистральное направление развития физики, по крайней мере, более двух веков. Трудно не согласиться с теми учеными, которые связывают начало научной физики именно с Ньютоном. В дальнейшем предстоит не только выявить главное содержание классической механики, но и, по возможности, понять ее концептуальные узлы, будучи готовым отнестись к выводам Ньютона критически. После него физика прошла трехвековой путь. Ясно, что даже гениально одаренный Ньютон не мог предвосхитить все ее новшества.

Значительный интерес вызывает тот набор концептов, который избрал Ньютон. Это, во-первых, комплект элементарных концептов: масса, сила, протяженность, длительность некоторого процесса. Во-вторых, производные концепты: в частности, скорость и ускорение. В-третьих, два закона . Второй закон Ньютона выражает связь силы, действующей на объект, его массы и приобретаемого им ускорения. Согласно третьему закону Ньютона, силы, с которыми объекты действуют друг на друга, равны по величине, противоположны по направлению и приложены к различным телам.

Но как же обстоят дела в теории Ньютона с принципами? Большинство современных исследователей уверено, что роль принципа в механике Ньютона играет закон, который он называл первым. Обычно его приводят в следующей формулировке: всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние. Пикантность ситуации состоит в том, что, на первый взгляд, указанное положение вроде бы следует непосредственного из второго закона Ньютона. Если сумма сил, приложенных к объекту, равна нулю, то для тела с постоянной массой () ускорение () также равно нулю, что как раз и соответствует содержанию первого закона Ньютона. Тем не менее физики вполне оправданно не считают первый закон

Ньютона всего лишь частным случаем его второго закона. Они полагают, что у Ньютона были веские основания считать главным концептом классической механики именно первый закон, иначе говоря, он придавал ему статус принципа. В современной физике первый закон формулируется, как правило, таким образом: существуют такие системы отсчета, называемые инерциальными, относительно которых свободная материальная точка сохраняет величину и направление своей скорости неограниченно долго. Считается, что именно это обстоятельство Ньютон выразил, но, впрочем, неловко, своим первым законом. Второй закон Ньютона выполняется лишь в тех системах отсчета, для которых справедлив первый закон.

Таким образом, первый закон Ньютона, по сути, необходим для введения представления об инвариантности второго и третьего законов Ньютона. Следовательно, он исполняет роль принципа инвариантности. По мнению автора, вместо формулировки первого закона Ньютона можно было бы ввести принцип инвариантности: существуют системы отсчета, в которых второй и третий закон Ньютона инвариантны.

Итак, вроде бы все расставлено по местам. В соответствии с идеями Ньютона в распоряжении сторонника созданной им механики имеются элементарные и производные концепты, а также законы и принцип инвариантности. Но даже после этой констатации выявляются многочисленные спорные моменты, которые убеждают в необходимости продолжения исследования концептуального содержания механики Ньютона. Уклоняясь от него, невозможно понять подлинное содержание классической механики.

Выводы

  • 1. Научный подвиг Ньютона заключался в том, что он записал дифференциальный закон движения физических объектов под действием сил.
  • 2. Первый закон Ньютона является принципом инвариантности.
  • Строго говоря, первый закон Ньютона является принципом. Именно поэтому мы говорим не о трех, а о двух законах Ньютона. (Прим. авт .)

Механика - это раздел физики, в котором изучается простейшая форма движения материи - механическое движение , которое заключается в изменении с течением времени положения тел или их частей. Тот факт, что механические явления протекают в пространстве и во времени, находит свое отражение в любом законе механики, содержащем явно или неявно пространственно-временные соотношения - расстояния и промежутки времени.

Механика ставит перед собой две основные задачи :

    изучение различных движений и обобщение полученных результатов в виде законов, с помощью которых может быть предсказан характер движения в каждом конкретном случае. Решение этой задачи привело к установлению И. Ньютоном и А. Эйнштейном так называемых динамических законов;

    отыскание общих свойств, присущих любой механической системе в процессе ее движения. В результате решения этой задачи были обнаружены законы сохранения таких фундаментальных величин, как энергия, импульс и момент импульса.

Динамические законы и законы сохранения энергии, импульса и момента импульса представляют собой основные законы механики и составляют содержание данной главы.

§1. Механическое движение: исходные понятия

Классическая механика состоит из трех основных разделов - статики, кинематики и динамики . В статике рассматриваются законы сложения сил и условия равновесия тел. В кинематике дается математическое описание всевозможных видов механического движения безотносительно к тем причинам, которые его вызывают. В динамике исследуется влияние взаимодействия между телами на их механическое движение.

На практике все физические задачи решаются приближенно : реальное сложное движение рассматривается как совокупность простейших движений, реальный объект заменяется идеализированной моделью этого объекта и т.д. Например, при рассмотрении движения Земли вокруг Солнца можно пренебречь размерами Земли. В этом случае описание движения значительно упрощается - положение Земли в пространстве можно определить одной точкой. Среди моделей механики определяющими являются материальная точка и абсолютно твердое тело.

Материальная точка (или частица) - это тело, формой и размерами которого в условиях данной задачи можно пренебречь. Любое тело можно мысленно разбить на очень большое число частей, сколь угодно малых по сравнению с размерами всего тела. Каждую из этих частей можно рассматривать как материальную точку, а само тело - как систему материальных точек.

Если деформации тела при его взаимодействии с другими телами пренебрежимо малы, то его описывают моделью абсолютно твердого тела.

Абсолютно твердое тело (или твердое тело) - это тело, расстояния между любыми двумя точками которого не меняются в процессе движения. Иначе говоря, это тело, форма и размеры которого не изменяются при его движении. Абсолютно твердое тело можно рассматривать как систему материальных точек, жестко связанных между собой.

Положение тела в пространстве может быть определено только по отношению к каким либо другим телам. Например, имеет смысл говорить о положении планеты по отношению к Солнцу, самолета или корабля - по отношению к Земле, но нельзя указать их положения в пространстве безотносительно к какому-либо конкретному телу. Абсолютно твердое тело, которое служит для определения положения интересующего нас объекта, называется телом отсчета. Для описания движения объекта с телом отсчета связывают какую-либо систему координат, например прямоугольную декартову систему координат. Координаты объекта позволяют установить его положение в пространстве. Наименьшее число независимых координат, которые необходимо задать для полного определения положения тела в пространстве, называется числом степеней свободы. Так, например, материальная точка, свободно движущаяся в пространстве, имеет три степени свободы: точка может совершать три независимых движения вдоль осей декартовой прямоугольной системы координат. Абсолютно твердое тело имеет шесть степеней свободы: для определения его положения в пространстве нужны три степени свободы для описания поступательного движения вдоль осей координат и три - для описания вращения относительно этих же осей. Для отсчета времени система координат снабжается часами.

Совокупность тела отсчета, связанной с ним системы координат и множества синхронизированных между собой часов образуют систему отсчета.

Государственный Университет Управления

Институт заочного обучения

Специальность – менеджмент

по дисциплине: КСЕ

«Механика Ньютона – основа классического описания природы. Основная задача механики и границы ее применимости».

Выполнил

Студенческий билет №1211

Группа №УП4-1-98/2


1. Введение.__________________________________________________ 3

2. Механика Ньютона.________________________________________ 5

2.1. Законы движения Ньютона.______________________________________________ 5

2.1.1. Первый закон Ньютона.________________________________________________ 6

2.1.2. Второй закон Ньютона.________________________________________________ 7

2.1.3. Третий закон Ньютона._________________________________________________ 8

2.2. Закон всемирного тяготения.___________________________________________ 11

2.3. Основная задача механики._____________________________________________ 13

2.4. Границы применимости._______________________________________________ 15

3. Заключение.______________________________________________ 18

4. Список литературы.______________________________________ 20


Н ь ю т о н (1643-1727)

Был этот мир глубокой тьмой окутан.

Да будет свет! И вот явился Ньютон.

1. Введение.

Понятие «физика» уходит своими корнями в глубокое прошлое, в переводе с греческого оно означает «природа». Основной задачей этой науки является установление «законов» окружающего мира. Одно из основных сочинений Платона, ученика Аристотеля, называлось «Физика».

Наука тех лет имела натурфилософский характер, т.е. исходила из того, что непосредственно наблюдаемые перемещения небесных светил есть их действительные перемещения. Отсюда был сделан вывод о центральном положении Земли во Вселенной. Эта система верно отражала некоторые особенности Земли как небесного тела: то, что Земля - шар, что все тяготеет к ее центру. Таким образом, это учение было собственно о Земле. На уровне своего времени оно отвечало основным требованиям, которые предъявлялись к научному знанию. Во-первых, оно с единой точки зрения объясняло наблюдаемые перемещения небесных тел и, во-вторых, давало возможность вычислять их будущие положения. В то же время теоретические построения древних греков носили чисто умозрительный характер – они были совершенно оторваны от эксперимента.

Такая система просуществовала вплоть до XVI столетия, до появления учения Коперника, получившее свое дальнейшее обоснование в экспериментальной физике Галилея, завершившееся созданием ньютоновской механики, объединившей едиными законами движения перемещение небесных тел и земных объектов. Оно явилось величайшей революцией в естествознании, положившей начало развитию науки в ее современном понимании.

Галилео Галилей считал, что мир бесконечен, а материя вечна. Во всех процессах ничто не уничтожается и не порождается – происходит лишь изменение взаимного расположения тел или их частей. Материя состоит из абсолютно неделимых атомов, ее движение – единственное, универсальное механическое перемещение. Небесные светила подобны Земле и подчиняются единым законам механики.

Для Ньютона было важно однозначно выяснить с помощью экспериментов и наблюдений свойства изучаемого объекта и строить теорию на основе индукции без использования гипотез. Он исходил из того, что в физике как экспериментальной науке нет места для гипотез. Признавая не безупречность индуктивного метода, он считал его среди прочих наиболее предпочтительным.

И в эпоху античности, и в XVII веке признавалась важность изучения движения небесных светил. Но если для древних греков данная проблема имела больше философское значение, то для XVII века, преобладающим был аспект практический. Развитие мореплавания обусловливало необходимость выработки более точных астрономических таблиц для целей навигации по сравнению с теми, которые требовались для астрологических целей. Основной задачей было определение долготы, столь нужной астрономам и мореплавателям. Для решения этой важной практической проблемы и создавались первые государственные обсерватории (в 1672 г. Парижская, в 1675 г. Гринвичская). По сути своей это была задача определения абсолютного времени, дававшего при сравнении с местным временем интервал времени, который и можно было перевести в долготу. Определить это время можно было с помощью наблюдения движений Луны среди звезд, а также с помощью точных часов, поставленных по абсолютному времени и находящихся у наблюдателя. Для первого случая были необходимы очень точные таблицы для предсказания положения небесных светил, а для второго – абсолютно точные и надежные часовые механизмы. Работы в этих направлениях не были успешными. Найти решение удалось лишь Ньютону, который, благодаря открытию закона всемирного тяготения и трех основных законов механики, а также дифференциального и интегрального исчисления, предал механике характер цельной научной теории.

2. Механика Ньютона.

Вершиной научного творчества И. Ньютона является его бессмертный труд “Математические начала натуральной философии”, впервые опубликованный в 1687 году. В нем он обобщил результаты, полученные его предшественниками и свои собственные исследования и создал впервые единую стройную систему земной и небесной механики, которая легла в основу всей классической физики. Здесь Ньютон дал определения исходных понятий – количества материи, эквивалентного массе, плотности; количества движения, эквивалентного импульсу, и различных видов силы. Формулируя понятие количества материи, он исходил из представления о том, что атомы состоят из некой единой первичной материи; плотность понимал как степень заполнения единицы объема тела первичной материей. В этой работе изложено учение Ньютона о всемирном тяготении, на основе которого он разработал теорию движения планет, спутников и комет, образующих солнечную систему. Опираясь на этот закон, он объяснил явление приливов и сжатие Юпитера.

Концепция Ньютона явилась основой для многих технических достижений в течение длительного времени. На ее фундаменте сформировались многие методы научных исследований в различных областях естествознания.

2.1. Законы движения Ньютона.

Если кинематика изучает движение геометрического тела, который не обладает никакими свойствами материального тела, кроме свойства занимать определенное место в пространстве и изменять это положение с течением времени, то динамика изучает движение реальных тел под действием приложенных к ним сил. Установленные Ньютоном три закона механики лежат в основе динамики и составляют основной раздел классической механики.

Непосредственно их можно применять к простейшему случаю движения, когда движущееся тело рассматривается как материальная точка, т.е. когда размер и форма тела не учитывается и когда движение тела рассматривается как движение точки, обладающей массой. В кипятке для описания движения точки можно выбрать любую систему координат, относительно которой определяются характеризующие это движение величины. За тело отсчета может быть принято любое тело, движущееся относительно других тел. В динамике имеют дело с инерциальными системами координат, характеризуемыми тем, что относительно них свободная материальная точка движется с постоянной скоростью.

2.1.1. Первый закон Ньютона.

Закон инерции впервые был установлен Галилеем для случая горизонтального движения: когда тело движется по горизонтальной плоскости, то его движение является равномерным и продолжалось бы постоянно, если бы плоскость простиралась в пространстве без конца. Ньютон дал более общую формулировку закону инерции как первому закону движения: всякое тело пребывает в состоянии покоя или равномерного прямолинейного движения до тех пор, пока действующие на него силы не изменят это состояние.

В жизни этот закон описывает случай когда, если перестать тянуть или толкать движущееся тело, то оно останавливается, а не продолжает двигаться с постоянной скоростью. Так автомобиль с выключенным двигателем останавливается. По закону Ньютона на катящийся по инерции автомобиль должна действовать тормозящая сила, которой на практике является сопротивление воздуха и трение автомобильных шин о поверхность шоссе. Они-то и сообщают автомобилю отрицательное ускорение до тех пор, пока он не остановиться.

Недостатком данной формулировки закона является то, что в ней не содержалось указания на необходимость отнесения движения к инерциальной системе координат. Дело в том, что Ньютон не пользовался понятием инерциальной системы координат, – вместо этого он вводил понятие абсолютного пространства – однородного и неподвижного, – с которым и связывал некую абсолютную систему координат, относительно которой и определялась скорость тела. Когда бессодержательность абсолютного пространства как абсолютной системы отсчета была выявлена, закон инерции стал формулироваться иначе: относительно инерциальной системы координат свободное тело сохраняет состояние покоя или равномерного прямолинейного движения.

2.1.2. Второй закон Ньютона.

В формулировке второго закона Ньютон ввел понятия:

Ускорение – векторная величина (Ньютон называл его количеством движения и учитывал при формулировании правила параллелограмма скоростей), определяющая быстроту изменения скорости движения тела.

Сила – векторная величина, понимаемая как мера механического воздействия на тело со стороны других тел или полей, в результате воздействия которой тело приобретает ускорение или изменяет свою форму и размеры.

Масса тела – физическая величина – одна из основных характеристик материи, определяющая ее инерционные и гравитационные свойства.

Второй закон механики гласит: сила, действующая на тело, равна произведению массы тела на сообщаемое этой силой ускорение. Такова его современная формулировка. Ньютон сформулировал его иначе: изменение количества движения пропорционально приложенной действующей силе и происходит по направлению той прямой, по которой эта сила действует, и обратно пропорционально массе тела или математически:

На опыте этот закон легко подтвердить, если к концу пружины прикрепить тележку и отпустить пружину, то за время t тележка пройдет путь s 1 (рис. 1), затем к той же самой пружине прикрепить две тележки, т.е. увеличить массу тела в два раза, и отпустить пружину, то за то же время t они пройдут путь s 2 , в два раза меньший, чем s 1 .

Этот закон также справедлив только в инерциальных системах отсчета. Первый закон с математической точки зрения представляет собой частный случай второго закона, потому что, если равнодействующие силы равны нулю, то и ускорение также равно нулю. Однако первый закон Ньютона рассматривается как самостоятельный закон, т.к. именно он утверждает о существовании инерциальных систем.

2.1.3. Третий закон Ньютона.

Третий закон Ньютона гласит: действию всегда есть равное и противоположное противодействие, иначе тела действуют друг на друга с силами, направленными вдоль одной прямой, равными по модулю и противоположными по направлению или математически:

Ньютон распространил действие этого закона на случай и столкновения тел, и на случай их взаимного притяжения. Простейшей демонстрацией этого закона может служить тело, расположенное на горизонтальной плоскости, на которое действуют сила тяжести F т и сила реакции опоры F о , лежащие на одной прямой, равные по значению и противоположно направленные, равенство этих сил позволяет телу находиться в состоянии покоя (рис. 2).

Из трех фундаментальных законов движения Ньютона вытекают следствия, одно из которых – сложение количества движения по правилу параллелограмма. Ускорение тела зависит от величин, характеризующих действие других тел на данное тело, а также от величин, определяющих особенности этого тела. Механическое действие на тело со стороны других тел, которое изменяет скорость движения данного тела, называют силой. Она может иметь разную природу (сила тяжести, сила упругости и т.д.). Изменение скорости движения тела зависит не от природы сил, а от их величины. Поскольку скорость и сила – векторы, то действие нескольких сил складывается по правилу параллелограмма. Свойство тела, от которого зависит приобретаемое им ускорение, есть инерция, измеряемая массой. В классической механике, имеющей дело со скоростями, значительно меньшими скорости света, масса является характеристикой самого тела, не зависящей от того, движется оно или нет. Масса тела в классической механике не зависит и от взаимодействия тела с другими телами. Это свойство массы побудило Ньютона принять массу за меру материи и считать, что величина ее определяет количество материи в теле. Таким образом, масса стала пониматься как количество материи.

Количество материи доступно измерению, будучи пропорциональным весу тела. Вес – это сила, с которой тело действует на опору, препятствующую его свободному падению. Числено вес равен произведению массы тела на ускорение силы тяжести. Вследствие сжатия Земли и ее суточного вращения вес тела изменяется с широтой и на экваторе на 0,5% меньше, чем на полюсах. Поскольку масса и вес строго пропорциональны, оказалось возможным практическое измерение массы или количества материи. Понимание того, что вес является переменным воздействием на тело, побудило Ньютона установить и внутреннюю характеристику тела – инерцию, которую он рассматривал как присущую телу способность сохранять равномерное прямолинейное движение, пропорциональную массе. Массу как меру инерции можно измерять с помощью весов, как это делал Ньютон.

В состоянии невесомости массу можно измерять по инерции. Измерение по инерции является общим способом измерения массы. Но инерция и вес являются различными физическими понятиями. Их пропорциональность друг другу весьма удобна в практическом отношении – для измерения массы с помощью весов. Таким образом, установление понятий силы и массы, а также способа их измерения позволило Ньютону сформулировать второй закон механики.

Первый и второй законы механики относятся соответственно к движению материальной точки или одного тела. При этом учитывается лишь действие других тел на данное тело. Однако всякое действие есть взаимодействие. Поскольку в механике действие характеризуется силой, то если одно тело действует на другое с определенной силой, то второе действует на первое с той же силой, что и фиксирует третий закон механики. В формулировке Ньютона третий закон механики справедлив лишь для случая непосредственного взаимодействия сил или при мгновенной передаче действия одного тела на другое. В случае передачи действия за конечный промежуток времени данный закон применяется тогда, когда временем передачи действия можно пренебречь.

2.2. Закон всемирного тяготения.

Считается, что стержнем динамики Ньютона является понятие силы, а основная задача динамики заключается в установлении закона из данного движения и, наоборот, в определении закона движения тел по данной силе. Из законов Кеплера Ньютон вывел существование силы, направленной к Солнцу, которая была обратно пропорциональна квадрату расстояния планет от Солнца. Обобщив идеи, высказанные Кеплером, Гюйгенсом, Декартом, Борелли, Гуком, Ньютон придал им точную форму математического закона, в соответствии с которым утверждалось существование в природе силы всемирного тяготения, обусловливающей притяжение тел. Сила тяготения прямо пропорциональна произведению масс тяготеющих тел и обратно пропорционально квадрату расстояния между ними или математически:

Где G – гравитационная постоянная.

Данный закон описывает взаимодействие любых тел – важно лишь то, чтобы расстояние между телами было достаточно велико по сравнению с их размерами, это позволяет принимать тела за материальные точки. В ньютоновской теории тяготения принимается, что сила тяготения передается от одного тяготеющего тела к другому мгновенно, при чем без посредства каких бы то ни было сред. Закон всемирного тяготения вызвал продолжительные и яростные дискуссии. Это не было случайно, поскольку этот закон имел важное философское значение. Суть заключалась в том, что до Ньютона целью создания физических теорий было выявление и представление механизма физических явлений во всех его деталях. В тех случаях, когда это сделать не удавалось, выдвигался аргумент о так называемых "скрытых качествах", которые не поддаются детальной интерпретации. Бэкон и Декарт ссылки на "скрытые качества" объявили ненаучными. Декарт считал, что понять суть явления природы можно лишь в том случае, если его наглядно представить себе. Так, явления тяготения он представлял с помощью эфирных вихрей. В условиях широкого распространения подобных представлений закон всемирного тяготения Ньютона, несмотря на то, что демонстрировал соответствие произведенных на его основе астрономическим наблюдениям с небывалой ранее точностью, подвергался сомнению на том основании, что взаимное притяжение тел очень напоминало перипатетическое учение о "скрытых качествах". И хотя Ньютон установил факт его существования на основе математического анализа и экспериментальных данных, математический анализ еще не вошел прочно в сознание исследователей в качестве достаточно надежного метода. Но стремление ограничивать физическое исследование фактами, не претендующими на абсолютную истину, позволило Ньютону завершить формирование физики как самостоятельной науки и отделить ее от натурфилософии с ее претензиями на абсолютное знание.

В законе всемирного тяготения наука получила образец закона природы как абсолютно точного, повсюду применимого правила, без исключений, с точно определенными следствиями. Этот закон был включен Кантом в его философию, где природа представлялась царством необходимости в противоположность морали - царству свободы.

Физическая концепция Ньютона была своеобразным венцом физики XVII века. Статический подход к Вселенной был заменен динамическим. Эксперементально-математический метод исследования, позволив решить многие проблемы физики XVII века, оказался пригодным для решения физических проблем еще в течение двух веков.

2.3. Основная задача механики.

Результатом развития классической механики явилось создание единой механической картины мира, в рамках которой все качественное многообразие мира объяснялось различиями в движении тел, подчиняющемся законам ньютоновской механики. Согласно механической картине мира, если физическое явление мира можно было объяснить на основе законов механики, то такое объяснение признавалось научным. Механика Ньютона, таким образом, стала основой механической картины мира, господствовавшей вплоть до научной революции на рубеже XIX и XX столетий.

Механика Ньютона, в отличие от предшествующих механических концепций, давало возможность решать задачу о любой стадии движения, как предшествующей, так и последующей, и в любой точке пространства при известных фактах, обусловливающих это движение, а также обратную задачу определения величины и направления действия этих факторов в любой точке при известных основных элементах движения. Благодаря этому механика Ньютона могла использоваться в качестве метода количественного анализа механического движения. Любые физические явления могли изучаться как, независимо от вызывающих их факторов. Например, можно вычислить скорость спутника Земли: Для простоты найдем скорость спутника с орбитой, равной радиусу Земли (рис. 3). С достаточной точностью можно приравнять ускорение спутника ускорению свободного падения на поверхности Земли:

С другой стороны центростремительное ускорение спутника.

откуда . – Эта скорость называется первой космической скоростью. Тело любой массы, которому будет сообщена такая скорость, станет спутником Земли.

Законы ньютоновской механики связывали силу не с движением, а с изменением движения. Это позволило отказаться от традиционных представлений о том, что для поддержания движения нужна сила, и отвести трению, которое делало силу необходимой в действующих механизмах для поддержания движения, второстепенную роль. Установив динамический взгляд на мир вместо традиционного статического, Ньютон свою динамику сделал основой теоретической физики. Хотя Ньютон проявлял осторожность в механических истолкованиях природных явлений, все равно считал желательным выведение из начал механики остальных явлений природы. Дальнейшее развитие физики стало осуществляться в направлении дальнейшей разработки аппарата механики применительно к решению конкретных задач, по мере решения которых механическая картина мира укреплялась.

2.4. Границы применимости.

Вследствие развития физики в начале XX века определилась область применения классической механики: ее законы выполняются для движений, скорость которых много меньше скорости света. Было установлено, что с ростом скорости масса тела возрастает. Вообще законы классической механики Ньютона справедливы для случая инерциальных систем отсчета. В случае неинерциальных систем отсчета ситуация иная. При ускоренном движении неинерциальной системы координат относительно инерциальной системы первый закон Ньютона (закон инерции) в этой системе не имеет места, – свободные тела в ней будут с течением времени менять свою скорость движения.

Первое несоответствие в классической механике было выявлено, тогда когда был открыт микромир. В классической механике перемещения в пространстве и определение скорости изучались вне зависимости от того, каким образом эти перемещения реализовывались. Применительно к явлениям микромира подобная ситуация, как выявилось, невозможна принципиально. Здесь пространственно-временная локализация, лежащая в основе кинематики, возможна лишь для некоторых частных случаев, которые зависят от конкретных динамических условий движения. В макро масштабах использование кинематики вполне допустимо. Для микро масштабов, где главная роль принадлежит квантам, кинематика, изучающая движение вне зависимости от динамических условий, теряет смысл.

Для масштабов микромира и второй закон Ньютона оказался несостоятельным – он справедлив лишь для явлений большого масштаба. Выявилось, что попытки измерить какую-либо величину, характеризующую изучаемую систему, влечет за собой неконтролируемое изменение других величин, характеризующих данную систему: если предпринимается попытка установить положение в пространстве и времени, то это приводит к неконтролируемому изменению соответствующей сопряженной величины, которая определяет динамическое состояние системы. Так, невозможно точно измерить в одно и то же время две взаимно сопряженные величины. Чем точнее определяется значение одной величины, характеризующей систему, тем более неопределенным оказывается значение сопряженной ей величины. Это обстоятельство повлекло за собой существенное изменение взглядов на понимание природы вещей.

Несоответствие в классической механики исходило из того, что будущее в известном смысле полностью содержится в настоящем – этим и определяется возможность точного предвидения поведения системы в любой будущий момент времени. Такая возможность предлагает одновременное определение взаимно сопряженных величин. В области микромира это оказалось невозможным, что и вносит существенные изменения в понимание возможностей предвидения и взаимосвязи явлений природы: раз значение величин, характеризующих состояние системы в определенный момент времени, можно установить лишь с долей неопределенности, то исключается возможность точного предсказания значений этих величин в последующие моменты времени, т.е. можно лишь предсказать вероятность получения тех или иных величин.

Другое открытие пошатнувшее устои классической механики, было создания теории поля. Классическая механика пыталась свести все явления природы к силам, действующим между частицами вещества, – на этом основывалась концепция электрических жидкостей. В рамках этой концепции реальными были лишь субстанция и ее изменения – здесь важнейшим признавалось описание действия двух электрических зарядов с помощью относящихся к ним понятий. Описание же поля между этими зарядами, а не самих зарядов было весьма существенным для понимания действия зарядов. Вот простой пример нарушения третьего закона Ньютона в таких условиях: если заряженная частица удаляется от проводника, по которому течет ток, и соответственно вокруг него создано магнитное поле, то результирующая сила, действующая со стороны заряженной частицы на проводник с током в точности равна нулю.

Созданной новой реальности места в механической картине мира не было. В результате физика стала иметь дело с двумя реальностями – веществом и полем. Если классическая физика строилась на понятии вещества, то с выявлением новой реальности физическую картину мира приходилось пересматривать. Попытки объяснить электромагнитные явления с помощью эфира оказалось несостоятельными. Эфир экспериментально обнаружить не удалось. Это привело к созданию теории относительности, заставившей пересмотреть представления о пространстве и времени, характерные для классической физики. Таким образом, две концепции – теория квантов и теория относительности – стали фундаментом для новых физических концепций.

3. Заключение.

Вклад, сделанный Ньютоном в развитие естествознания, заключался в том, что он дал математический метод обращения физических законов в количественно измеримые результаты, которые можно было подтвердить наблюдениями, и, наоборот, выводить физические законы на основе таких наблюдений. Как он сам писал в предисловии к "Началам", "... сочинение это нами предлагается как математические основания физики. Вся трудность физики... состоит в том, чтобы по явлениям движения распознать силы природы, а затем по этим силам объяснить остальные явления... Было бы желательно вывести из начал механики и остальные явления природы, рассуждая подобным же образом, ибо многое заставляет меня предполагать, что все эти явления обусловливаются некоторыми силами, с которыми частицы тел вследствие причин, пока неизвестных, или стремятся друг к другу и сцепляются в правильные фигуры, или же взаимно отталкиваются и удаляются друг от друга. Так как эти силы неизвестны, до сих пор попытки философов объяснить явления природы и оставались бесплодными. Я надеюсь, однако, что или этому способу рассуждения, или другому, более правильному, изложенные здесь основания доставят некоторое освещение".

Ньютоновский метод стал главным инструментом познания природы. Законы классической механики и методы математического анализа демонстрировали свою эффективность. Физический эксперимент, опираясь на измерительную технику, обеспечивал небывалую ранее точность. Физическое знание все в большей мере становилось основой промышленной технологии и техники, стимулировало развитие других естественных наук. В физике изолированные ранее свет, электричество, магнетизм и теплота оказались объединенными в электромагнитную теорию. И хотя природа тяготения оставалась не выясненной, его действия можно было рассчитать. Утвердилась концепция механистического детерминизма Лапласа, исходившая из возможности однозначно определить поведение системы в любой момент времени, если известные исходные условия. Структура механики как науки казалась прочной, надежной и почти полностью завершенной – т.е. не укладывающиеся в существующие классические каноны феномены, с которыми приходилось сталкиваться, казались вполне объяснимыми в будущем более изощренными умами с позиций классической механики. Складывалось впечатление, что знание физики близко к своему полному завершению – столь мощную силу демонстрировал фундамент классической физики.

4. Список литературы.

1. Карпенков С.Х. Основные концепции естествознания. М.: ЮНИТИ, 1998.

2. Ньютон и философские проблемы физики XX века. Коллектив авторов под ред. М.Д. Ахундова, С.В. Илларионова. М.: Наука, 1991.

3. Гурский И.П. Элементарная физика. М.: Наука, 1984.

4. Большая Советская Энциклопедия в 30 томах. Под ред. ПрохороваА.М., 3 издание, М., Советская энциклопедия, 1970.

5. ДорфманЯ.Г. Всемирная история физики с начала XIX до середины XX вв. М., 1979.


С.Маршак, соч. в 4-х томах, Москва, Гослитиздат, 1959, т. 3, с. 601

Цит. по: Бернал Дж. Наука в истории общества. М.,1956.С.265

error: