Как работает атомный реактор. Ядерный реактор

Так же при необходимости быстро охладить реактор используются ведро воды и лёд .

Элемент Теплоемкость
Охлаждающий стержень 10к (англ. 10k Coolant Cell)
10 000

Охлаждающий стержень 30к (англ. 30К Coolant Cell)
30 000

Охлаждающий стержень 60к (англ. 60К Coolant Cell)
60 000

Красный конденсатор (англ. RSH-Condensator)
19 999
Поместив перегретый конденсатор в сетку крафта вместе с пылью редстоуна можно восполнить его запас тепла на 10000 еТ. Таким образом для полного восстановления конденсатора нужно две пыли.
Лазуритовый конденсатор (англ. LZH-Condensator)
99 999
Восполняется не только редстоуном (5000 еТ), но ещё и лазуритом на 40000 еТ.

Охлаждение ядерного реактора (до версии 1.106)

  • Охлаждающий стержень может хранить 10 000 еТ и каждую секунду охлаждается на 1 еТ.
  • Обшивка реактора так же хранит 10 000 еТ, каждую секунду охлаждается с шансом 10 % на 1 еТ (в среднем 0.1 еТ). Через термопластины твэлы и теплораспределители могут распредилить тепло на большее число охлаждающих элементов.
  • Теплораспределитель хранит 10 000 еТ, а также балансирует уровень тепла близлежащих элементов, но перераспределяя не более 6 еТ/с на каждый. Также перераспределяет тепло на корпус, до 25 еТ/с.
  • Пассивное охлаждение.
  • Каждый блок воздуха, окружающий реактор в области 3х3х3 вокруг ядерного реактора, охлаждает корпус на 0.25 еТ/с, и каждый блок воды охлаждает на 1 еТ/с.
  • Кроме того, реактор сам по себе охлаждается на 1 еТ/с, благодаря внутренней системе вентиляции.
  • Каждая дополнительная камера реактора тоже обладает вентиляцией и охлаждает корпус ещё на 2 еТ/с.
  • Но если в зоне 3х3х3 есть блоки лавы (источники или течения), то они уменьшают охлаждение корпуса на 3 еТ/с. И горящий огонь в этой же области уменьшает охлаждение на 0,5 еТ/с.
Если суммарное охлаждение отрицательно, то охлаждение будет нулевым. То есть корпус реактора не будет охлаждаться. Можно посчитать, что максимальное пассивное охлаждение: 1+6*2+20*1 = 33 еТ/с.
  • Аварийное охлаждение (до версии 1.106).
Помимо обычных охлаждающих систем, есть «аварийные» охладители, которые могут быть использованы для экстренного охлаждения реактора (даже с высоким тепловыделением):
  • Ведро воды , положенное в активную зону, остужает корпус Ядерного реактора на 250 еТ в случае, если он нагрет не менее, чем на 4 000 еТ.
  • Лёд остужает корпус на 300 еТ в случае, если он нагрет не менее, чем на 300 еТ.

Классификация ядерных реакторов

Ядерные реакторы имеют свою классификацию: МК1, МК2, МК3, МК4 и МК5. Типы определяются по выделению тепла и энергии, а также по некоторым другим аспектам. МК1 - самый безопасный, но вырабатывает меньше всего энергии. МК5 вырабатывает больше всего энергии при наибольшей вероятности взрыва.

MК1

Самый безопасный тип реактора, который совершенно не нагревается, и в то же время производит меньше всего энергии. Подразделяется на два подтипа: МК1А - тот, который соблюдает условия класса вне зависимости от окружающей среды и МК1Б - тот, который требует пассивного охлаждения, чтобы соблюдать стандарты класса 1.

МК2

Самый оптимальный вид реактора, который при работе на полной мощности не нагревается более, чем на 8500 еТ за цикл (время, за которое ТВЭЛ успевает полностью разрядится или 10000 секунд). Таким образом, это оптимальный компромисс тепла/энергии. Для таких типов реакторов также есть отдельная классификация МК2x, где х - это количество циклов, которое реактор будет работать без критического перегрева. Число может быть от 1 (один цикл) до E (16 циклов и больше). MK2-E является эталоном среди всех ядерных реакторов, поскольку является практически вечным. (То есть, до окончания 16 цикла реактор успеет охладится до 0 еТ)

МК3

Реактор, который может работать по крайней мере 1/10 полного цикла без испарения воды/плавления блоков. Более мощный, чем МК1 и МК2, но требует дополнительного присмотра, ведь за некоторое время температура может достигнуть критического уровня.

МК4

Реактор, который может работать по крайней мере 1/10 полного цикла без взрывов. Наиболее мощный из работоспособных видов Ядерных Реакторов, который требует наибольшего внимания. Требует постоянного присмотра. За первый раз издаёт приблизительно от 200 000 до 1 000 000 еЭ.

МК5

Ядерные реакторы 5-ого класса неработоспособны, в основном используются для доказательства того факта, что они взрываются. Хотя возможно сделать и работоспособный реактор такого класса, однако смысла в этом никакого нет.

Дополнительная классификация

Даже несмотря на то, что реакторы и так имеют целых 5 классов, реакторы иногда подразделяют ещё на несколько незначительных, однако немаловажных подклассов вида охлаждения, эффективности и производительности.

Охлаждение

-SUC (single use coolants - одноразовое использование охлаждающих элементов)

  • до версии 1.106 эта маркировка обозначала охлаждение реактора экстренным способом (с помощью вёдер воды или льда). Обычно такие реакторы используются редко или не используются совсем ввиду того, что без присмотра реактор может проработать не очень долго. Это обычно использовалось для Mk3 или Mk4.
  • после версии 1.106 появились тепловые конденсаторы. Подкласс -SUC теперь обозначает наличие в схеме тепловых конденсаторов. Их теплоёмкость можно быстро восстановить, но при этом придётся тратить красную пыль или лазурит .

Эффективность

Эффективность - это среднее число импульсов, производимых твэлами. Грубо говоря, это количество миллионов энергии, получаемой в результате работы реактора, поделённое на число твэлов. Но в случае схем обогатителей часть импульсов расходуется на обогащение, и в этом случае эффективность не совсем соответствует полученной энергии и будет выше.

Сдвоенные и счетверённые твэлы обладают большей базовой эффективностью по сравнению с одиночными. Сами по себе одиночные твэлы производят один импульс, сдвоенные - два, счетверённые - три. Если в одной из четырёх соседних клеток будет находиться другой ТВЭЛ, обеднённый ТВЭЛ или нейтронный отражатель, то число импульсов увеличивается на единицу, то есть максимум ещё на 4. Из вышесказанного становится понятно, что эффективность не может быть меньше 1 или больше 7.

Маркировка Значение
эффективности
EE =1
ED >1 и <2
EC ≥2 и <3
EB ≥3 и <4
EA ≥4 и <5
EA+ ≥5 и <6
EA++ ≥6 и <7
EA* =7

Иные подклассы

На схемах реакторов вы можете иногда увидеть дополнительные буквы, аббревиатуры или другие символы. Эти символы хоть и используются (например, раньше подкласс -SUC официально не был зарегистрирован), но большой популярности они не имеют. Поэтому вы можете назвать свой реактор хоть Mk9000-2 EA^ dzhigurda, однако такой вид реактора просто не поймут и сочтут это за шутку.

Постройка реактора

Все мы знаем, что реактор нагревается, и может внезапно произойти взрыв. И нам приходится то выключать, то включать его. Далее написано, как можно защитить свой дом, а также как максимально использовать реактор, который никогда не взорвётся. При этом у вас должно быть уже поставлены 6 реакторных камер .

    Вид реактора с камерами. Ядерный реактор внутри.

  1. Обложить реактор укреплённым камнем (5х5x5)
  2. Сделать пассивное охлаждение, то есть залить весь реактор водой. Заливайте его сверху, поскольку вода потечёт вниз. С помощью такой схемы реактор будет охлаждаться на 33 еТ за сек.
  3. Сделать максимальное количество вырабатываемой энергии с охлаждающими стержнями и т. д. Будьте внимательны, поскольку если будет неправильно расставленный хотя бы 1 теплораспределитель , может произойти катастрофа! (схема приведена для версии до 1.106)
  4. Дабы наш МФЭ не взорвался от высокого напряжения, ставим трансформатор, как на картинке.

Реактор Mk-V EB

Многим известно, что обновления вносят изменения. Одним из этих обновлений были внесены новые твэлы - сдвоенный и счетверённый. Схема, которая находится выше, не подходит к этим твэлам. Ниже предоставлено подробное описание изготовления довольно опасного, но эффективного реактора. Для этого к IndustrialCraft 2 нужен Nuclear Control. Данный реактор заполнил MFSU и MFE примерно за 30 минут реального времени. К сожалению, это реактор класса МК4. Но он выполнил свою задачу нагревшись до 6500 еТ. Рекомендуется поставить на температурном датчике 6500 и подключить к датчику сигнализацию и экстренную систему отключения. Если тревога орёт дольше двух минут, то лучше выключить реактор вручную. Постройка такая же, как и сверху. Изменено лишь расположение компонентов.

Выходная мощность: 360 еЭ/т

Всего еЭ: 72 000 000 еЭ

Время генерации: 10 мин. 26 сек.

Время перезарядки: Невозможно

Максимум циклов: 6,26 % цикла

Общее время: Никогда

Самое главное в таком реакторе - не дать ему взорваться!

Реактор Mk-II-E-SUC Breeder EA+ с возможностью обогащения обеднённых твэлов

Достаточно эффективный но дорогостоящий вид реактора. За минуту вырабатывает 720 000 еТ и конденсаторы нагреваются на 27/100, следовательно, без охлаждения конденсаторов реактор выдержит 3 минутных цикла, а 4-й почти наверняка взорвёт его. Возможна установка обеднённых твэлов для обогащения. Рекомендуется подключение реактора к таймеру и заключение реактора в «саркофаг» из укреплённого камня. Из-за высокого выходного напряжения (600 еЭ/т) необходимы высоковольтные провода и трансформатор ВН.

Выходная мощность: 600 еЭ/т

Всего еЭ: 120 000 000 еЭ

Время генерации: Полный цикл

Реактор Mk-I EB

Элементы не нагреваются вообще, работают 6 счетверённых твэлов.

Выходная мощность: 360 еЭ/т

Всего еЭ: 72 000 000 еЭ

Время генерации: Полный цикл

Время перезарядки: Не требуется

Максимум циклов: Бесконечное число

Общее время: 2 ч. 46 мин. 40 сек.

Реактор Mk-I EA++

Маломощный, но экономичный к сырью и дешёвый в постройке. Требует отражателей нейтронов .

Выходная мощность: 60 еЭ/т

Всего еЭ: 12 000 000 еЭ

Время генерации: Полный цикл

Время перезарядки: Не требуется

Максимум циклов: Бесконечное число

Общее время: 2 ч. 46 мин. 40 сек.

Реактор Mk-I EA*

Средней мощности но относительно дешёвый и максимально эффективный. Требует отражателей нейтронов .

Выходная мощность: 140 еЭ/т

Всего еЭ: 28 000 000 еЭ

Время генерации: Полный цикл

Время перезарядки: Не требуется

Максимум циклов: Бесконечное число

Общее время: 2 ч. 46 мин. 40 сек.

Реактор Mk-II-E-SUC Breeder EA+, обогащение урана

Компактный и дешёвый к постройке обогатитель урана. Время безопасной работы - 2 минуты 20 секунд, после чего рекомендуется чинить лазуритовые конденсаторы (ремонт одного - 2 лазурита + 1 редстоун), из-за чего придется постоянно следить за реактором. Также из-за неравномерного обогащения сильно обогащенные стержни рекомендуется менять местами со слабо обогащенными. В то же время может выдать за цикл 48 000 000 еЭ.

Выходная мощность: 240 еЭ/т

Всего еЭ: 48 000 000 еЭ

Время генерации: Полный цикл

Время перезарядки: Не требуется

Максимум циклов: Бесконечное число

Общее время: 2 ч. 46 мин. 40 сек.

Реактор Mk-I EC

«Комнатный» реактор. Имеет невысокую мощность, зато очень дешёв и абсолютно безопасен - весь присмотр за реактором сводится к замене стержней, поскольку охлаждение вентиляцией превышает теплогенерацию в 2 раза. Лучше всего поставить его вплотную к МФЭ /МФСУ и настроить их на подачу сигнала редстоуна при частичной зарядке (Emit if partially filled), таким образом реактор будет автоматически заполнять энергохранитель и отключаться при его заполнении. Для крафта всех компонентов потребуется 292 меди, 102 железа, 24 золота, 8 редстоуна, 7 резины, 7 олова, 2 единицы светопыли и лазурита, а также 6 единиц урановой руды. За цикл выдает 16 млн еЭ.

Выходная мощность: 80 еЭ/т

Всего еЭ: 32 000 000 еЭ

Время генерации: Полный цикл

Время перезарядки: Не требуется

Максимум циклов: Бесконечное число

Общее время: около 5 ч. 33 мин. 00 сек.

Таймер реактора

Реакторы классов MK3 и MK4 вырабатывают действительно много энергии в короткие сроки, но они имеют тенденцию взрываться без присмотра. Но с помощью таймера, можно заставить даже эти капризные реакторы работать без критического перегрева и позволить вам отлучится, например, чтобы накопать песочка для вашей фермы кактусов. Вот три примера таймеров:

  • Таймер из раздатчика , деревянной кнопки и стрел (Рис. 1). Выпущенная стрела - это сущность , время её жизни равно 1 минуте. При подсоединении деревянной кнопки с застрявшей в ней стрелой к реактору, тот будет работать ~ 1 мин. 1.5 сек. Лучше всего будет открыть доступ к деревянной кнопке, тогда можно будет экстренно остановить реактор. Заодно меньшится расход стрел, так как при соединении раздатчика с ещё одной кнопкой, кроме деревянной, после нажатия раздатчик выпускает сразу 3 стрелы из-за множественного сигнала.
  • Таймер из деревянной нажимной пластины (Рис. 2). Деревянная нажимная пластина реагирует, если на неё упадет какой-либо предмет. У выпавших передметов «срок жизни» равен 5 минутам (в SMP возможны отклонения из-за пинга), и если подсоединить пластину к реактору, тот будет работать ~ 5 мин. 1 сек. При создании множества таймеров, можно поставить этот таймер на первое место в цепочке, чтобы не ставить раздатчик . Тогда все цепь таймеров будет запускаться выбрасыванием игроком предмета на нажимную пластину.
  • Таймер из повторителей (Рис. 3). Таймер из повторителей может использоваться для точной настройки задержки работы реактора, но он очень громоздок и требует большое количество ресурсов для создания даже малой задержки. Сам таймер - это линия поддержки сигнала (10.6) . Как видно, он занимает много места, и на задержку сигнала в 1.2 сек. требуется целых 7 повторителей (21

    Пассивное охлаждение (до версии 1.106)

    Базовое охлаждение самого реактора равно 1. Далее проверяется область 3х3х3 вокруг реактора. Каждая камера реактора добавляет к охлаждению 2. Блок с водой (источником или течением) добавляет 1. Блок с лавой (источником или течением) уменьшает на 3. Блоки с воздухом и огнем считаются отдельно. Они добавляют к охлаждению (число блоков воздуха-2×число блоков с огнем)/4 (если результат деления не целое число, то дробная часть отбрасывается). Если суммарное охлаждение меньше 0, то оно считается равным 0.
    То есть корпус реактора не может нагреться из-за внешних факторов. В худшем случае он просто не будет охлаждаться за счёт пассивного охлаждения.

    Температура

    При высокой температуре реактор начинает отрицательно воздействовать на окружающую среду. Это воздействие зависит от коэффициента нагрева. Коэффициент нагрева=Текущая температура корпуса реактора/Максимальная температура , где Максимальная температура реактора=10000+1000*число камер реактора+100*число термопластин внутри реактора .
    Если коэффициент нагрева:

    • <0,4 - никаких последствий нет.
    • >=0,4 - есть шанс 1,5×(коэффициент нагрева-0,4) , что будет произведён выбор случайного блока в зоне 5×5×5 , и если это окажется воспламеняющийся блок, такой как листья, какой-либо деревянный блок, шерсть или кровать, то он сгорит.
    То есть при коэффициенте нагрева 0,4 шансы нулевые, при 0,67 выше будет 100 %. То есть при коэффициенте нагрева 0,85 шанс будет 4×(0,85-0,7)=0,6 (60 %), а при 0,95 и выше шанс будет 4×(95-70)=1 (100 %). В зависимости от типа блока произойдёт следующее:
    • если это центральный блок (сам реактор) или блок коренной породы, то эффекта не будет.
    • каменные блоки(в том числе ступеньки и руда), железные блоки(в том числе и блоки реактора), лава, земля, глина будут превращены в поток лавы.
    • если это блок воздуха, то на его месте будет попытка зажечь огонь (если рядом нет твёрдых блоков, огонь не появится).
    • остальные блоки (в том числе и вода) будут испаряться, и на их месте тоже будет попытка зажечь огонь.
    • >=1 - Взрыв! Базовая мощность взрыва равна 10. Каждый ТВЭЛ в реакторе увеличивает мощность взрыва на 3 единицы, а каждая обшивка реактора уменьшает его на единицу. Также мощность взрыва ограничена максимумом в 45 единиц. По числу выпадения блоков этот взрыв аналогичен ядерной бомбе, 99 % блоков после взрыва уничтожатся, а дроп составит лишь 1 %.

    Расчёт нагрева или низкообогащённый ТВЭЛ , то корпус реактора нагревается на 1 еТ.

  • Если это ведро воды , и температура корпуса реактора больше 4000 еТ, то корпус охлаждается на 250 еТ, а ведро воды заменяется на пустое ведро.
  • Если это ведро лавы , то корпус реактора нагревается на 2000 еТ, а ведро лавы заменяется на пустое ведро.
  • Если это блок льда , и температура корпуса более 300 еТ, то корпус охлаждается на 300 еТ, а количество льда уменьшается на 1. То есть сразу весь стак льда не испарится.
  • Если это теплораспределитель , то проводится такой расчёт:
    • Проверяется 4 соседние ячейки, в следующем порядке: левая, правая, верхняя и нижняя.
Если в них есть охлаждающая капсула или обшивка реактора, то производится рассчёт баланса тепла. Баланс=(температура теплораспределителя-температура соседнего элемента)/2
  1. Если баланс больше 6, он приравнивается 6.
  2. Если соседний элемент - охлаждающая капсула, то он нагревается на значение вычисленного баланса.
  3. Если это обшивка реактора, то производится дополнительный расчёт передачи тепла.
  • Если рядом с этой пластиной нет охлаждающих капсул, то пластина нагреется на значение вычисленного баланса (на другие элементы тепло от теплораспределителя через термопластину не идёт).
  • Если есть охлаждающие капсулы, то проверяется, делится ли баланс тепла на их количество без остатка. Если не делится, то баланс тепла увеличивается на 1 еТ, и пластина охлаждается на 1 еТ, пока не будет делиться нацело. Но если обшивка реактора остывшая, и нацело баланс не делится, то она нагревается, а баланс уменьшается, пока не станет делиться нацело.
  • И, соответственно, эти элементы нагреваются на температуру, равную Баланс/количество .
  1. Он берется по модулю, и если он больше 6, то приравнивается к 6.
  2. Теплораспределитель нагревается на значение баланса.
  3. Соседний элемент охлаждается на значение баланса.
  • Производится расчёт баланса тепла между теплораспределителем и корпусом.
Баланс=(температура теплораспределителя-температура корпуса+1)/2 (если результат деления не целое число, то дробная часть отбрасывается)
  • Если баланс положительный, то:
  1. Если баланс больше 25, он приравнивается к 25.
  2. Теплораспределитель охлаждается на значение вычисленного баланса.
  3. Корпус реактора нагревается на значение вычисленного баланса.
  • Если баланс отрицательный, то:
  1. Он берется по модулю и если получается больше 25, то он приравнивается к 25.
  2. Теплораспределитель нагревается на значение вычисленного баланса.
  3. Корпус реактора охлаждается на значение вычисленного баланса.
  • Если это ТВЭЛ, и реактор не заглушен сигналом красной пыли, то проводятся такие расчёты:
Считается число импульсов, генерирующих энергию для данного стержня. Число импульсов=1+количество соседних урановых стержней . Соседние - это те, которые находятся в слотах справа, слева, сверху и снизу. Подсчитывается количество энергии генерируемое стержнем. Количество энергии(еЭ/т)=10×Число импульсов . еЭ/т - единица энергии за такт (1/20 часть секунды) Если рядом с урановым стержнем есть обеднённый ТВЭЛ , то число импульсов увеличивается на их количество. То есть Число импульсов=1+количество соседних урановых стержней+количество соседних обеднённых твэлов . Также проверяются эти соседние обеднённые твэлы , и с некоторой вероятностью они обогащаются на две единицы. Причём шанс обогащения зависит от температуры корпуса и если температура:
  • менее 3000 - шанс 1/8 (12,5 %);
  • от 3000 и менее 6000 - 1/4 (25 %);
  • от 6000 и менее 9000 - 1/2 (50 %);
  • 9000 или выше - 1 (100 %).
При достижении обеднённым твэлом значения обогащения в 10000 единиц, он превращается в низкообогащённый ТВЭЛ . Дальше для каждого импульса рассчитывается генерация тепла. То есть расчёт производится столько раз, сколько получилось импульсов. Считается количество охлаждающих элементов (охлаждающие капсулы, термопластины и теплораспределители) рядом с урановым стержнем. Если их количество равно:
  • 0? корпус реактора нагревается на 10 еТ.
  • 1: охлаждающий элемент нагревается на 10 еТ.
  • 2: охлаждающие элементы нагреваются каждый на 4 еТ.
  • 3: нагреваются каждый на 2 еТ.
  • 4: нагреваются каждый на 1 еТ.
Причём если там есть термопластины, то они будет также перераспределять энергию. Но в отличие от первого случая, пластины рядом с урановым стержнем могут распределить тепло и на охлаждающие капсулы, и на следующие термопластины. А следующие термопластины могут распределить тепло дальше лишь на охлаждающие стержни . ТВЭЛ уменьшает свою прочность на 1 (изначально она равна 10000), и если она достигает 0, то он уничтожается. Дополнительно с шансом 1/3 при уничтожении он оставит после себя исчерпанный ТВЭЛ .

Пример расчёта

Существуют программы, рассчитывающие эти схемы. Для более надёжных расчётов и большего понимания процесса стоит использовать их.

Возьмем к примеру такую схему с тремя урановыми стержнями.

Цифрами обозначен порядок расчёта элементов в этой схеме, и этими же цифрами будем обозначать элементы, чтобы не запутаться.

Для примера рассчитаем распределение тепла на первой и второй секундах. Будем считать, что вначале нагрев элементов отсутствует, пассивное охлаждение максимально (33 еТ), и охлаждение термопластин не будем учитывать.

Первый шаг.

  • Температура корпуса реактора 0 еТ.
  • 1 - Обшивка реактора (ТП) ещё не нагрета.
  • 2 - Охлаждающая капсула (ОхС) ещё не нагрет, и охлаждаться на этом шаге уже не будет (0 еТ).
  • 3 - ТВЭЛ выделит по 8 еТ (2 такта по 4 еТ) на 1ю ТП (0 еТ), что нагреет её до 8 еТ, и на 2й ОхС (0 еТ), что нагреет его до 8 еТ.
  • 4 - ОхС ещё не нагрет, и охлаждаться на этом шаге уже не будет (0 еТ).
  • 5 - Теплораспределитель (ТР), ещё не нагретый, сбалансирует температуру со 2м ОхС (8 еТ). Охладит его до 4 еТ и сам нагреется до 4 еТ.
Далее 5й ТР (4 еТ) сбалансирует температуру у 10го ОхС (0 еТ). Нагреет его до 2 еТ, и сам охладится до 2 еТ. Далее 5й ТР (2 еТ) сбалансирует температуру корпуса (0 еТ), отдав ему 1 еТ. Корпус нагреется до 1 еТ, и ТР охладится до 1 еТ.
  • 6 - ТВЭЛ выделит по 12 еТ (3 такта по 4 еТ) на 5й ТР (1 еТ), что нагреет его до 13 еТ, и на 7ю ТП (0 еТ), что нагреет её до 12 еТ.
  • 7 - ТП уже нагрета до 12 еТ и может охладиться с шансом 10 %, но мы не учитываем тут шанс охлаждения.
  • 8 - ТР (0 еТ) сбалансирует температуру у 7й ТП (12 еТ), и заберет у неё 6 еТ. 7я ТП охладится до 6 еТ, и 8й ТР нагреется до 6 еТ.
Далее 8й ТР(6 еТ) сбалансирует температуру у 9го ОхС(0 еТ). В итоге он нагреет его до 3 еТ, и сам охладится до 3 еТ. Далее 8й ТР (3 еТ) сбалансирует температуру у 4го ОхС (0 еТ). В итоге он нагреет его до 1 еТ, и сам охладится до 2 еТ. Далее 8й ТР (2 еТ) сбалансирует температуру у 12го ОхС (0 еТ). В итоге он нагреет его до 1 еТ, и сам охладится до 1 еТ. Далее 8й ТР (1 еТ) сбалансирует температуру корпуса реактора(1 еТ). Так как разницы температур нет, ничего не происходит.
  • 9 - ОхС (3 еТ) охладится до 2 еТ.
  • 10 - ОхС (2 еТ) охладится до 1 еТ.
  • 11 - ТВЭЛ выделит по 8 еТ (2 такта по 4 еТ) на 10й ОхС (1 еТ), что нагреет его до 9 еТ, и на 13ю ТП (0 еТ), что нагреет её до 8 еТ.

На рисунке красные стрелочки показывают нагрев от урановых стержней, синие - балансировку тепла теплораспределителями, желтые - распределение энергии на корпус реактора, коричневые - итоговый нагрев элементов на данном шаге, голубые - охлаждение для охлаждающих капсул. Цифры в верхнем правом углу показывают итоговый нагрев, а для урановых стержней - время работы.

Итоговый нагрев после первого шага:

  • корпус реактора - 1 еТ
  • 1ТП - 8 еТ
  • 2ОхС - 4 еТ
  • 4ОхС - 1 еТ
  • 5ТР - 13 еТ
  • 7ТП - 6 еТ
  • 8ТР - 1 еТ
  • 9ОхС - 2 еТ
  • 10ОхС - 9 еТ
  • 12ОхС - 0 еТ
  • 13ТП - 8 еТ

Второй шаг.

  • Корпус реактора охладится до 0 еТ.
  • 1 - ТП, не учитываем охлаждение.
  • 2 - ОхС (4 еТ) охладится до 3 еТ.
  • 3 - ТВЭЛ выделит по 8 еТ (2 такта по 4 еТ) на 1ю ТП (8 еТ), что нагреет её до 16 еТ, и на 2й ОхС (3 еТ), что нагреет его до 11 еТ.
  • 4 - ОхС (1 еТ) охладится до 0 еТ.
  • 5 - ТР (13 еТ) сбалансирует температуру со 2м ОхС (11 еТ). Нагреет его до 12 еТ, и сам охладится до 12 еТ.
Далее 5й ТР (12 еТ) сбалансирует температуру у 10го ОхС (9 еТ). Нагреет его до 10 еТ, и сам охладится до 11 еТ. Далее 5й ТР (11 еТ) сбалансирует температуру корпуса (0 еТ), отдав ему 6 еТ. Корпус нагреется до 6 еТ, и 5й ТР охладится до 5 еТ.
  • 6 - ТВЭЛ выделит по 12 еТ (3 такта по 4 еТ) на 5й ТР (5 еТ), что нагреет его до 17 еТ, и на 7ю ТП (6 еТ), что нагреет её до 18 еТ.
  • 7 - ТП (18 еТ), не учитываем охлаждение.
  • 8 - ТР (1 еТ) сбалансирует температуру у 7й ТП (18 еТ) и заберёт у неё 6 еТ. 7я ТП охладится до 12 еТ, и 8й ТР нагреется до 7 еТ.
Далее 8й ТР (7 еТ) сбалансирует температуру у 9го ОхС (2 еТ). В итоге он нагреет его до 4 еТ, и сам охладится до 5 еТ. Далее 8й ТР (5 еТ) сбалансирует температуру у 4го ОхС (0 еТ). В итоге он нагреет его до 2 еТ, и сам охладится до 3 еТ. Далее 8й ТР (3 еТ) сбалансирует температуру у 12го ОхС (0 еТ). В итоге он нагреет его до 1 еТ, и сам охладится до 2 еТ. Далее 8й ТР (2 еТ) сбалансирует температуру корпуса реактора (6 еТ), забрав у него 2 еТ. Корпус охладится до 4 еТ, и 8й ТР нагреется до 4 еТ.
  • 9 - ОхС (4 еТ) охладится до 3 еТ.
  • 10 - ОхС (10 еТ) охладится до 9 еТ.
  • 11 - ТВЭЛ выделит по 8 еТ (2 такта по 4 еТ) на 10й ОхС (9 еТ), что нагреет его до 17 еТ, и на 13ю ТП (8 еТ), что нагреет её до 16 еТ.
  • 12 - ОхС (1 еТ) охладится до 0 еТ.
  • 13 - ТП (8 еТ), не учитываем охлаждение.


Итоговый нагрев после второго шага:

  • корпус реактора - 4 еТ
  • 1ТП - 16 еТ
  • 2ОхС - 12 еТ
  • 4ОхС - 2 еТ
  • 5ТР - 17 еТ
  • 7ТП - 12 еТ
  • 8ТР - 4 еТ
  • 9ОхС - 3 еТ
  • 10ОхС - 17 еТ
  • 12ОхС - 0 еТ
  • 13ТП - 16 еТ

В средине двадцатого века внимание человечества было сосредоточено вокруг атома и объяснения учеными ядерной реакции, которую первоначально решили использовать в военных целях, изобретая согласно Манхэттенскому проекту первые ядерные бомбы. Но в 50-х годах XX века ядерный реактор в СССР применили в мирных целях. Общеизвестно, что 27 июня 1954 года на службу человечества поступила первая в мире атомная электростанция мощностью 5000 кВт. Сегодня ядерный реактор позволяет вырабатывать электроэнергию в 4000 МВт и более, то есть в 800 раз больше, чем было полвека назад.

Что такое ядерный реактор: основное определение и главные комплектующие элементы агрегата

Ядерный реактор – это специальный агрегат, при помощи которого вырабатывается энергия как следствие правильного поддержания контролируемой ядерной реакции. Использовать слово «атомный» в сочетании со словом «реактор» - допускается. Многие вообще считают понятия «ядерный» и «атомный» - синонимами, так как не находят между ними принципиальной разницы. Но представители науки склоняются к более верному сочетанию – «ядерный реактор».

Интересный факт! Ядерные реакции могут протекать с выделением или поглощением энергии.

Основными комплектующими в устройстве ядерного реактора считаются следующие элементы:

  • Замедлитель;
  • Регулирующие стержни;
  • Стержни, содержание обогащенную смесь изотопов урана;
  • Специальные защитные элементы от радиации;
  • Теплоноситель;
  • Парогенератор;
  • Турбина;
  • Генератор;
  • Конденсатор;
  • Ядерное горючее.

Какие основополагающие принципы работы ядерного реактора определяются учеными-физиками и почему они незыблемы

Основополагающий принцип работы ядерного реактора базируется на особенностях проявления ядерной реакции. В момент стандартного физического цепного ядерного процесса протекает взаимодействие частицы с атомным ядром, как следствие, ядро превращается в новое с выделением вторичных частиц, которые ученые называют гамма-квантами. Во время ядерной цепной реакции высвобождается огромное количество тепловой энергии. Пространство, в котором протекает цепная реакция, называется активной зоной реактора.

Интересный факт! Активная зона внешне напоминает собой котел, через который протекает обычная вода, выполняющая роль теплоносителя.

Для упреждения потери нейтронов зону актива реактора окружают специальным отражателем нейтронов. Его первостепенная задача – отбрасывать большую часть вылетающих нейтронов внутрь активной зоны. В качестве отражателя используют обычно то же вещество, которое служит замедлителем.

Главное управление ядерным реактором происходит с помощью специальных регулирующих стержней. Известно, что эти стержни вводятся в активную зону реактора и создают все условия для функционирования агрегата. Обычно управляющие стержни изготавливаются из химических соединений бора и кадмия. Почему используются именно эти элементы? Да все потому, что бор или кадмий способны эффективно поглощать тепловые нейтроны. И как только планируется запуск, по принципу действия ядерного реактора, управляющие стержни вводятся в активную зону. Их первостепенная задача – поглощать значительную часть нейтронов, тем самым провоцируя развитие цепной реакции. Результат должен дойти до желаемого уровня. При увеличении мощности свыше установленного уровня включаются автоматы, обязательно погружающие управляющие стержни вглубь активной зоны реактора.

Таким образом, становится понятно, что управляющие или регулирующие стержни играют важную роль в работе теплового ядерного реактора.

А для уменьшения утечки нейтронов активную зону реактора окружают отражателем нейтронов, отбрасывающих значительную массу вылетающих свободно нейтронов внутрь активной зоны. В значении отражателя используют обычно то же самое вещество, что и для замедлителя.

Ядро атомов вещества-замедлителя по стандарту обладает сравнительно небольшой массой, чтобы при столкновении с легким ядром имеющийся с цепи нейтрон терял энергию большую, чем при столкновении с тяжелым. Наиболее распространенные замедлители – обычная вода или графит.

Интересный факт! Нейтроны в процессе ядерной реакции характеризуются чрезвычайно высокой скоростью движения, поэтому и требуется замедлитель, подталкивающий нейтроны терять часть своей энергии.

Ни один реактор в мире не может функционировать нормально без помощи теплоносителя, так как его назначение – выводить энергию, которая вырабатывается в сердце реактора. В качестве теплоносителя используется обязательно жидкость или газы, так как они не способны поглощать нейтроны. Приведем пример теплоносителя для компактного ядерного реактора – вода, углекислый газ, а иногда даже жидкий металлический натрий.

Таким образом, принципы работы ядерного реактора всецело базируются на законах цепной реакции, ее протекании. Все комплектующие реактора - замедлитель, стержни, теплоноситель, ядерное горючее – выполняют поставленные задачи, обуславливая нормальную работоспособность реактора.

Какое топливо используют для ядерных реакторов и почему именно эти химические элементы избираются

Основным топливом в реакторах могут служить изотопы урана, также плутония или тория.

Еще в 1934 году Ф.Жолио-Кюри, пронаблюдав за процессом деления ядра урана, заметил, что в результате химической реакции ядро урана делится на осколки-ядра и два-три свободных нейтрона. А это значит, что появляется вероятность, что свободные нейтрону примкнут к другим ядрам урана и спровоцируют очередное деление. А так, как предсказывает цепная реакция: из трех ядер урана освободится уже шесть-девять нейтронов, и они снова примкнут к вновь образовавшимся ядрам. И так до бесконечности.

Важно помнить! Нейтроны, появляющиеся при делении ядер, способны провоцировать деление ядер изотопа урана с массовым числом 235, а для уничтожения ядер изотопа урана с массовым числом 238 может оказаться мало возникающей в процессе распада энергии.

Уран с числом 235 редко встречается в природе. На его долю приходится только 0,7%, а вот природный уран-238 занимает более просторную нишу и составляет 99,3 %.

Невзирая на такую малую долю урана-235 в природе, все равно физики и химики от него не могут отказаться, потому что он наиболее эффективен для функционирования ядерного реактора, удешевляя процесс получения энергии для человечества.

Когда появились первые ядерные реакторы и где их принято применять сегодня

Еще в 1919 году физики уже триумфовали, когда Резерфордом была обнаружен и описан процесс образования движущихся протонов как результат столкновения альфа-частиц с ядрами атомов азота. Это открытие означало, что ядро изотопа азота в результате столкновения с альфа-частицей превращалось в ядро изотопа кислорода.

Прежде чем появились первые ядерные реакторы, мир узнал несколько новых законов физики, трактующих все важные аспекты ядерной реакции. Так, в 1934 году Ф.Жолио-Кюри, Х.Халбан, Л. Коварски впервые предложили обществу и кругу мировых ученых теоретическое предположение и доказательную базу о возможности осуществления ядерных реакций. Все эксперименты были связаны с наблюдением за делением ядра урана.

В 1939 году Э.Ферми, И.Жолио-Кюри, О. Ган, О. Фриш отследили реакцию деления ядер урана при бомбардировке их нейтронами. В ходе исследований ученые установили, что при попадании в ядро урана одного ускоренного нейтрона имеющееся ядро делится на две-три части.

Цепная реакция была практически доказана в средине XX века. Ученым удалось в 1939 году доказать, что при делении одного уранового ядра высвобождается где-то 200 МэВ энергии. А вот на кинетическую энергию ядер-осколков отводится приблизительно 165 МэВ, а остаток уносит с собой гамма-кванты. Данное открытие совершило прорыв в квантовой физике.

Э.Ферми работы и исследования продолжает еще несколько лет и запускает первый ядерный реактор в 1942 году в США. Воплощенный проект получил название – «Чикагская поленница» и был поставлен на венные рельсы. 5 сентября 1945 года Канада запустила свой ядерный реактор ZEEP. Европейский континент не отставал, и в это же время возводилась установка Ф-1. А для россиян есть и другая памятная дата – 25 декабря 1946 года в Москве под руководством И.Курчатова запускается реактор. Это были не самые мощные ядерные реакторы, но это было началом освоения человеком атома.

В мирных целях научный ядерный реактор создали в 1954 году в СССР. Первый в мире мирный корабль с ядерной силовой установкой – атомный ледокол «Ленин» - был построен в Советском Союзе в 1959 году. И еще одно достижение нашего государства – атомный ледокол «Арктика». Данный надводный корабль впервые в мире достиг Северного полюса. Это случилось в 1975 году.

Первые портативные ядерные реакторы работали на медленных нейтронах.

Где используют ядерные реакторы и какие виды использует человечество

  • Промышленные реакторы. Их используют для выработки энергии на АЭС.
  • Атомные реакторы, выступающие как движетель атомных подводных лодок.
  • Экспериментальные (портативные, малые) реакторы. Без них не проходит ни один современный научный опыт или исследование.

Сегодня научный свет научился при помощи специальных реакторов опреснять морскую воду, обеспечивать население качественной питьевой водой. Действующих ядерных реакторов в России очень много. Так, по статистике по состоянию на 2018 год работает в государстве около 37 блоков.

А по классификации они могут быть следующими:

  • Исследовательские (исторические). К ним относят станцию Ф-1, которая создавалась как опытная площадка по получению плутония. На Ф-1 работал Курчатов И.В., руководил первым физическим реактором.
  • Исследовательские (действующие).
  • Оружейные. Как образец реактора – А-1, который вошел в историю, как первый реактор с охлаждением. Прошлая мощность ядерного реактора небольшая, но функциональная.
  • Энергетические.
  • Судовые. Известно, что на кораблях и подводных лодках по необходимости и технической целесообразности используют водо-водяные или жидкометаллические реакторы.
  • Космические. Как пример, назовем установку «Енисей» на космических кораблях, которая вступает в действие, если необходимо добыть дополнительное количество энергии, и получать ее придется при помощи солнечных батарей и изотопных источников.

Таким образом, тема о ядерных реакторах достаточно расширенная, поэтому требует глубокого изучения и понимания законов квантовой физики. Но значение ядерных реакторов для энергетики и экономики государства уже, бесспорно, овеяно аурой полезности и выгоды.

Ядерный реактор — устройство, в котором осуществляется управляемая цепная ядерная реакция, сопровождающаяся выделением энергии.

История

Самоподдерживающаяся управляемая цепная реакция деления ядер (кратко — цепная реакция) была впервые осуществлена в декабре 1942 г. Группа физиков Чикагского университета , возглавляемая Э. Ферми , построила первый в мире ядерный реактор, названный СР-1 . Он состоял из графитовых блоков, между которыми были расположены шары из природного урана и его двуокиси. Быстрые нейтроны, появляющиеся после деления ядер 235U , замедлялись графитом до тепловых энергий, а затем вызывали новые деления ядер. Реакторы, подобные СР-1, в которых основная доля делений происходит под действием тепловых нейтронов, называют реакторами на тепловых нейтронах. В их состав входит очень много замедлителя по сравнению с ураном.

В СССР теоретические и экспериментальные исследования особенностей пуска, работы и контроля реакторов были проведены группой физиков и инженеров под руководством академика И. В. Курчатова . Первый советский реактор Ф-1 выведен в критическое состояние 25 декабря 1946 г. Реактор Ф-1 набран из графитовых блоков и имеет форму шара диаметром примерно 7,5 м. В центральной части шара диаметром 6 м по отверстиям в графитовых блоках размещены урановые стержни. Результаты исследований на реакторе Ф-1 стали основой проектов более сложных по конструкции промышленных реакторов. В 1949 г. введён в действие реактор по производству плутония, а 27 июня 1954 г. вступила в строй первая в мире атомная электростанция электрической мощностью 5 МВт в г. Обнинске.

Устройство и принцип работы

Механизм энерговыделения

Превращение вещества сопровождается выделением свободной энергии лишь в том случае, если вещество обладает запасом энергий. Последнее означает, что микрочастицы вещества находятся в состоянии с энергией покоя большей, чем в другом возможном, переход в которое существует. Самопроизвольному переходу всегда препятствует энергетический барьер, для преодоления которого микрочастица должна получить извне какое-то количество энергии — энергии возбуждения. Экзоэнергетическая реакция состоит в том, что в следующем за возбуждением превращении выделяется энергии больше, чем требуется для возбуждения процесса. Существуют два способа преодоления энергетического барьера: либо за счёт кинетической энергии сталкивающихся частиц, либо за счёт энергии связи присоединяющейся частицы.

Если иметь в виду макроскопические масштабы энерговыделения, то необходимую для возбуждения реакций кинетическую энергию должны иметь все или сначала хотя бы некоторая доля частиц вещества. Это достижимо только при повышении температуры среды до величины, при которой энергия теплового движения приближается к величине энергетического порога, ограничивающего течение процесса. В случае молекулярных превращений, т. е. химических реакций, такое повышение обычно составляет сотни градусов Кельвина, в случае же ядерных реакций — это минимум 107°К из-за очень большой высоты кулоновских барьеров сталкивающихся ядер. Тепловое возбуждение ядерных реакций осуществлено на практике только при синтезе самых лёгких ядер, у которых кулоновские барьеры минимальны (термоядерный синтез). Возбуждение присоединяющимися частицами не требует большой кинетической энергии, и, следовательно, не зависит от температуры среды, поскольку происходит за счёт неиспользованных связей, присущих частицам сил притяжения. Но зато для возбуждения реакций необходимы сами частицы. И если опять иметь в виду не отдельный акт реакции, а получение энергии в макроскопических масштабах, то это возможно лишь при возникновении цепной реакции. Последняя же возникает, когда возбуждающие реакцию частицы снова появляются как продукты экзоэнергетической реакции.

Схематическое устройство гетерогенного реактора на тепловых нейтронах1 — управляющий стержень; 2 — биологическая защита; 3 — тепловая защита; 4 — замедлитель; 5 — ядерное топливо; 6 — теплоноситель.

Схематическое устройство гетерогенного реактора на тепловых нейтронах

    управляющий стержень;

    биологическая защита;

    тепловая защита;

    замедлитель;

    ядерное топливо;

    теплоноситель.

Конструкция

Любой ядерный реактор состоит из следующих частей:

    Активная зона с ядерным топливом и замедлителем;

    Отражатель нейтронов, окружающий активную зону;

    Теплоноситель;

    Система регулирования цепной реакции, в том числе аварийная защита

    Радиационная защита

    Система дистанционного управления

Основная характеристика реактора — его выходная мощность. Мощность в 1 МВт соответствует цепной реакции, при которой происходит 3·1016 делений в 1 сек.

Физические принципы работы

Текущее состояние ядерного реактора можно охарактеризовать эффективным коэффициентом размножения нейтронов k или реактивностью ρ, которые связаны следующим соотношением:

Для этих величин характерны следующие значения:

    k > 1 — цепная реакция нарастает во времени, реактор находится в надкритичном состоянии, его реактивность ρ > 0;

    k < 1 — реакция затухает, реактор — подкритичен, ρ < 0;

    k = 1, ρ = 0 — число делений ядер постоянно, реактор находится в стабильном критическом состоянии.

Условие критичности ядерного реактора:

    ω есть доля полного числа образующихся в реакторе нейтронов, поглощённых в активной зоне реактора, или вероятность избежать нейтрону утечки из конечного объема.

    k 0 — коэффициент размножения нейтронов в активной зоне бесконечно больших размеров.

Обращение коэффициента размножения в единицу достигается сбалансированием размножения нейтронов с их потерями. Причин потерь фактически две: захват без деления и утечка нейтронов за пределы размножающей среды.

Очевидно, что k < k0, поскольку в конечном объёме вследствие утечки потери нейтронов обязательно больше, чем в бесконечном. Поэтому, если в веществе данного состава k0 < 1, то цепная самоподдерживающаяся реакция невозможна как в бесконечном, так и в любом конечном объёме. Таким образом, k0 определяет принципиальную способность среды размножать нейтроны

k0 для тепловых реакторов можно определить по так называемой «формуле 4-х сомножителей»:

    μ — коэффициент размножения на быстрых нейтронах;

    φ — вероятность избежать резонансного захвата;

    θ — коэффициент использования тепловых нейтронов;

    η — выход нейтронов на одно поглощение.

Объёмы современных энергетических реакторов могут достигать сотен м 3 и определяются главным образом не условиями критичности, а возможностями теплосъёма.

Критический объём ядерного реактора — объём активной зоны реактора в критическом состоянии. Критическая масса — масса делящегося вещества реактора, находящегося в критическом состоянии.

Наименьшей критической массой обладают реакторы, в которых топливом служат водные растворы солей чистых делящихся изотопов с водяным отражателем нейтронов. Для 235 U эта масса равна 0,8 кг, для 239 Pu — 0,5 кг. Теоретически, наименьшей критической массой обладает 251 Cf, для которого эта величина составляет всего 10 г.

С целью уменьшения утечки нейтронов, активной зоне придают сферическую или близкую к сферической форму, например короткого цилиндра или куба, так как эти фигуры обладают наименьшим отношением площади поверхности к объёму.

Несмотря на то, что величина (e — 1) обычно невелика, роль размножения на быстрых нейтронах достаточно велика, поскольку для больших ядерных реакторов (К∞ — 1) << 1. Без этого процесса было бы невозможным создание первых графитовых реакторов на естественном уране.

Для начала цепной реакции обычно достаточно нейтронов, рождаемых при спонтанном делении ядер урана. Возможно также использование внешнего источника нейтронов для запуска реактора, например, смеси Ra и Be, 252 Cf или других веществ.

Иодная яма

Иодная яма — состояние ядерного реактора после его выключения, характеризующееся накоплением короткоживущего изотопа ксенона (135 Xe). Этот процесс приводит к временному появлению значительной отрицательной реактивности, что, в свою очередь, делает невозможным вывод реактора на проектную мощность в течение определённого периода (около 1—2 суток).

Классификация

По характеру использования

По характеру использования ядерные реакторы делятся на:

    Экспериментальные реакторы, предназначенные для изучения различных физических величин, значение которых необходимо для проектирования и эксплуатации ядерных реакторов; мощность таких реакторов не превышает несколько кВт;

    Исследовательские реакторы, в которых потоки нейтронов и γ-квантов, создаваемые в активной зоне, используются для исследований в области ядерной физики, физики твёрдого тела, радиационной химии, биологии, для испытания материалов, предназначенных для работы в интенсивных нейтронных потоках (в т. ч. деталей ядерных реакторов), для производства изотопов. Мощность исследовательских реакторов не превосходит 100 Мвт; выделяющаяся энергия, как правило, не используется.

    Изотопные (оружейные, промышленные) реакторы, используемые для наработки изотопов, используемых в ядерных вооружениях, например 239Pu.

    Энергетические реакторы, предназначенные для получения электрической и тепловой энергии, используемой в энергетике, при опреснении воды, для привода силовых установок кораблей и т. д.; Тепловая мощность современного энергетического реактора достигает 3—5 ГВт.

По спектру нейтронов

    Реактор на тепловых нейтронах («тепловой реактор»)

    Реактор на быстрых нейтронах («быстрый реактор»)

    Реактор на промежуточных нейтронах

По размещению топлива

    Гетерогенные реакторы, где топливо размещается в активной зоне дискретно в виде блоков, между которыми находится замедлитель;

    Гомогенные реакторы, где топливо и замедлитель представляют однородную смесь (гомогенную систему).

Блоки ядерного топлива в гетерогенном реакторе называются тепловыделяющими элементами (ТВЭЛ’ами), которые размещаются в активной зоне в узлах правильной решётки, образуя ячейки.

По виду топлива

По степени обогащения:

    Естественный уран

    Слабо обогащённый уран

    Чистый делящийся изотоп

По химическому составу:

    металлический U

    UO 2 (диоксид урана)

    UC (карбид урана) и т. д.

По виду теплоносителя

    H 2 O (вода, см. Водо-водяной реактор)

    Газ, (см. Графито-газовый реактор)

    Реактор с органическим теплоносителем

    Реактор с жидкометаллическим теплоносителем

    Реактор на расплавах солей

По роду замедлителя

    С (графит, см. Графито-газовый реактор, Графито-водный реактор)

    H 2 O (вода, см. Легководный реактор, Водо-водяной реактор, ВВЭР)

    D 2 O (тяжёлая вода, см. Тяжеловодный ядерный реактор, CANDU)

    Гидриды металлов

    Без замедлителя

По конструкции

    Корпусные реакторы

    Канальные реакторы

По способу генерации пара

    Реактор с внешним парогенератором

    Кипящий реактор

В начале XXI века наиболее распространены гетерогенные ядерные реакторы на тепловых нейтронах с замедлителями — H 2 O, С, D 2 O и теплоносителями — H 2 O, газ, D 2 O, например, водо-водяные ВВЭР, канальные РБМК.

Перспективными являются также быстрые реакторы. Топливом в них служит 238U, что позволяет в десятки раз улучшить использование ядерного топлива по сравнению с тепловыми реакторами, это существенно увеличивает ресурсы ядерной энергетики.

Материалы реакторов

Материалы, из которых строят реакторы, работают при высокой температуре в поле нейтронов, γ-квантов и осколков деления. Поэтому для реакторостроения пригодны не все материалы, применяемые в других отраслях техники. При выборе реакторных материалов учитывают их радиационную стойкость, химическую инертность, сечение поглощения и другие свойства.

Оболочки ТВЭЛов, каналы, замедлители (отражатели) изготовляют из материалов с небольшими сечениями поглощения. Применение материалов, слабо поглощающих нейтроны, снижает непроизводительный расход нейтронов, уменьшает загрузку ядерного топлива и увеличивает коэффициент воспроизводства КВ. Для поглощающих стержней, наоборот, пригодны материалы с большим сечением поглощения. Это значительно сокращает количество стержней, необходимых для управления реактором.

Быстрые нейтроны, γ-кванты и осколки деления повреждают структуру вещества. Так, в твёрдом веществе быстрые нейтроны выбивают атомы из кристаллической решётки или сдвигают их с места. Вследствие этого ухудшаются пластические свойства и теплопроводность материалов. Сложные молекулы под действием излучения распадаются на более простые молекулы или составные атомы. Например, вода разлагается на кислород и водород. Это явление известно под названием радиолиза воды.

Радиационная нестойкость материалов меньше сказывается при высоких температурах. Подвижность атомов становится настолько большой, что вероятность возвращения выбитых из кристаллической решётки атомов на своё место или рекомбинация водорода и кислорода в молекулу воды заметно увеличивается. Так, радиолиз воды несуществен в энергетических некипящих реакторах (например, ВВЭР), в то время как в мощных исследовательских реакторах выделяется значительное количество гремучей смеси. В реакторах есть специальные системы для ее сжигания.

Реакторные материалы контактируют между собой (оболочка ТВЭЛа с теплоносителем и ядерным топливом, тепловыделяющие кассеты — с теплоносителем и замедлителем и т. д.). Естественно, что контактирующие материалы должны быть химически инертными (совместимыми). Примером несовместимости служат уран и горячая вода, вступающие в химическую реакцию.

У большинства материалов прочностные свойства резко ухудшаются с увеличением температуры. В энергетических реакторах конструкционные материалы работают при высоких температурах. Это ограничивает выбор конструкционных материалов, особенно для тех деталей энергетического реактора, которые должны выдерживать высокое давление.

Выгорание и воспроизводство ядерного топлива

В процессе работы ядерного реактора из-за накопления в топливе осколков деления изменяется его изотопный и химический состав, происходит образование трансурановых элементов, главным образом изотопов Pu. Влияние осколков деления на реактивность ядерного реактора называется отравлением (для радиоактивных осколков) и зашлаковыванием (для стабильных изотопов).

Основная причина отравления реактора — 135 Xe, обладающий наибольшим сечением поглощения нейтронов (2,6·106 барн). Период полураспада 135 Xe T½ = 9,2 ч; выход при делении составляет 6—7%. Основная часть 135Xe образуется в результате распада 135 I (T½ = 6,8 ч). При отравлении Кэф изменяется на 1—3%. Большое сечение поглощения 135 Xe и наличие промежуточного изотопа 135 I приводят к двум важным явлениям:

    К увеличению концентрации 135 Xe и, следовательно, к уменьшению реактивности реактора после его остановки или снижения мощности («иодная яма»), что делает невозможным кратковременные остановки и колебания выходной мощности. Данный эффект преодолевается введением запаса реактивности в органах регулирования. Глубина и продолжительность йодной ямы зависят от потока нейтронов Ф: при Ф = 5·1018 нейтрон/(см 2 ·сек) продолжительность йодной ямы ˜ 30 ч, а глубина в 2 раза превосходит стационарное изменение Кэф, вызванное отравлением 135 Xe.

    Из-за отравления могут происходить пространственно-временные колебания нейтронного потока Ф, а, следовательно, и мощности реактора. Эти колебания возникают при Ф > 1018 нейтронов/(см 2 ·сек) и больших размерах реактора. Периоды колебаний ˜ 10 ч.

При делении ядер возникает большое число стабильных осколков, которые различаются сечениями поглощения по сравнению с сечением поглощения делящегося изотопа. Концентрация осколков с большим значением сечения поглощения достигает насыщения в течение нескольких первых суток работы реактора. Главным образом это 149Sm, изменяющий Кэф на 1%). Концентрация осколков с малым значением сечения поглощения и вносимая ими отрицательная реактивность возрастают линейно во времени.

Образование трансурановых элементов в ядерном реакторе происходит по следующим схемам:

    235 U + n → 236 U + n → 237 U →(7 сут)→ 237 Np + n → 238 Np →(2,1 сут)→ 238 Pu

    238 U + n → 239 U →(23 мин)→ 239 Np →(2,3 сут)→ 239 Pu (+осколки) + n → 240 Pu + n → 241 Pu (+осколки) + n → 242 Pu + n → 243 Pu →(5 ч)→ 243 Am + n → 244 Am →(26 мин)→ 244 Cm

Время между стрелками обозначает период полураспада, «+n» обозначает поглощение нейтрона.

В начале работы реактора происходит линейное накопление 239 Pu, причём тем быстрее (при фиксированном выгорании 235 U), чем меньше обогащение урана. Далее концентрация 239 Pu стремится к постоянной величине, которая не зависит от степени обогащения, а определяется отношением сечений захвата нейтронов 238 U и 239 Pu. Характерное время установления равновесной концентрации 239 Pu ˜ 3/Ф лет (Ф в ед. 1013 нейтронов/см 2 ×сек). Изотопы 240 Pu, 241 Pu достигают равновесной концентрации только при повторном сжигании горючего в ядерном реакторе после регенерации ядерного топлива.

Выгорание ядерного топлива характеризуют суммарной энергией, выделившейся в реакторе на 1 топлива. Эта величина составляет:

    ˜ 10 Гвт·сут/т — реакторы на тяжёлой воде;

    ˜ 20—30 Гвт·сут/т — реакторы на слабообогащённом уране (2—3% 235U);

    до 100 Гвт·сут/т — реакторы на быстрых нейтронах.

Выгорание 1 Гвт·сут/т соответствует сгоранию 0,1% ядерного топлива.

По мере выгорания топлива реактивность реактора уменьшается. Замена выгоревшего топлива производится сразу из всей активной зоны или постепенно, оставляя в работе ТВЭЛы разных «возрастов». Такой режим называется непрерывной перегрузкой топлива.

В случае полной замены топлива, реактор имеет избыточную реактивность, которую нужно компенсировать, тогда как во втором случае компенсация требуется только при первом пуске реактора. Непрерывная перегрузка позволяет повысить глубину выгорания, т. к. реактивность реактора определяется средними концентрациями делящихся изотопов.

Масса загруженного топлива превосходит массу выгруженного за счёт «веса» выделившейся энергии. После остановки реактора, сначала главным образом за счёт деления запаздывающими нейтронами, а затем, через 1—2 мин, за счёт β- и γ-излучения осколков деления и трансурановых элементов, в топливе продолжается выделение энергии. Если реактор работал достаточно долго до момента остановки, то через 2 мин после остановки выделение энергии составляет около 3%, через 1 ч — 1%, через сутки — 0,4%, через год — 0,05%.

Отношение количества делящихся изотопов Pu, образовавшихся в ядерном реакторе, к количеству выгоревшего 235 U называется коэффициентом конверсии KK. Величина KK увеличивается при уменьшении обогащения и выгорания. Для тяжеловодного реактора на естественном уране, при выгорании 10 Гвт·сут/т KK = 0,55, а при небольших выгораниях (в этом случае KK называется начальным плутониевым коэффициентом) KK = 0,8. Если ядерный реактор сжигает и производит одни и те же изотопы (реактор-размножитель), то отношение скорости воспроизводства к скорости выгорания называется коэффициентом воспроизводства КВ. В ядерных реакторах на тепловых нейтронах КВ < 1, а для реакторов на быстрых нейтронах КВ может достигать 1,4—1,5. Рост КВ для реакторов на быстрых нейтронах объясняется главным образом тем, что, особенно в случае 239 Pu, для быстрых нейтронов g растёт, а а падает.

Управление ядерным реактором

Ядерный реактор может работать с заданной мощностью в течение длительного времени только в том случае, если в начале работы имеет запас реактивности. Протекающие в реакторе процессы вызывают ухудшение размножающих свойств среды, и без механизма восстановления реактивности реактор не смог бы работать даже малое время. Первоначальный запас реактивности создается путём постройки активной зоны с размерами, значительно превосходящими критические. Чтобы реактор не становился надкритичным, в активную зону вводятся вещества-поглотители нейтронов. Поглотители входят в состав материала управляющих стержней, перемещающихся по соответствующим каналам в активной зоне. Причём если для регулирования достаточно всего нескольких стержней, то для компенсации начального избытка реактивности число стержней может достигать сотни. Компенсирующие стержни постепенно выводятся из активной зоны реактора, обеспечивая критическое состояние в течение всего времени его работы. Компенсация выгорания может также достигаться применением специальных поглотителей, эффективность которых убывает при захвате ими нейтронов (Cd, В, редкоземельные элементы) или растворов поглощающих веществ в замедлителе.

Управление ядерным реактором упрощает тот факт, что часть нейтронов при делении вылетает из осколков с запаздыванием, которое может составить от 0,2 до 55 сек. Благодаря этому, нейтронный поток и, соответственно, мощность изменяются достаточно плавно, давая время на принятие решения и изменение состояния реактора извне.

Для управления ядерным реактором служит система управления и защиты (СУЗ). Органы СУЗ делятся на:

    Аварийные, уменьшающие реактивность (вводящие в реактор отрицательную реактивность) при появлении аварийных сигналов;

    Автоматические регуляторы, поддерживающие постоянным нейтронный поток Ф (т. е. мощность на выходе);

    Компенсирующие, служащие для компенсации отравления, выгорания, температурных эффектов.

В большинстве случаев для управления реактором используют стержни, вводимые в активную зону, изготовленные из материалов, сильно поглощающих нейтроны (Cd, В и др.). Движение стержней управляется специальными механизмами, работающими по сигналам приборов, чувствительных к величине нейтронного потока.

Работа органов СУЗ заметно упрощается для реакторов с отрицательным температурным коэффициентом реактивности (с ростом температуры r уменьшается).

На основе информации о состоянии реактора, специальным вычислительным комплексом формируются рекомендации оператору по изменению состояния реактора, либо, в определённых пределах, управление реактором производится без участия оператора.

На случай непредвиденного катастрофического развития цепной реакции, в каждом реакторе предусмотрено экстренное прекращение цепной реакции, осуществляемое сбрасыванием в активную зону специальных аварийных стержней или стержней безопасности — система аварийной защиты.

Отправить

Что такое ядерный реактор?

Ядерный реактор, ранее известный как "атомный котёл" является устройством, используемым для инициирования и контроля поддерживаемой ядерной цепной реакции. Ядерные реакторы используются на атомных электростанциях для производства электроэнергии и для корабельных двигателей. Тепло от ядерного деления передается в рабочую жидкость (воду или газ), которая проходит через паровые турбины. Вода или газ приводят в движение лопасти корабля, либо вращают электрогенераторы. Пар, возникающий в результате ядерной реакции в принципе может использоваться для тепловой промышленности или для централизованного теплоснабжения. Некоторые реакторы используются для производства изотопов, применяемых в медицинских и промышленных целях или для производства оружейного плутония. Некоторые из них предназначены только для исследований. Сегодня существует около 450 ядерных энергетических реакторов, которые используются для выработки электроэнергии примерно в 30 странах мира.

Принцип работы ядерного реактора

Подобно тому, как обычные электростанции вырабатывают электроэнергию за счет использования тепловой энергии, выделяемой от сжигания ископаемого топлива, ядерные реакторы преобразуют энергию, выделяемую контролируемым делением ядер, в тепловую энергию для дальнейшего преобразования в механические или электрические формы.

Процесс деления атомного ядра

Когда значительное количество распадающихся атомных ядер (такие как уран-235 или плутоний-239) поглощают нейтрон, то может произойти процесс ядерного распада. Тяжелое ядро ​​распадается на два или более легких ядер, (продукты деления), высвобождая кинетическую энергию, гамма-излучение и свободные нейтроны. Часть этих нейтронов впоследствии могут быть поглощены другими атомами делящихся и вызвать дальнейшее деление, которое высвобождает ещё больше нейтронов, и так далее. Данный процесс известен как цепная ядерная реакция.

Для управления такой цепной ядерной реакцией, поглотители и замедлители нейтронов могут изменить долю нейтронов, которые пойдут на деление большего количества ядер. Ядерные реакторы управляются вручную или автоматически, чтобы иметь возможность остановить реакцию распада при выявлении опасных ситуаций.

Обычно используются такие регуляторы нейтронного потока как обычная ("легкая") вода (74,8% реакторов в мире), твердый графит (20% реакторов) и "тяжелая" воды (5% реакторов). В некоторых экспериментальных типах реакторов предлагается использовать бериллий, и углеводороды.

Тепловыделение в ядерном реакторе

Рабочая зона реактора вырабатывает тепло несколькими способами:

  • Кинетическая энергия продуктов деления преобразуется в тепловую энергию, когда ядра сталкиваются с соседними атомами.
  • Реактор поглощает часть гамма-излучения, образующегося в ходе деления и преобразует его энергию в тепло.
  • Тепло вырабатывается в результате радиоактивного распада продуктов деления и тех материалов, которые подверглись воздействию в ходе поглощения нейтронов. Этот источник тепла будет сохраняться неизменным в течение некоторого времени, даже после того, как реактор остановлен.

В ходе ядерных реакций килограмм урана-235 (U-235) выделяет примерно в три миллиона раз больше энергии, чем килограмм сжигаемого угля условно (7,2 × 1013 джоулей на килограмм урана-235 по сравнению с 2,4 × 107 джоулей на килограмм угля) ,

Система охлаждения ядерного реактора

Охладитель ядерного реактора - обычно вода, но иногда газ, жидкий металл (например, жидкий натрий) или расплавленная соль - он циркулирует вокруг активной зоны реактора для поглощения выделяющегося тепла. Тепло отводится из реактора и затем используется для генерации пара. Большинство реакторов используют систему охлаждения, которая физически изолирована от воды, которая кипит и генерирует пар, используемый для турбин, как реактор с водой под давлением. Тем не менее, в некоторых реакторах вода для паровых турбин кипит непосредственно в активной зоне реактора; например, в водо-водяном типе реактора.

Контроль нейтронного потока в реакторе

Выходная мощность реактора регулируется путем контроля количества нейтронов способных вызвать больше делений.

Управляющие стержни, которые сделаны из "нейтронного яда" используются для поглощения нейтронов. Чем больше нейтронов, поглощается управляющим стержнем, тем меньше нейтронов могут вызвать дальнейшее деление. Таким образом, погружение поглотительных стержней вглубь реактора, уменьшает его выходную мощность и, наоборот, извлечение управляющего стержня увеличит её.

На первом уровне управления во всех ядерных реакторов, процесс задержанной эмиссии нейтронов ряда нейтронообогащенных изотопов деления является важным физическим процессом. Эти запаздывающие нейтроны составляют около 0,65% от общего числа нейтронов, образующихся при делении, а остальная часть (так называемые "быстрые нейтроны"), образуются сразу в ходе деления. Продукты деления, которые формируют запаздывающие нейтроны обладают периодами полураспада от миллисекунд до нескольких минут, и поэтому требуется значительное время, чтобы точно определить, когда реактор достигает критической точки. Поддержание реактора в режиме цепной реактивности, где запаздывающие нейтроны необходимы для достижения критической массы, достигается при помощи механических устройств или управлением под контролем человека, с целью контроля над цепной реакцией в "реальном времени"; в ином случае время между достижением критичности и плавлением активной зоны ядерного реактора в результате экспоненциального скачка напряжения в ходе нормальной ядерной цепной реакции, будет слишком коротким, чтобы осуществить вмешательство. Этот последний этап, где запаздывающие нейтроны больше не требуется для поддержания критичности, известен как критичность по мгновенным нейтронам. Существует шкала для описания критичности в числовой форме, в которой затравочная критичность обозначена термином "ноль долларов", быстрая критическая точка как "один доллар", другие моменты в процессе интерполированы в "центах".

В некоторых реакторах, охлаждающая жидкость также выступает в роли замедлителя нейтронов. Замедлитель увеличивает мощность реактора, заставляя быстрые нейтроны, которые высвобождаются в ходе деления терять энергию и становятся тепловыми нейтронами. Тепловые нейтроны с большей вероятностью, чем быстрые нейтроны вызывают деление. Если охладитель является также замедлителем нейтронов, то изменения температуры могут повлиять на плотность охладителя / замедлителя и, следовательно, на изменение выходной мощности реактора. Чем выше температура охладителя, тем он будет менее плотным, и, следовательно, менее эффективным замедлителем.

В других типах реакторов охладитель выступает в роли "нейтронного яда", поглощая нейтроны, таким же способом, как и регулирующие стержни. В этих реакторах выходная мощность может быть увеличена путем нагрева охладителя, что делает его менее плотным. Ядерные реакторы, как правило, имеют автоматические и ручные системы для остановки реактора для аварийного отключении. Эти системы помещают большого количества "нейтронного яда" (часто бора в виде борной кислоты) в реактор для того, чтобы остановить процесс деления, если обнаружены или предполагаюстя опасные состояния.

Большинство типов реакторов чувствительны к процессу известному как "ксеноновая яма" или "йодная яма". Рапространенный продукт распада ксенон-135, возникающий в результате реакции деления, играет роль нейтронного поглотителя, который стремится остановить реактор. Накоплением ксенона-135 можно управлять, поддерживая достаточно высокий уровень мощности, чтобы уничтожить его путем поглощения нейтронов так же быстро, как он производится. Деление также приводит к формированию йода-135, который в свою очередь распадается (с периодом полураспада 6,57 часа) с образованием ксенона-135. Когда реактор остановлен, йод-135 продолжает распадаться с образованием ксенона-135, что делает перезапуск реактора более трудным в течение одного или двух дней, так как ксенон-135 распадается, образуя цезий-135, который не является таким нейтронным поглотителем, как ксенон-135, с периодом полураспада 9,2 часа. Такое временное состояние является "йодной ямой". Если реактор имеет достаточную дополнительные мощность, то он может быть перезапущен. Чем больше ксенона-135 превратится в ксенон-136, что меньше нейтронного поглотителя, и в течение нескольких часов реактор испытывает так называемый "этап ксенонового выгорания". Дополнительно в реактор должны быть вставлены управляющие стержни, чтобы скомпенсировать поглощение нейтронов взамен утерянного ксенона-135. Невозможность правильно соблюдать такую процедуру послужило ключевой причиной аварии на Чернобыльской АЭС.

Реакторы, используемые в судовых атомных установках (особенно атомных подводных лодок), часто не могут быть запущены в режиме непрерывной выработки энергии таким же образом, что и наземные энергетические реакторы. Кроме того, такие энергетические установки должны обладать длительным периодом эксплуатации без смены топлива. По этой причине многие конструкции используют высокообогащенный уран, но содержат выгорающий поглотитель нейтроннов в топливных стержнях. Это позволяет сконструировать реактор с избытком расщепляющегося материала, который относительно безопасен в начале выгорания топливного цикла реактора в связи с наличием нейтронного поглощающего материала, который впоследствии замещается обычными долговечными поглотителями нейтронов (более долговечными, чем ксенон-135), которые постепенно накапливаются в течение срока эксплуатации топлива.

Как производится электроэнергия?

Энергия, образующаяся в процессе деления генерирует тепло, часть которого может быть преобразована в полезную энергию. Общий метод использования этой тепловой энергии - это использование её для кипячения воды и получения пара под давлением, который в свою очередь, приводит к вращению привода паровой турбины, которая вращает генератор переменного тока и вырабатывает электроэнергию.

История появления первых реакторов

Нейтроны былы открыты в 1932 г. Схема цепной реакции, спровоцированная ядерными реакциями в результате воздействия нейтронов впервые была осуществлена венгерским ученым Лео Силлардом, в 1933 году. Он подал заявку на патент идеи своего простого реактора в течение уже следующего года работы в Адмиралтействе в Лондоне. Тем не менее, идея Сцилларда не включала в себя теорию деления ядер как источника нейтронов, так как этот процесс еще не был обнаружен. Идеи Сцилларда для ядерных реакторов с использованием нейтронно-опосредованной ядерной цепной реакции в легких элементов оказались неосуществимыми.

Побуждением для создания нового типа реактора с использованием урана послужило открытие Лизе Мейтнер, Фрица Штрассмана и Отто Гана в 1938 году, которые "бомбардировали" уран нейтронами (с помощью реакции альфа-распада бериллия, "нейтронной пушкой") с образованием бария, который, как они считали, возник при распаде ядер урана. Последующие исследования, проведенные в начале 1939 года (Сцилард и Ферми) показали, что некоторые нейтроны также образовались в ходе ходе расшепления атома и это сделало возможным осуществление ядерной цепной реакции, как предвидел Сцилард шесть лет назад.

2 августа 1939 Альберт Эйнштейн подписал письмо, написанное Сциллардом, президенту Франклину Д. Рузвельту, где повествуется о том, что открытие деления урана может привести к созданию "чрезвычайно мощных бомб нового типа". Это дало толчок к изучению реакторов и радиоактивного распада. Сциллард и Эйнштейн хорошо знали друг друга и работали вместе много лет, но Эйнштейн никогда не думал о такой возможности для ядерной энергетики, до тех пор пока Сциллард не сообщил ему, в самом начале его поисках, чтобы и написать письмо Эйнштейна-Сцилларда, чтобы предупредить правительство США,

Вскоре после этого, в 1939 году гитлеровская Германия напала на Польшу, начав Вторую мировую войну в Европе. Официально США еще не были ов состоянии войны, но в октябре, когда письмо Эйнштейна-Сциларда был доставлено, Рузвельт отметил, что целью исследования является то, что нужно быть уверенным, что "нацисты не взорвут нас." Ядерный проект США начался, хотя и с некоторой задержкой, поскольку оставался скепсис (в частности от Ферми), а также из-за небольшого числа чиновников правительства, которые первоначально курировали этот проект.

В следующем году правительство США получило меморандум Фриша-Пайерльса от Великобритании, в котором говорилось, что количество урана, необходимое для осуществления цепной реакции значительно меньше, чем считалось ранее. Меморандум был создан при участии "Мауд Коммити", который работал над проектом атомной бомбы в Великобритании, известной позже под кодовым названием "Tube Alloys" (Трубчатые Сплавы) и позже учтен в рамках Манхэттенского проекта.

В конечном итоге, первый искусственный ядерный реактор, названный "Чикагская Поленница - 1", был построен в Университете Чикаго командой под руководством Энрико Ферми в конце 1942 г. К этому времени, атомная программа США уже была ускорена из-за вступления страны войну. "Чикагская Поленница" достигла критической точки 2 декабря 1942 года в 15 часов 25 минут. Каркас реактора был деревянным, скрепляя штабель графитовых блоков (отсюда и название) с вложенными "брикетами" или "псевдосферами"природного оксида урана.

Начиная с 1943 г вскоре после создания "Чикагской Поленницы" американские военные разработали целую серию ядерных реакторов для Манхэттенского проекта. Основной целью создания крупнейших реакторов (расположенных в Хэнфордском комплексе штата Вашингтон) было массовое производство плутония для ядерного оружия. Ферми и Сцилард подали патентную заявку на реакторы 19 декабря 1944 г. Его выдача была отложен на 10 лет из-за режима секретности военного времени.

"Первая в мире " - эта надпись сделана на месте реактора EBR-I, где сейчас расположен музей рядом с городом Арко, штат Айдахо. Изначально названный "Чикагская Поленница-4", этот реактор был создан под руководством Вальтера Зинна для Арегоннской национальной лаборатории. Этот экспериментальный реактор-размножитель быстрых нейтронов был в распоряжении Комиссии по атомной энергии США. Реактор произвёл 0,8 кВт энергии при испытаниях 20 декабря 1951 года и 100 кВт энергии (электрической) на следующий день, имея проектную мощность 200 кВт (электрической энергии).

Помимо военного использования ядерных реакторов, были политические причины продолжать исследования атомной энергии в мирных целях. Президент США Дуайт Эйзенхауэр сделал свою знаменитую речь "Атомы во имя мира" на Генеральной Ассамблее ООН 8 декабря 1953 г. Этот дипломатический шаг привел к распространению реакторных технологий как в США, так и во всем мире.

Первой атомной электростанцией, построенной для гражданских целей была АЭС "AM-1" в Обнинске, запущенная 27 июня 1954 года в Советском Союзе. Она произведила около 5 МВт электрической энергии.

После Второй мировой войны, американские военные искали другие области применения технологии ядерного реактора. Исследования проведенные в армии и ВВС не были реализованы; Тем не менее ВМС США добились успеха спустив на воду атомную подводную лодку USS Nautilus (SSN-571) 17 января 1955 года.

Первая коммерческая атомная электростанция (Колдер-Холл в Селлафилде, Англия) была открыта в 1956 году с начальной мощностью 50 МВт (позже 200 МВт).

Первый портативный ядерный реактор "Alco PM-2A" использользовался для выработки электроэнергии (2 МВт) для американской военной базы "Camp Century" с 1960 года.

Основные компоненты АЭС

Основными компонентами большинства типов атомных электростанций являются:

Элементы атомного реактора

  • Ядерное топливо (активная зона ядерного реактора; замедлитель нейтронов)
  • Исходный источник нейтронов
  • Поглотитель нейтронов
  • Нейтронная пушка (обеспечивает постоянный источник нейтронов для повторного инициирования реакции после выключения)
  • Система охлаждения (часто замедлитель нейтронов и охладитель - одно и тоже, как правило очищенная вода)
  • Управляющие стержни
  • Корпус ядерного реактора (КЯР)

Насос подачи воды в котёл

  • Парогенераторы (не в ядерных реакторах кипящего типа)
  • Паровая турбина
  • Генератор электроэнергии
  • Конденсатор
  • Градирня (требуется не всегда)
  • Система обработки радиоактивных отходов (часть станции для утилизации радиоактивных отходов)
  • Площадка перегрузки ядерного топлива
  • Бассейн выдержки отработанного топлива

Система радиационной безопасности

  • Система защиты рекатора (СЗР)
  • Аварийные дизель-генераторы
  • Система аварийного охлаждения активной зоны реактора (САОЗ)
  • Аварийная жидкостная система регулирования (аварийный впрыск бора, только в ядерных реакторах кипящего типа)
  • Система обеспечения технической водой ответственных потребителей (СОТВОП)

Защитная оболочка

  • Пульт управления
  • Установка для работы в аварийных ситуациях
  • Ядерный учебно-тренировочный комплекс (как правило, имеется имтация пульта управления)

Классификации ядерных реакторов

Типы ядерных реакторов

Ядерные реакторы классифицируются несколькими способами; краткое изложение этих методов классификации представлено далее.

Классификация ядерных реакторов по типу замедлителя

Используемые тепловые реакторы:

  • Графитовые реакторы
  • Водо-водяный реакторы
  • Реакторы на тяжелой воде (используются в Канаде, Индии, Аргентине, Китае, Пакистане, Румынии и Южной Корее).
  • Реакторы на легкой воде (ЛВР). Реакторы на легкой воде (наиболее распространенный тип теплового реактора) используют обычную воду для управления и охлаждения реакторов. Если температура воды возрастает, то её плотность уменьшается, замедляя поток нейтронов настолько, чтобы вызвать дальнейшие цепные реакции. Это отрицательная обратная связь стабилизирует скорость ядерной реакции. Графит и тяжеловодные реакторы, как правило, более интенсивно нагреваются, нежели легководные реакторы. Из-за дополнительного нагрева, такие реакторы могут использовать природный уран / необогащенный топливо.
  • Реакторы на основе замедлителей из легких элементов .
  • Реакторы с замедлителями из расплавленных солей (MSR) управляются за счёт наличия легких элементов, таких как литий или бериллий, которые являются входят в состав матричных солей охладителя / топлива LiF и BEF2.
  • Реакторы с охладителями на основе жидкого металла , где охладитель представлен смесью свинца и висмута, может использовать окись ВеО в поглотителя нейтронов.
  • Реакторы на основе органического замедлителя (OMR) используют дифенил и терфенил в качестве замедлителя и охлаждающего компонентов.

Классификация ядерных реакторов по виду теплоносителя

  • Реактор с водяным охлаждением . В Соединенных Штатах существует 104 действующих реактора. 69 из них являются водо-водяными реакторами (PWR), а 35 - реакторы с кипящей водой (BWR). Ядерные реакторы с водой под давлением (РВД) составляют подавляющее большинство всех западных АЭС. Основной характеристикой типа РВД является наличие нагнетателя, специального сосуда высокого давления. Большинство коммерческих реакторов типа РВД и военно-морских реакторных установок используют нагнетатели. Во время нормальной работы нагнетатель частично заполнен водой, и над ним поддерживается паровой пузырь, который создается путем нагрева воды с погружными нагревателями. В штатном режиме нагнетатель подключен к корпусу реактора высокого давления (КРВД) и компенсатор давления обеспечивает наличие полости в случае изменения объема воды в реакторе. Такая схема также обеспечивает контроль давления в реактора путем увеличения или уменьшения напора пара в компенсаторе с использованием нагревателей.
  • Тяжеловодные реакторы высокого давления относятся к разновидности реакторов с водой под давлением (РВД), совмещая в себе принципы использование давления, изолированного теплового цикла, предполагая использованием тяжелой воды в качестве охладителя и замедлителя, что экономически выгодно.
  • Реактор с кипящей водой (BWR). Модели реакторов с кипящей водой характеризуются наличием кипящей воды вокруг топливных стержней в нижней части основного корпуса реактора. В реакторе с кипящей водой в качестве топлива используется обогащенный 235U, в форме диоксида урана. Топливо скомпоновано в стержни, размещеные в стальном сосуде, который, в свою очередь, погружен в воду. Процесс ядерного деления вызывает кипение воды и формирование пара. Этот пар проходит через трубопроводы в турбинах. Турбины приводятся в движение паром, и этот процесс генерирует электричество. Во время нормальной работы, давление регулируется количеством водяного пара, поступающего из емкости высокого давления реактора в турбину.
  • Реактор бассейнового типа
  • Реактор с жидкометаллическим теплоносителем . Так как вода является замедлитель нейтронов, то она не может быть использован в качестве теплоносителя в реакторе на быстрых нейтронах. Теплоносители на основе жидкого металла включают в себя натрий, NaK, свинец, свинец-висмутовая эвтектика, а для реакторов ранних поколений, ртуть.
  • Реактор на быстрых нейтронах с натриевым теплоносителем .
  • Реактор на быстрых нейтронах со свинцовым теплоносителем.
  • Реакторы с газовым охлаждением охлаждаются циркулирующим инертным газом, зачатую гелием в высокотемпературных конструкциях. При этом, углекислый газ был использован ранее на британских и французских АЭС. Азот также использовался. Использование тепла зависит от типа реактора. Некоторые реакторы нагреты настолько, что газ может непосредственно привести в движение газовую турбину. Старые модели реакторов, как правило, подразумевали пропускание газа через теплообменник для того, чтобы образовать пар для паровой турбины.
  • Реакторы на расплавах солей (MSR) охлаждаются за счет циркуляции расплавленной соли (обычно эвтектических смесей фтористых солей, таких как FLiBe). В типичном MSR, теплоноситель также используется в качестве матрицы, в которой растворен расщепляющийся материал.

Поколения ядерных реакторов

  • Реактор первого поколения (ранние прототипы, исследовательские реакторы, некоммерческие энергетические реакторы)
  • Реактор второго поколения (большинство современных атомных электростанций 1965-1996)
  • Реактор третьего поколение (эволюционные усовершенствования существующих конструкций 1996-настоящее время)
  • Реактор четвертого поколения (технологии все еще находятся на стадии разработки, неизвестная дата начала эксплуатации, возможно, 2030 г.)

В 2003 году французский комиссариат по атомной энергетики (CEA) впервые ввел обозначение "Gen II" в течении проводимой Недели Нуклеоники.

Первое упоминание о "Gen III" в 2000 году было сделано в связи с началом форума Generation IV International Forum (GIF).

"Gen IV" был упомянут в 2000 году Министерством энергетики Соединенных Штатов Америки (DOE) для разработки новых типов электростанций.

Классификация ядерных реакторов по виду топлива

  • Реактор на твердом топливе
  • Реактор на а жидком топливе
  • Гомогенный реактор с водяным охладителем
  • Реактор на основе расплавленных солей
  • Реакторы, работающие на газе (теоретически)

Классификация ядерных реакторов по назначению

  • Выработка электричества
  • Атомные электростанции, включая малые кассетные реакторы
  • Самоходные устройства (см. ядерные энергетические установки)
  • Ядерные морские установки
  • Различные предлагаемые виды ракетных двигателей
  • Другие формы использования тепла
  • Опреснение
  • Генерация тепла для бытового и промышленного отопления
  • Производство водорода для использования в водородной энергетике
  • Производственные реакторы для преобразования элементов
  • Реакторы-размножители, способные производить больше делящегося материала, чем они потребляют во время цепной реакции (путем превращения родительских изотопов U-238 в Pu-239, или Th-232 к U-233). Таким образом, отработав один цикл, реактор-размножитель урана может быть повторно дозаправлен природным или даже обедненным ураном. В свою очередь, реактор-размножитель тория может быть повторно дозаправлен торием. Тем не менее, необходим первоначальный запас делящегося материала.
  • Создание различных радиоактивных изотопов, таких, как америций для использования в детекторах дыма и кобальта-60, молибдена-99 и других, используемые в качестве индикаторов и для лечения.
  • Производство материалов для ядерного оружия, таких как оружейного плутония
  • Создание источника нейтронного излучения (например, импульсного реактора "Леди Годива") и позитронного-излучения (например, нейтронно-активационный анализ и датирование калий-аргоновым методом)
  • Исследовательский реактор: обычно реакторы используются для научных исследований и обучения, тестирования материалов или производства радиоизотопов для медицины и промышленности. Они намного меньше, чем энергетические реакторы или корабельных реакторов. Многие из таких реакторов имеются в университетских городках. Существует порядка 280 таких реакторов, работающих в 56 странах. Некоторые работают с высоко-обогащенным урановым топливом. Предпринимаются международные усилия, чтобы заменить низкообогащенное топливо.

Современные ядерные реакторы

Водо-водяные реакторы (PWR)

Эти реакторы используют корпус высокого давления, чтобы удерживать ядерное топливо, регулирующие стержни, замедлитель и теплоноситель. Охлаждение реакторов и замедление нейтронов происходит жидкой водой под высоким давлением. Горячая радиоактивная вода, которая выходит из корпуса высокого давления проходит через цепь парового генератора, который в свою очередь нагревает вторичный (не радиоактивный) контур. Данные реакторы составляют большую часть современных реакторов. Это устройство нагревательной конструкции нейтронного реактора, новейшим из которых являются ВВЭР-1200, усовершенствованный реактор с водой под давлением и Европейский водо-водяной реактор с водой под давлением. Реакторы ВМС США являются реакторами этого типа.

Реакторы с кипящей водой (BWR)

Реакторы с кипящей водой подобны реакторам с водой под давлением без парогенератора. Реакторы с кипящей водой также используют воду в качестве теплоносителя и замедлителя нейтронов, что и реакторы с водой под давлением, но при более низком давлении, что позволяет воде кипеть внутри котла, создавая пар, который вращает турбины. В отличие от реактора с водой под давлением, отсутствует первичный и вторичный контур. Нагревательная способность этих реакторов может быть выше, и они могут быть более простыми в конструктивном плане, и даже, более стабильными и безопасными. Это устройство реактора на тепловых нейтронах, новейшим из которых являются усовершенствованный реактор с кипящей водой и экономичный упрощённый ядерный реактор с кипящей водой.

Реактор с тяжеловодным замедлителем и теплоносителем под давлением (PHWR)

Канадская разработка (известная как CANDU), это реакторы с тяжеловодным замедлителем и теплоносителем под давлением. Вместо использования одного сосуда высокого давления, как в реакторах с водой под давлением, топливо находится в сотнях каналах высокого давления. Эти реакторы, работают на природном уране и являются реакторами на тепловых нейтронах. Тяжеловодные реакторы могут дозаправляться топливом во время работы на полной мощности, что делает их очень эффективными при использовании урана (это позволяет точно регулировать поток в активной зоне). Тяжеловодные CANDU реакторы были построены в Канаде, Аргентине, Китае, Индии, Пакистане, Румынии и Южной Корее. В Индии также действует ряд тяжеловодных реакторов, которые часто называют "CANDU-производные", построенные после того, как правительство Канады прекратило отношения в ядерной сфере с Индией после проведения испытания ядерного оружия "Улыбающийся Будда" в 1974 году.

Реактор большой мощности канальный (РБМК)

Советская разработка, сконструированная для наработки плутония, а также электроэнергии. РБМК используют воду в качестве теплоносителя и графит в качестве замедлителя нейтронов. РБМК в некоторых отношениях аналогичны CANDU, так как они могут перезаряжаться во время работы и используют трубки давления вместо корпуса высокого давления (как и в реакторах с водой под давлением). Тем не менее, в отличие от CANDU они очень неустойчивы и громоздки, делая колпак реактора дорогим. Ряд критических недостатков безопасности также были выявлены в конструкциях РБМК, хотя некоторые из этих недостатков были исправлены после Чернобыльской катастрофы. Их главной особенностью является использование легкой воды и необогащенного урана. По состоянию на 2010, 11 реакторов остаются открытыми, в основном за счет повышения уровня безопасности и при поддержке со стороны международных организаций по безопасности, таких как Министерство энергетики США. Несмотря на эти усовершенствования реакторы РБМК по-прежнему считаются одними из самых опасных конструкционных исполнений реакторов для использования. Реакторы РБМК были задействованы только в бывшем Советском Союзе.

Реактор с газовым охлаждением (GCR) и с улучшенный реактор с газовыми охлаждением (AGR)

Они, как правило, используют графитовый замедлитель нейтронов и охладитель CO2. Из-за высоких рабочих температур они могут иметь более высокую эффективность для выработки тепла, по сравнению с реакторами водой под давлением. Имеется целый ряд действующих реакторов этой конструкции, главным образом в Соединенном Королевстве, где была разработана концепция. Старые разработки (т.е. Магнокс станции), либо закрыты, либо будут закрыты в ближайшем будущем. Тем не менее, улучшенные реакторы с газовым охлаждением имеют предполагаемый период эксплуатации еще от 10 до 20 лет. Реакторы данного типа представляют реакторы на тепловых нейтронах. Денежные затраты по выводу из эксплуатации таких реакторов могут быть высоки из-за большого объема активной зоны.

Реактор-размножитель на быстрых нейтронах (LMFBR)

Конструкция этого реактора, охлаждается жидким металлом, без замедлителя и производит больше топлива, чем потребляет. Говорят, что они "размножают" топливо, поскольку они производят расщепляющееся топливо в ходе захвата нейтронов. Такие реакторы могут функционировать так же, как и реакторы с водой под давлением с точки зрения эффективности, в них требуются компенсировать повышенное давление, поскольку используется жидкий металл, не создающий избыток давления даже при очень высоких температурах. БН-350 и БН-600 в СССР и "Суперфеникс" во Франции являлись реакторами такого типа, также как и Ферми-I в Соединенных Штатах. Реактор "Монжу" в Японии, поврежденный в ходе утечки натрия в 1995 году, возобновил свою работу ​​в мае 2010 года. Все эти реакторы используют / использовали жидкий натрий. Данные реакторы являются ректорами на быстрых нейтронах, и не относятся к ректорам на тепловых нейтронах. Эти реакторы бывают двух типов:

Со свинцовым охлаждением

Использование свинца в качестве жидкого металла обеспечивает отличную защиту от радиоактивного излучения, и позволяет работать при очень высоких температурах. Кроме того, свинец (в основном) прозрачен для нейтронов, поэтому меньше нейтронов теряется в теплоносителе, а охлаждающая жидкость не становится радиоактивной. В отличие от натрия, свинец в целом инертен, поэтому существует меньший риск взрыва или аварии, но такие большие количества свинца могут вызвать проблемы из токсичности и с точки зрения утилизации отходов. Часто в реакторах такого типа можно использовать свинец-висмутовые эвтектические смеси. В этом случае, висмут будет представлять небольшие помехи для излучения, поскольку является не полностью прозрачным для нейтронов, и может видоизмениться в другой изотоп легче, чем свинец. Российская подводная лодка класса "Альфа" использует реактор на быстрых нейтронах с свинец-висмутовым охлаждением в качестве основной системы выработки электроэнергии.

С натриевым охлаждением

Большинство жидкометаллических размножающих реакторов (LMFBR) относятся к этому типу. Натрий относительно легко получить и с ним просто работать, кроме этого с его помощью удается предотвратить коррозию различных частей реактора, погруженными в него. Тем не менее, натрий бурно реагирует при контакте с водой, поэтому необходимо соблюдать осторожность, хотя такие взрывы не будут намного мощнее, чем, например, утечки перегретой жидкости из реакторов SCWR или RWD. EBR-I - первый реактор такого типа, где активная зона состоит из расплава.

Реактор с засыпкой из шаровых тепловыделяющие элементов (PBR)

Они используют топливо запрессованное в керамические шары, в которых газ циркулирует через шары. В результате являются эффективными, неприхотливыми, очень безопасными реакторами с недорогим, унифицированным топливом. Прототипом являлся реактор AVR.

Реакторы с использованием расплавленной соли

В них топливо растворено в фтористых солях, или используются фториды в качестве теплоносителя. Их разнообразные системы безопасности, высокая эффективность и высокая плотность энергии подходят для транспортных средств. Примечательно, что у них нет частей, подвергающихся высоким давлениям или горючих компоненты в активной зоне. Прототипом был реактор MSRE, который также использовал ториевый топливный цикл. В качестве реактора-размножителя, он перерабатывает отработанное топливо, извлекая как уран, так и трансурановые элементы, оставляя лишь 0,1% от трансурановых отходов по сравнению с обычными прямоточными урановыми легководными реакторами, находящимися в настоящее время в эксплуатации. Отдельным вопросом являются радиоактивные продукты деления, которые не подвергаются повторной переработке и должны быть утилизированы в обычных реакторах.

Водный гомогенный реактор (AHR)

Эти реакторы используют топливо в виде растворимых солей, которые растворены в воде и смешаны с теплоносителем и замедлителем нейтронов.

Инновационные ядерные системы и проекты

Усовершенствованные реакторы

Более десятка проектов усовершенствованного реактора находятся на различных этапах развития. Некоторые из них эволюционировали из конструкций реакторов типа RWD, BWR и PHWR , некоторые отличаются более значительно. Первые включают усовершенствованный реактор с кипящей водой (ABWR) (два из которых в настоящее время работает, а другие находятся в стадии строительства), а также запланированный Экономичный упрощённый ядерный реактор с кипящей водой с пассивной системой безопасности (ESBWR) и AP1000 установки(см. Ядерно-энергетическую программу 2010).

Интегральный ядерный реактор на быстрых нейтронах (IFR) был построен, протестирован и выдержал испытания в течение 1980-х годов, а затем выведен из эксплуатации после отставки администрации Клинтона в 1990-е годы из-за политики в области ядерного нераспространения. Переработка отработавшего ядерного топлива заложено в основу его конструкции и, следовательно, он производит лишь часть отходов действующих реакторов.

Модульный высокотемпературный реактор с газовым охлаждением реактора (HTGCR), разработан таким образом, что высокие температуры снижают выходную мощность за счёт доплеровского уширения поперечного сечения пучка нейтронов. Реактор использует керамический тип топлива, поэтому его безопасные рабочие температуры превышают температурный диапазон уменьшения мощности. Большинство конструкций охлаждаются инертным гелием. Гелий не может привести к взрыву за счёт расширения пара, не является поглотителем нейтронов, что привело бы к радиоактивности, и не растворяет загрязняющие вещества, которые могут быть радиоактивными. Типовые конструкции состоят большего количества слоев пассивной защиты (до 7), нежели чем в легководных реакторах (обычно 3). Уникальная особенность, которая может обеспечить безопасность это то, что топливные шары фактически формируют активную зону и заменяются один за другим со временем. Конструктивные особенности топливных элементов делают их переработку дорогой.

Небольшой, закрытый, передвижной, автономный реактор (SSTAR) первоначально был испытан и разработан в США. Реактор был задуман как реактор на быстрых нейтронах, с системой пассивной защиты, который может быть выключен дистанционно в случае, если возникнут подозрение о неполадках.

Чистый и экологически безопасный усовершенствованный реактор (CAESAR) представляет собой концепцию ядерного реактора, который использует пар в качестве замедлителя нейтронов - эта конструкция еще находится в разработке.

Уменьшенный реактор c водным замедлителем построен на основе улучшенного реактора с кипящей водой (ABWR), который в настоящее время находится в эксплуатации. Это не в полной мере реактор на быстрых нейтронах, а использует в основном надтепловые нейтронов, которые обладают промежуточными скоростями между тепловыми и быстрыми.

Саморегулирующийся ядерный энергетический модуль с водородным замедлителем нейтронов (HPM) представляет собой конструкционный тип реактора, выпущенный Национальной лабораторией Лос-Аламос, который использует гидрид урана в качестве топлива.

Подкритические ядерные реакторы предназначены как более безопасные и более стабильно-работающие, но представляют сложность в инженерном и экономическом отношениях. Одним из примеров является "Усилитель Энергии".

Реакторы на основе тория . Можно преобразовывать торий-232 в U-233 в реакторах, предназначенных специально для этой цели. Таким способом, торий, который более распространен, чем уран в четыре раза, может быть использован для получения ядерного топлива на основе U-233. Полагают, что U-233 имеет благоприятные ядерные свойства по сравнению с традиционно используемым U-235, в частности, лучший коэффициент полезного использования нейтронов и уменьшение количества получаемых долгоживущих трансурановых отходов.

Улучшенный реактор с тяжелой водой (AHWR) - предложенный тяжеловодный реактор, который будет представлять разработку следующего поколения типа PHWR. В стадии разработки в ядерном научно-исследовательском центре Бхабха (BARC), Индия.

KAMINI - уникальный реактор с использованием изотопа уран-233 в качестве топлива. Построен в Индии, в исследовательском центре BARC и в центре ядерных исследований имени Индиры Ганди (IGCAR).

Индия также планирует построить реакторы на быстрых нейтронах с использованием торий - уранового-233 топливного цикла. FBTR (реактор на быстрых нейтронах) (Калпаккам, Индия) во время работы использует плутоний в качестве топлива и жидкий натрий в качестве теплоносителя.

Что представляют собой реакторы четвертого поколения

Четвертое поколение реакторов представляет собой совокупность разных теоретических проектов, которые рассматриваются в настоящее время. Эти проекты, по всей видимости, не будут реализованы к 2030 г. Современные реакторы, находящиеся в эксплуатации, как правило, считаются системами второго или третьего поколения. Системы первого поколения, не используются уже некоторое время. Разработки этого четвертой генерации реакторов были официально начаты на Международном форуме IV Поколения (GIF) исходя из восьми целей в области технологии. Основные задачи заключались в улучшении ядерной безопасности, повышении защищённости от распространения, минимизации отходов и использовании природных ресурсов, а также для снижения затрат на строительство и запуск таких станций.

  • Газоохлаждаемый реактор на быстрых нейтронах
  • Реактор на быстрых нейтронах со свинцовым охладителем
  • Жидкосолевой реактор
  • Реактор на быстрых нейтронах с натриевым охлаждением
  • Надкритический ядерный реактор с водяным охлаждением
  • Сверхвысокотемпературный ядерный реактор

Что такое реакторы пятого поколения?

Пятое поколение реакторов это проекты, реализация которых возможна с теоретической точки зрения, но которые не являются объектом активного рассмотрения и исследования в настоящее время. Несмотря на то, что такие реакторы могут быть построены в текущей или краткосрочной перспективе, они вызывают мало интереса по причинам экономической целесообразности, практичности или безопасности.

  • Жидкофазный реактор . Замкнутый контур с жидкостью в активной зоне ядерного реактора, где делящееся вещество находится в виде расплавленного урана или уранового раствора охлаждаемого при помощью рабочего газа, нагнетаемого в сквозные отверстия в основании удерживающего сосуда.
  • Реактор с газовой фазой в активной зоне . Вариант замкнутого цикла для ракеты с ядерным двигателем, где делящимся материалом является газообразный уран-гексафторид, расположенный в кварцевой ёмкости. Рабочий газ (такой как водород) будет обтекать этот сосуд и поглощать ультрафиолетовое излучение, возникающее в результате ядерной реакции. Такая конструкция могла бы использоваться как ракетный двигатель, как упоминалось в 1976 году в научно-фантастическом романе Гарри Гаррисона "Skyfall". Теоретически, использование гексафторида урана в качестве ядерного топлива (а не в качестве промежуточного вещества, как это делается в настоящее время) привело бы к более низким затратам на выработку энергии, а также значительно уменьшило бы размеры реакторов. На практике, реактор работающий с такими высокими плотностями мощности, производил бы неуправляемый поток нейтронов, ослабляя прочностные свойства большей части материалов реактора. Таким образом, поток был бы схож с потоком частиц, выделяемых в термоядерных установках. В свою очередь, это потребовало бы использовать такие материалы, которые схожи материалами, используемыми рамках Международного проекта по реализации установки для облучения материалов в условиях термоядерной реакции.
  • Газофазный электромагнитный реактор . Такой же как газофазный реактор, но с фотоэлектрическими элементы преобразуют ультрафиолет непосредственно в электричество.
  • Реактор на основе осколочного деления
  • Гибридный ядерный синтез . Используются нейтроны, испускаемые при слиянии и распаде исходного или "вещества в зоне воспроизводства". Например, трансмутация U-238, Th-232 или отработанного топлива / радиоактивных отходов другого реактора в относительно более доброкачественные изотопы.

Реактор с газовой фазой в активной зоне. Вариант замкнутого цикла для ракеты с ядерным двигателем, где делящимся материалом является газообразный уран-гексафторид, расположенный в кварцевой ёмкости. Рабочий газ (такой как водород) будет обтекать этот сосуд и поглощать ультрафиолетовое излучение, возникающее в результате ядерной реакции. Такая конструкция могла бы использоваться как ракетный двигатель, как упоминалось в 1976 году в научно-фантастическом романе Гарри Гаррисона "Skyfall". Теоретически, использование гексафторида урана в качестве ядерного топлива (а не в качестве промежуточного вещества, как это делается в настоящее время) привело бы к более низким затратам на выработку энергии, а также значительно уменьшило бы размеры реакторов. На практике, реактор работающий с такими высокими плотностями мощности, производил бы неуправляемый поток нейтронов, ослабляя прочностные свойства большей части материалов реактора. Таким образом, поток был бы схож с потоком частиц, выделяемых в термоядерных установках. В свою очередь, это потребовало бы использовать такие материалы, которые схожи материалами, используемыми рамках Международного проекта по реализации установки для облучения материалов в условиях термоядерной реакции.

Газофазный электромагнитный реактор. Такой же как газофазный реактор, но с фотоэлектрическими элементы преобразуют ультрафиолет непосредственно в электричество.

Реактор на основе осколочного деления

Гибридный ядерный синтез. Используются нейтроны, испускаемые при слиянии и распаде исходного или "вещества в зоне воспроизводства". Например, трансмутация U-238, Th-232 или отработанного топлива / радиоактивных отходов другого реактора в относительно более доброкачественные изотопы.

Термоядерные реакторы

Управляемый ядерный синтез может быть использован в термоядерных электростанциях для производства электроэнергии без сложностей, связанных с работой с актиноидами. Тем не менее, сохраняются серьезные научные и технологические препятствия. Несколько термоядерных реакторов были построены, но только в последнее время удалось добиться того, чтобы реакторы высвобождали бы больше энергии, чем потребляли. Несмотря на то, что исследования были начаты в 1950-е годы, предполагается, что коммерческий термоядерного реактора так и не будет функционировать вплоть до 2050 года. В настоящее время в рамках проекта ITER предпринимаются усилия по использованию термоядерной энергии.

Ядерно-топливный цикл

Тепловые реакторы в целом зависят от степени очистки и обогащения урана. Некоторые ядерные реакторы могут работать на основе смеси плутония и урана (см. MOX-топливо). Процесс, при котором урановая руда добывается, обрабатывается, обогащается, используется, возможно, перерабатывается и утилизируется, известен как ядерно-топливный цикл.

До 1% урана в природе это легко расщепляющийся изотоп U-235. Таким образом, устройство большинства реакторов подразумевают использование обогащенного топлива. Обогащение предполагает увеличение доли U-235 и, как правило, осуществляется с помощью газовой диффузии или в газовой центрифуге. Обогащенный продукт в дальнейшем преобразуют в порошок диоксида урана, который спрессовывают и обжигают в гранулы. Эти гранулы укладываются в трубки, которые затем герметизируют. Такие трубки называют топливными стержнями. В каждом ядерном реакторе используется множество таких топливных стержней.

Большинство промышленных реакторов типа BWR и PWR используют уран, обогащенный до 4% U-235, приблизительно. Кроме того, некоторые промышленные реакторы с высокой экономией нейтронов вообще не не требуют обогащенного топлива (то есть, они могут использовать природный уран). По данным Международного агентства по атомной энергии в мире существуют по крайней мере 100 исследовательских реакторов, использующих высокообогащенное топливо (уровня оружейного / 90% по обогащению урана). Риск кражи такого типа топлива (возможного для применения в производстве ядерного оружия) привело к кампании, призывающей перейти на использование реакторов с низкообогащенным ураном (который представляет меньшую угрозу распространения).

Делящийся U-235 и не расщепляющийся, способный к ядерному делению U-238, используются в процессе ядерных преобразований. U-235 расщепляется под воздействием тепловых (т.е. медленно движущихся) нейтронов. Тепловым нейтроном является тот нейтрон, который двигается примерно с той же скоростью, что и атомы вокруг него. Поскольку частота колебаний атомов пропорциональна их абсолютной температуры, то тепловой нейтрон обладает большей возможностью расщепить U-235, когда он движется с той же колебательной скоростью. С другой стороны, U-238, скорее всего, захватит нейтрон, если нейтрон движется очень быстро. Атом же U-239 как можно быстрее распадается с образованием плутония-239, который сам является топливом. Pu-239 является полноценным топливом и должен учитываться даже при использовании высокообогащенного уранового топлива. Процессы распада плутония будет преобладать над процессами расщепления U-235 в некоторых реакторах. Особенно после того, как исходный загруженный U-235 истощится. Плутоний расщепляется как в реакторах на быстрых, так и на тепловых нейтронах, делая его идеальным как для ядерных реакторов, так и для ядерных бомб.

Большинство существующих реакторов это тепловые реакторы, которые обычно используют воду в качестве замедлителя нейтронов (замедлитель означает, что он замедляет нейтрон до тепловой скорости), а также в качестве теплоносителя. Однако в реакторе на быстрых нейтронах, используется несколько иной вид теплоносителя, который не будет замедлять поток нейтронов слишком сильно. Это позволяет преобладать быстрым нейтронам, которые эффективно могут быть использованы для постоянно пополнения запаса топлива. Всего-навсего лишь размещая дешевый, необогащенный уран в активной зоне, самопроизвольно не-расщепляющийся U-238 будет превращаться в Pu-239, "воспроизводя" топливо.

В топливном цикл на основе тория, торий-232 поглощает нейтрон как в реакторе быстрых, так и на тепловых нейтронах. Бета-распад тория приводит к образованию протактиния-233, а затем урана-233, который, в свою очередь, используется в качестве топлива. Следовательно, как и уран-238, торий-232 представляет собой воспроизводящий материал.

Обслуживание ядерных реакторов

Количество энергии в резервуаре ядерного топлива часто выражается в термине "сутки работы на полной мощности", который представляет собой количество 24-часовых периодов (дней) работы реактора на полную мощность для выработки тепловой энергии. Сутки работы на полной мощности в рабочем цикле реактора (между промежутками, необходимыми для заправки) связаны с количеством распадающегося урана-235 (U-235), содержащегося в топливных сборках в начале цикла. Чем выше процент U-235 в активной зоне в начале цикла, тем больше суток работы на полной мощности позволит реактору работать.

В конце рабочего цикла, топливо в некоторых сборках "отрабатывается", выгружается и заменяется в виде новых (свежих) тепловыделяющих сборок. Также такая реакция накопления продуктов распада в ядерном топливе определяет срок службы ядерного топлива в реакторе. Даже задолго до того, как произойдет окончательный процесс расщепления топлива, в реакторе успеют накопиться долгоживущие нейтронопоглощающие побочные продукты распада, препятствующие протеканию цепной реакции. Доля активной зоны реактора заменяемая во время перезаправки реактора топливом, как правило составляет одну четверть для реактора на кипящей воде и одну треть для реактора с водой под давлением. Утилизация и хранение этого отработанного топлива является одной из самых сложных задач в организации работы промышленной атомной электростанции. Такие ядерные отходы крайне радиоактивны и их токсичность представляет опасность в течение тысяч лет.

Не все реакторы должны быть выведены из работы для дозаправки; например, ядерные реакторы с засыпкой из шаровых тепловыделяющие элементов, реакторы РБМК (реактор большой мощности канальный), реакторы на основе расплавленной соли, Magnox, AGR и CANDU реакторы позволяют перемещать топливные элементы во время работы установки. В реакторе CANDU возможно помещать отдельные топливные элементы в активной зоне таким образом, чтобы отрегулировать содержание U-235 в топливном элементе.

Количество энергии, извлеченной из ядерного топлива называется его выгоранием, которое выражается в терминах тепловой энергии, выработанной исходной единицей веса топлива. Выгорание обычно выражается в форме тепловых мегаватт дней тонной исходного тяжелого металла.

Безопасность ядерной энергетики

Ядерная безопасность представляет собой действия, направленные на предотвращение ядерных и радиационных аварий или локализацию их последствий. Ядерная энергетика усовершенствовала безопасность и производительность реакторов, а также предложила новые более безопасные конструкционные решения реакторов (которые, как правило не тестировалось). Тем не менее, нет никакой гарантии, что такие реакторы будут спроектированы, построены и смогут надежно работать. Случаются ошибки, когда разработчики реакторов на АЭС Фукусима в Японии не ожидали, что цунами, образованное в результате землетрясения, отключит дублирующую систему, которая должна была стабилизировать работу реактора после землетрясения, несмотря на многочисленные предупреждения со стороны NRG (национальной исследовательской группы) и японской администрации по ядерной безопасности. По данным UBS AG, ядерные аварии Фукусима I ставят под сомнение то, что даже страны с развитой экономикой, как Япония могут обеспечить ядерную безопасность. Также возможны катастрофические сценарии, включая террористические акты. Междисциплинарная группа из MIT (Массачусетский технологический институт) подсчитала, что с учетом ожидаемого роста ядерной энергетики, в период 2005-2055 стоит ожидать по крайней мере четыре серьезных ядерных аварии.

Ядерные и радиационные аварии

Некоторые произошедшие серьезные ядерные и радиационные аварии. Ядерные аварии электростанции включают инцидент SL-1 (1961), аварию на Three Mile Island (1979), Чернобыльскую катастрофу (1986), а также ядерную катастрофу Фукусима Даити (2011). Аварии на атомоходах включают в себя аварии реактора на K-19 (1961), К-27 (1968), и K-431 (1985).

Ядерные реакторные установки запускались на орбиту вокруг Земли, по крайней мере 34 раза. Ряд инцидентов, связанных с советским беспилотным спутником RORSAT с питанием от ядерной установки привел к проникновению отработанного ядерного топлива в атмосферу Земли с орбиты.

Природные ядерные реакторы

Несмотря на то, что часто полагают, что реакторы на основе ядерного деления являются продуктом современной технологии, первые ядерные реакторы имеются в природных условиях. Естественный ядерный реактор может формироваться при определенных условиях, имитирующих условия в сконструированном реакторе. До настоящего времени обнаружено до пятнадцати природных ядерных реакторов в пределах трех отдельных рудных месторождений уранового рудника Окло в Габоне (Западная Африка). Впервые обнаружил общеизвестные "отмершие" реакторы Оклло в 1972 году французский физик Фрэнсис Перрен. Самоподдерживающаяся реакция ядерного деления происходила в этих реакторах примерно 1,5 миллиарда лет назад, и поддерживалась в течение нескольких сотен тысяч лет, выработав в среднем 100 кВт выходной мощности в этот период. Концепция естественного ядерного реактора была объяснена с точки зрения теории еще в 1956 году Полом Курода в Университете штата Арканзас.

Подобные реакторы уже не могут образовываться на Земле: радиоактивный распад в течение этого огромного промежутка времени уменьшил долю U-235 в природном уране ниже уровня, которая требуется для поддержания цепной реакции.

Природные ядерные реакторы сформировались, когда минеральное месторождение урана богатые стали заполняться подземными водами, которые действовали в качестве замедлителя нейтронов и наступления значительной цепной реакции. Замедлитель нейтронов в виде воды испарялся, приводя к ускорению реакции и затем обратно конденсировался, приводя к замедлению ядерной реакции и предотвращению плавление. Реакция деления сохранялась на протяжении сотен тысяч лет.

Такие природные реакторы обстоятельно изучены учеными, заинтересованными в захоронении радиоактивных отходов в геологической обстановке. Они предлагают провести тематическое исследование того, как радиоактивные изотопы будут мигрировать через слой земной коры. Это ключевой момент для критиков захоронения отходов в геологической обстановке, которые опасаются, что изотопы, содержащиеся в отходах могут оказаться в системах водоснабжения или мигрировать в окружающую среду.

Экологические проблемы ядерной энергетики

Ядерный реактор высвобождает небольшое количество трития, Sr-90 в воздух и в грунтовые воды. Вода, загрязненная тритием бесцветна и не имеет запаха. Большие дозы Sr-90 повышают риск развития рака костей и лейкемию у животных, и предположительно, у людей.

Устройство и принцип действия основаны на инициализации и контроле самоподдерживающейся ядерной реакции. Его используют в качестве исследовательского инструмента, для производства радиоактивных изотопов и в качестве источника энергии для атомных электростанций.

принцип работы (кратко)

Здесь используется процесс при котором тяжелое ядро ​​распадается на два более мелких фрагмента. Эти осколки находятся в очень возбужденном состоянии и испускают нейтроны, другие субатомные частицы и фотоны. Нейтроны могут вызвать новые деления, в результате которых их излучается еще больше, и так далее. Такой непрерывный самоподдерживающийся ряд расщеплений называется цепной реакцией. При этом выделяется большое количество энергии, производство которой является целью использования АЭС.

Принцип работы ядерного реактора и таков, что коло 85% энергии расщепления высвобождается в течение очень короткого промежутка времени после начала реакции. Остальная часть вырабатывается в результате радиоактивного распада продуктов деления, после того как они излучили нейтроны. Радиоактивный распад является процессом, при котором атом достигает более стабильного состояния. Он продолжается и после завершения деления.

В атомной бомбе цепная реакция увеличивает свою интенсивность, пока не будет расщеплена большая часть материала. Это происходит очень быстро, производя чрезвычайно мощные взрывы, характерные для таких бомб. Устройство и принцип действия ядерного реактора основаны на поддержании цепной реакции на регулируемом, почти постоянном уровне. Он сконструирован таким образом, что взорваться, как атомная бомба, не может.

Цепная реакция и критичность

Физика ядерного реактора деления состоит в том, что цепная реакция определяется вероятностью расщепления ядра после испускания нейтронов. Если популяция последних уменьшается, то скорость деления в конце концов упадет до нуля. В этом случае реактор будет находиться в докритическом состоянии. Если же популяция нейтронов поддерживается на постоянном уровне, то скорость деления будет оставаться стабильной. Реактор будет находиться в критическом состоянии. И, наконец, если популяция нейтронов со временем растет, скорость деления и мощность будет увеличиваться. Состояние активной зоны станет сверхкритическим.

Принцип действия ядерного реактора следующий. Перед его запуском популяция нейтронов близка к нулю. Затем операторы удаляют управляющие стержни из активной зоны, увеличивая деление ядер, что временно переводит реактор в сверхкритическое состояние. После выхода на номинальную мощность операторы частично возвращают управляющие стержни, регулируя количество нейтронов. В дальнейшем реактор поддерживается в критическом состоянии. Когда его необходимо остановить, операторы вставляют стержни полностью. Это подавляет деление и переводит активную зону в докритическое состояние.

Типы реакторов

Большинство существующих в мире ядерных установок являются энергетическими, генерирующими тепло, необходимое для вращения турбин, которые приводят в движение генераторы электрической энергии. Также есть много исследовательских реакторов, а некоторые страны имеют подводные лодки или надводные корабли, движимые энергией атома.

Энергетические установки

Существует несколько видов реакторов этого типа, но широкое применение нашла конструкция на легкой воде. В свою очередь, в ней может использоваться вода под давлением или кипящая вода. В первом случае жидкость под высоким давлением нагревается теплом активной зоны и поступает в парогенератор. Там тепло от первичного контура передается на вторичный, также содержащий воду. Генерируемый в конечном счете пар служит рабочей жидкостью в цикле паровой турбины.

Реактор кипящего типа работает по принципу прямого энергетического цикла. Вода, проходя через активную зону, доводится до кипения на среднем уровне давления. Насыщенный пар проходит через серию сепараторов и сушилок, расположенных в корпусе реактора, что приводит его в сверхперегретое состояние. Перегретый водяной пар затем используется в качестве рабочей жидкости, вращающей турбину.

Высокотемпературные с газовым охлаждением

Высокотемпературный газоохлаждаемый реактор (ВТГР) - это ядерный реактор, принцип работы которого основан на применении в качестве топлива смеси графита и топливных микросфер. Существуют две конкурирующие конструкции:

  • немецкая «засыпная» система, которая использует сферические топливные элементы диаметром 60 мм, представляющие собой смесь графита и топлива в графитовой оболочке;
  • американский вариант в виде графитовых гексагональных призм, которые сцепляются, создавая активную зону.

В обоих случаях охлаждающая жидкость состоит из гелия под давлением около 100 атмосфер. В немецкой системе гелий проходит через промежутки в слое сферических топливных элементов, а в американской - через отверстия в графитовых призмах, расположенных вдоль оси центральной зоны реактора. Оба варианта могут работать при очень высоких температурах, так как графит имеет чрезвычайно высокую температуру сублимации, а гелий полностью инертен химически. Горячий гелий может быть применен непосредственно в качестве рабочей жидкости в газовой турбине при высокой температуре или его тепло можно использовать для генерации пара водяного цикла.

Жидкометаллический и принцип работы

Реакторам на быстрых нейтронах с натриевым теплоносителем уделялось большое внимание в 1960-1970-х годах. Тогда казалось, что их возможности по воспроизводству в ближайшее время необходимы для производства топлива для быстро развивающейся атомной промышленности. Когда в 1980-е годы стало ясно, что это ожидание нереалистично, энтузиазм угас. Однако в США, России, Франции, Великобритании, Японии и Германии построен ряд реакторов этого типа. Большинство из них работает на диоксиде урана или его смеси с диоксидом плутония. В Соединенных Штатах, однако, наибольший успех был достигнут с металлическими топливом.

CANDU

Канада сосредоточила свои усилия на реакторах, в которых используется природный уран. Это избавляет от необходимости для его обогащения прибегать к услугам других стран. Результатом такой политики стал дейтерий-урановый реактор (CANDU). Контроль и охлаждение в нем производится тяжелой водой. Устройство и принцип работы ядерного реактора состоит в использовании резервуара с холодной D 2 O при атмосферном давлении. Активная зона пронизана трубами из циркониевого сплава с топливом из природного урана, через которые циркулирует охлаждающая его тяжелая вода. Электроэнергия производится за счет передачи теплоты деления в тяжелой воде охлаждающей жидкости, которая циркулирует через парогенератор. Пар во вторичном контуре затем проходит через обычный турбинный цикл.

Исследовательские установки

Для проведения научных исследований чаще всего используется ядерный реактор, принцип работы которого состоит в применении водяного охлаждения и пластинчатых урановых топливных элементов в виде сборок. Способен функционировать в широком диапазоне уровней мощности, от нескольких киловатт до сотен мегаватт. Поскольку производство электроэнергии не является основной задачей исследовательских реакторов, они характеризуются вырабатываемой тепловой энергией, плотностью и номинальной энергией нейтронов активной зоны. Именно эти параметры помогают количественно оценить способность исследовательского реактора проводить конкретные изыскания. Маломощные системы, как правило, функционируют в университетах и ​​используются для обучения, а высокая мощность необходима в научно-исследовательских лабораториях для тестирования материалов и характеристик, а также для общих исследований.

Наиболее распространен исследовательский ядерный реактор, строение и принцип работы которого следующие. Его активная зона расположена в нижней части большого глубокого бассейна с водой. Это упрощает наблюдение и размещение каналов, по которым могут быть направлены пучки нейтронов. При низких уровнях мощности нет необходимости прокачивать охлаждающую жидкость, так как для поддержания безопасного рабочего состояния естественная конвекция теплоносителя обеспечивает достаточный отвод тепла. Теплообменник, как правило, находится на поверхности или в верхней части бассейна, где скапливается горячая вода.

Корабельные установки

Первоначальным и основным применением ядерных реакторов является их использование в подводных лодках. Главным их преимуществом является то, что, в отличие от систем сжигания ископаемого топлива, для выработки электроэнергии им не требуется воздух. Следовательно, атомная субмарина может оставаться в погруженном состоянии в течение длительного времени, а обычная дизель-электрическая подлодка должна периодически подниматься на поверхность, чтобы запускать свои двигатели в воздухе. дает стратегическое преимущество кораблям ВМС. Благодаря ей отпадает необходимость заправляться в иностранных портах или от легко уязвимых танкеров.

Принцип работы ядерного реактора на подводной лодке засекречен. Однако известно, что в США в нем используется высокообогащенный уран, а замедление и охлаждение производится легкой водой. Конструкция первого реактора атомной субмарины USS Nautilus находилась под сильным влиянием мощных исследовательских установок. Его уникальными особенностями является очень большой запас реактивности, обеспечивающей длительный период работы без дозаправки и возможность перезапуска после остановки. Электростанция в подлодках должна быть очень тихой, чтобы избежать обнаружения. Для удовлетворения конкретных потребностей различных классов субмарин были созданы разные модели силовых установок.

На авианосцах ВМС США используется ядерный реактор, принцип работы которого, как полагают, заимствован у крупнейших подлодок. Подробные сведения их конструкции также не были опубликованы.

Кроме США, атомные подводные лодки имеются у Великобритании, Франции, России, Китая и Индии. В каждом случае конструкция не разглашалась, но считается, что все они весьма схожи - это является следствием одинаковых требований к их техническим характеристикам. Россия также обладает небольшим флотом на которых устанавливались такие же реакторы, как и на советских субмаринах.

Промышленные установки

Для целей производства используется ядерный реактор, принцип работы которого состоит в высокой производительности при низком уровне производства энергии. Это обусловлено тем, что длительное пребывание плутония в активной зоне приводит к накоплению нежелательного 240 Pu.

Производство трития

В настоящее время основным материалом, получаемым с помощью таких систем, является тритий (3 H или T) - заряд для Плутоний-239 имеет длительный период полураспада, равный 24100 годам, поэтому страны с арсеналами ядерного оружия, использующими этот элемент, как правило, имеют его больше, чем необходимо. В отличие от 239 Pu, период полураспада трития составляет примерно 12 лет. Таким образом, чтобы поддерживать необходимые запасы, этот радиоактивный изотоп водорода должен производиться непрерывно. В США в Саванна-Ривер (штат Южная Каролина), например, работает несколько реакторов на тяжелой воде, которые производят тритий.

Плавучие энергоблоки

Созданы ядерные реакторы, способные обеспечить электроэнергией и паровым отоплением удаленные изолированные районы. В России, например, нашли применение небольшие энергетические установки, специально предназначенные для обслуживания арктических населенных пунктов. В Китае 10-МВт установка HTR-10 снабжает теплом и электроэнергией исследовательский институт, в котором она находится. Разработки небольших автоматически управляемых реакторов с аналогичными возможностями ведутся в Швеции и Канаде. В период с 1960 по 1972 год армия США использовала компактные водяные реакторы для обеспечения удаленных баз в Гренландии и Антарктике. Они были заменены мазутными электростанциями.

Покорение космоса

Кроме того, были разработаны реакторы для энергоснабжения и передвижения в космическом пространстве. В период с 1967 по 1988 год Советский Союз устанавливал небольшие ядерные установки на спутники серии «Космос» для питания оборудования и телеметрии, но эта политика стала мишенью для критики. По крайней мере один из таких спутников вошел в атмосферу Земли, в результате чего радиоактивному загрязнению подверглись отдаленные районы Канады. Соединенные Штаты запустили только один спутник с ядерным реактором в 1965 году. Однако проекты по их применению в дальних космических полетах, пилотируемых исследованиях других планет или на постоянной лунной базе продолжают разрабатываться. Это обязательно будет газоохлаждаемый или жидкометаллический ядерный реактор, физические принципы работы которого обеспечат максимально высокую температуру, необходимую для минимизации размера радиатора. Кроме того, реактор для космической техники должен быть максимально компактным, чтобы свести к минимуму количество материала, используемого для экранирования, и для уменьшения веса во время старта и космического полета. Запас топлива обеспечит работу реактора на весь период космического полета.

error: