Как определить сильные и слабые электролиты. Учебная книга по химии

Сильные и слабые электролиты

Кислоты, основания и соли в водных растворах диссоциируют — распадаются на ионы. Этот процесс может быть обратимым или необратимым.

При необратимой диссоциации в растворах все вещество или почти все распадается на ионы. Это характерно для сильных электролитов (рис. 10.1, а, с. 56). К сильным электролитам относятся некоторые кислоты и все растворимые в воде соли и основания (гидроксиды щелочных и щелочноземельных элементов) (схема 5, с. 56).

Рис. 10.1. Сравнение числа ионов в растворах с одинаковым исходным количеством электролита: а — хлоридная кислота (сильный электролит); б — нитритная кислота

(слабый электролит)

Схема 5. Классификация электролитов по силе

При обратимой диссоциации протекает два противоположных процесса: одновременно с распадом вещества на ионы (диссоциацией) происходит обратный процесс объединения ионов в молекулы вещества (ассоциация). Благодаря этому часть вещества в растворе существует в виде ионов, а часть — в виде молекул (рис. 10.1, б). Электролиты,

которые при растворении в воде распадаются на ионы только частично, называют слабыми электролитами. К их числу относится вода, многие кислоты, а также нерастворимые гидроксиды и соли (схема 5).

В уравнениях диссоциации слабых электролитов вместо обычной стрелки записывают двунаправленную стрелку (знак обратимости):

Силу электролитов можно объяснить полярностью химической связи, которая разрывается при диссоциации. Чем более полярна связь, тем легче под действием молекул воды она превращается в ионную, следовательно, тем сильнее электролит. В солях и гидроксидах полярность связи наибольшая, поскольку между ионами металлических элементов, кислотными остатками и гидроксид-ионами существует ионная связь, поэтому все растворимые соли и основания — сильные электролиты. В оксигенсодержащих кислотах при диссоциации разрывается связь O-H, полярность которой зависит от качественного и количественного состава кислотного остатка. Силу большинства оксигенсодержащих кислот можно определить, если обычную формулу кислоты записать в виде E(OH) m O n . Если в этой формуле будет n < 2 — кислота слабая, если n >2 — сильная.

Зависимость силы кислот от состава кислотного остатка


Степень диссоциации

Силу электролитов количественно характеризует степень электролитической диссоциации а, показывающая долю молекул вещества, которые распались в растворе на ионы.

Степень диссоциации а равна отношению числа молекул N или количества вещества n, распавшегося на ионы, к общему числу молекул N 0 или количеству растворенного вещества n 0:

Степень диссоциации можно выражать не только в долях единицы, но и в процентах:

Значение а может изменяться от 0 (диссоциация отсутствует) до 1, или 100 % (полная диссоциация). Чем лучше распадается электролит, тем больше значение степени диссоциации.

По значению степени электролитической диссоциации электролиты часто разделяют не на две, а на три группы: сильные, слабые и электролиты средней силы. Сильными электролитами считают те, степень диссоциации которых более 30 %, а слабыми — со степенью менее 3 %. Электролиты с промежуточными значениями а — от 3 % до 30 % — называют электролитами средней силы. По этой классификации таковыми считаются кислоты: HF, HNO 2 , H 3 PO 4 , H 2 SO 3 и некоторые другие. Две последние кислоты являются электролитами средней силы только по первой стадии диссоциации, а по другим — это слабые электролиты.


Степень диссоциации — величина переменная. Она зависит не только от природы электролита, но и от его концентрации в растворе. Эту зависимость впервые определил и исследовал Вильгельм Оствальд. Сегодня ее называют законом разведения Оствальда: при разбавлении раствора водой, а также при повышении температуры степень диссоциации увеличивается.

Вычисление степени диссоциации

Пример. В одном литре воды растворили гидроген флуорид количеством вещества 5 моль. Полученный раствор содержит 0,06 моль ионов Гидрогена. Определите степень диссоциации флуоридной кислоты (в процентах).

Запишем уравнение диссоциации флуоридной кислоты:

При диссоциации из одной молекулы кислоты образуется один ион Гидрогена. Если в растворе содержится 0,06 моль ионов H+, это означает, что продиссоцииро-вало 0,06 моль молекул гидроген флуорида. Следовательно, степень диссоциации равна:

Выдающийся немецкий физико-химик, лауреат Нобелевской премии по химии 1909 года. Родился в Риге, учился в Дерптском университете, где начал преподавательскую и научную деятельность. В 35 лет переехал в Лейпциг, где возглавил Физико-химический институт. Изучал законы химического равновесия, свойства растворов, открыл закон разведения, названный его именем, разработал основы теории кислотно-основного катализа, много времени уделял истории химии. Основал первую в мире кафедру физической химии и первый физико-химический журнал. В личной жизни обладал странными привычками: чувствовал отвращение к стрижке, а со своим секретарем общался исключительно при помощи велосипедного звонка.

Ключевая идея

Диссоциация слабых электролитов — обратимый процесс, а сильных —

необратимый.

Контрольные вопросы

116. Дайте определение сильных и слабых электролитов.

117. Приведите примеры сильных и слабых электролитов.

118. Какую величину используют для количественной характеристики силы электролита? Является ли она постоянной в любых растворах? Как можно увеличить степень диссоциации электролита?

Задания для усвоения материала

119. Приведите по одному примеру соли, кислоты и основания, которые являются: а) сильным электролитом; б) слабым электролитом.

120. Приведите пример вещества: а) двухосновная кислота, которая по первой стадии является электролитом средней силы, а по второй — слабым электролитом; б) двухосновная кислота, которая по обеим стадиями является слабым электролитом.

121. В некоторой кислоте по первой стадии степень диссоциации составляет 100 %, а по второй — 15 %. Какая кислота это может быть?

122. Каких частиц больше в растворе гидроген сульфида: молекул H 2 S, ионов H+, ионов S 2- или ионов HS - ?

123. Из приведенного перечня веществ отдельно выпишите формулы: а) сильных электролитов; б) слабых электролитов.

NaCl, HCl, NaOH, NaNO 3 , HNO 3 , HNO 2 , H 2 SO 4 , Ba(OH) 2 , H 2 S, K 2 S, Pb(NO 3) 2 .

124. Составьте уравнения диссоциации стронций нитрата, меркурий(11) хлорида, кальций карбоната, кальций гидроксида, сульфидной кислоты. В каких случаях диссоциация происходит обратимо?

125. В водном растворе натрий сульфата содержится 0,3 моль ионов. Какую массу этой соли использовали для приготовления такого раствора?

126. В растворе гидроген флуорида объемом 1 л содержится 2 г этой кислоты, а количество вещества ионов Гидрогена составляет 0,008 моль. Какое количество вещества флуорид-ионов в этом растворе?

127. В трех пробирках содержатся одинаковые объемы растворов хлорид-ной, флуоридной и сульфидной кислот. Во всех пробирках количества вещества кислот равны. Но в первой пробирке количество вещества ионов Гидрогена составляет 3 . 10 -7 моль, во второй — 8 . 10 -5 моль, а в третьей — 0,001 моль. В какой пробирке содержится каждая кислота?

128. В первой пробирке содержится раствор электролита, степень диссоциации которого составляет 89 %, во второй — электролит со степенью диссоциации 8 %о, а в третьей — 0,2 %о. Приведите по два примера электролитов разных классов соединений, которые могут содержаться в этих пробирках.

129*. В дополнительных источниках найдите информацию о зависимости силы электролитов от природы веществ. Установите зависимость между строением веществ, природой химических элементов, которые их образуют, и силой электролитов.

Это материал учебника

Диссоциация электролита количественно характеризуется степенью диссоциации. Степень диссоциации a это отношение числа молекул, диссоциированных на ионы N дисс. , к общему числу молекул растворенного электролита N :

a =

a – доля молекул электролита, распавшихся на ионы.

Степень диссоциации электролита зависит от многих факторов: природы электролита, природы растворителя, концентрации раствора, температуры.

По способности к диссоциации электролиты условно разделяют на сильные и слабые. Электролиты, которые в растворе существуют только в виде ионов, принято называть сильными . Электролиты, которые в растворенном состоянии находятся частично в виде молекул и частично в виде ионов, называются слабыми .

К сильным электролитам относятся почти все соли, некоторые кислоты: H 2 SO 4 , HNO 3 , HCl, HI, HClO 4 , гидроксиды щелочных и щелочно-земельных металлов (см. прил., табл. 6).

Процесс диссоциации сильных электролитов идет до конца:

HNO 3 = H + + NO 3 - , NaOH = Na + + OH - ,

и в уравнениях диссоциации ставятся знаки равенства.

Применительно к сильным электролитам понятие «степень диссоциации» носит условный характер. «Кажущаяся» степеньдиссоциации (a каж) ниже истинной (см. прил., табл. 6). С увеличением концентрации сильного электролита в растворе усиливается взаимодействие разноименно заряженных ионов. При достаточном приближении друг к другу они образуют ассоциаты. Ионы в них разделены слоями полярных молекул воды, окружающих каждый ион. Это сказывается на уменьшении электропроводности раствора, т.е. создается эффект неполной диссоциации.

Для учета этого эффекта введен коэффициент активности g, который уменьшается с возрастанием концентрации раствора, изменяясь в пределах от 0 до 1. Для количественного описания свойств растворов сильных электролитов пользуются величиной, называемой активностью (a) .

Под активностью иона понимают ту эффективную концентрацию его, соответственно которой он действует при химических реакциях.

Активность иона (a ) равна его молярной концентрации (С ), умноженной на коэффициент активности (g):



а = gС .

Использование активности вместо концентрации позволяет применять к растворам закономерности, установленные для идеальных растворов.

К слабым электролитам относятся некоторые минеральные (HNO 2 , H 2 SO 3 , H 2 S, H 2 SiO 3 , HCN, H 3 PO 4) и большинство органических кислот (СН 3 СООН, Н 2 С 2 О 4 и др.), гидроксид аммония NH 4 OH и все малорастворимые в воде основания, органические амины.

Диссоциация слабых электролитов обратима. В растворах слабых электролитов устанавливается равновесие между ионами и недиссоциированными молекулами. В соответствующих уравнениях диссоциации ставится знак обратимости («). Например, уравнение диссоциации слабой уксусной кислоты записывается так:

CH 3 COOH « CH 3 COO - + H + .

В растворе слабого бинарного электролита (КА ) устанавливается следующее равновесие, характеризуемое константой равновесия, называемой константой диссоциации К д:

КА « К + + А - ,

.

Если в 1 л раствора растворено С молей электролита КА и степень диссоциации равна a, значит, продиссоциировало молей электролита и образовалось каждого иона по молей. В недиссоциированном состоянии остается (С ) молей КА .

КА « К + + А - .

С – aС aС aС

Тогда константа диссоциации будет равна:

(6.1)

Так как константа диссоциации не зависит от концентрации, то выведенное соотношение выражает зависимость степени диссоциации слабого бинарного электролита от его концентрации. Из уравнения (6.1) видно, что уменьшение концентрации слабого электролита в растворе приводит к росту степени его диссоциации. Уравнение (6.1) выражает закон разбавления Оствальда .

Для очень слабых электролитов (при a <<1), уравнение Оствальда можно записать следующим образом:

К д a 2 C , или a » (6.2)

Константа диссоциации для каждого электролита постоянна при данной температуре, она не зависит от концентрации раствора и характеризует способность электролита распадаться на ионы. Чем выше К д, тем в большей степени электролит диссоциирует на ионы. Константы диссоциации слабых электролитов сведены в таблицы (см. прил., табл. 3).

Измерение степени диссоциации различных электролитов показало, что отдельные электролиты при одинаковой нормальной концентрации растворов диссоциируют на ионы весьма различно.

Особенно велика разница в значениях степени диссоциации кислот. Например, азотная и соляная кислоты в 0,1 н. растворах почти полностью распадаются на ионы; угольная же, синильная и другие кислоты диссоциируют при тех же условиях лишь в не-знaчитeльнoй степени.

Из растворимых в воде оснований (щелочей) слабо диссоциирующим является гидрат окиси аммония, остальные щелочи хорошо диссоциируют. Все соли, за небольшим исключением, также хорошо диссоциируют на ионы.

Различие в значениях степени диссоциации отдельных кислот обусловливается характером валентной связи между атомами, образующими их молекулы. Чем более полярна связь между водородом и остальной частью молекулы, тем легче отщепляется , тем сильнее будет диссоциировать кислота.

Электролиты, хорошо диссоциирующие на ионы, получили название сильных электролитов, в отличие от слабых электролитов, образующих в водных растворах лишь незначительное число ионов. Растворы сильных электролитов сохраняют высокую электропроводность даже при очень больших концентрациях. Наоборот, электропроводность растворов слабых электролитов быстро падает с увеличением концентрации. к сильным электролитам относятся такие кислоты, как соляная, азотная, серная и некоторые другие, затем щелочи (кроме NH 4 OH) и почти все соли.

Многоооновные кислоты и многокислотные основания диссоциируют ступенчато. Так, например, молекулы серной кислоты в первую очередь диссоциируют по уравнению

H 2 SO 4 ⇄ H + HSO 4 ‘

или точнее:

H 2 SO 4 + H 2 O ⇄ H 3 O + HSO 4 ‘

Отщепление второго иона водорода по уравнению

HSO 4 ‘ ⇄ H + SO 4 »

или

HSO 4 ‘ + H 2 O ⇄ H 3 O + SO 4 »

идет уже значительно труднее, так как ему приходится преодолевать притяжение со стороны двухзарядного иона SO 4 », который, конечно, притягивает к себе ион водорода сильнее, чем однозарядный ион HSO 4 ‘. Поэтому вторая ступень диссоциации или, как говорят, вторичная диссоциация происходит в гораздо меньшей степени, чем первичная, и в обычных растворах серной кислоты содержится лишь небольшое число ионов SO 4 »

Фосфорная кислота Н 3 РО 4 диссоциирует в три ступени:

H 3 PO 4 ⇄ H + H 2 PO 4 ‘

H 2 PO 4 ⇄ H + HPO 4 »

HPO 4 » ⇄ H + PO 4 »’

Молекулы Н 3 РO 4 сильно диссоциируют на ионы Н и Н 2 РО 4 ‘. Ионы H 2 PO 4 ‘ ведут себя, как более слабая кислота, и диссоциируют на H и HPO 4 » в меньшей степени. Ионы же НРО 4 » диссоциируют, как очень слабая кислота, и почти не дают ионов Н

и PO 4 »’

Основания, содержащие более одной гидроксильной группы в молекуле, тоже диссоциируют ступенчато. Например:

Ва(ОН) 2 ⇄ ВаОН + ОН’

ВаОН ⇄ Ва + ОН’

Что касается солей, нормальные соли всегда диссоциируют на ионы металлов и кислотных остатков. Например:

СаСl 2 ⇄ Сa + 2Сl’ Na 2 SO 4 ⇄ 2Na + SO 4 »

Кислые соли, подобно многоосновным кислотам, диссоциируют ступенчато. Например:

NaHCO 3 ⇄ Na + НСО 3 ‘

HCO 3 ‘ ⇄ H + CO 3 »

Однако по второй ступени очень мала, так что раствор кислой соли содержит лишь незначительное число ионов водорода.

Основные соли диссоциируют на ионы основных и кислотных остатков. Например:

Fe(OH)Cl 2 ⇄ FeOH + 2Сl»

Вторичной диссоциации ионов основных остатков на ионы металла и гидроксила почти не происходит.

В табл. 11 приведены числовые значения степени диссоциации некоторых кислот, оснований и солей в 0, 1 н. растворах.

С увеличением концентрации уменьшается. Поэтому в очень концентрированных растворах даже сильные кислоты диссоциированы сравнительно слабо. Для

Таблица 11

Кислот, оснований и солей в 0,1 н. растворах при 18°

Электролит Формула Степень диссоциаци и в %
Кислоты
Соляная HCl 92
Бромистоводородная НВr 92
Йодистоводородная HJ . 92
Азотная HNO 3 92
Серная H 2 SO 4 58
Сернистая H 2 SO 3 34
Фосфорная H 3 PO 4 27
Фтористоводородная HF 8,5
Уксусная CH 3 COOH 1,3
Уголная H 2 CO 3 0,17
Сероводородная H 2 S 0,07
Синильная HCN 0,01
Борная H 3 BO 3 0,01
Основания
Гидроксид бария Ва (OH) 2 92
Едкое кали кон 89
Едкий натр NaON 84
Гидроксид аммония NH 4 OH 1,3
Соли
Хлористый КСl 86
Хлористый аммоний NH4Cl 85
Хлористый NaCl 84
Азотнокислый KNO 3 83
AgNO 3 81
Уксуснокислый NaCH 3 COO 79
Хлористый ZnCl 2 73
Сернокислый Na 2 SO 4 69
Сернокислый ZnSO 4 40
Сернокислая

Все вещества можно разделить на электролиты и неэлектролиты. К электролитам относятся вещества, растворы или расплавы которых проводят электрический ток (например, водные растворы или расплавы KCl, H 3 PO 4 , Na 2 CO 3). Вещества неэлектролиты при расплавлении или растворении электрический ток не проводят (сахар, спирт, ацетон и др.).

Электролиты подразделяются на сильные и слабые. Сильные электролиты в растворах или расплавах полностью диссоциируют на ионы. При написании уравнений химических реакций это подчеркивается стрелкой в одном направлении, например:

HCl→ H + + Cl -

Ca(OH) 2 → Ca 2+ + 2OH -

К сильным электролитам относятся вещества с гетерополярной или ионной кристаллической структурой (таблица 1.1).

Таблица 1.1 Сильные электролиты

Слабые электролиты на ионы распадаются лишь частично. Наряду с ионами в расплавах или растворах данных веществ присутствуют в подавляющем большинстве недиссоциированные молекулы. В растворах слабых электролитов параллельно с диссоциацией протекает обратный процесс - ассоциация, т.е соединение ионов в молекулы. При записи уравнения реакции это подчеркивается двумя противоположно направленными стрелками.

CH 3 COOH D CH 3 COO - + H +

К слабым электролитам относятся вещества с гомеополярным типом кристаллической решетки (таблица 1.2).

Таблица 1.2 Слабые электролиты

Равновесное состояние слабого электролита в водном растворе количественно характеризуют степенью электролитической диссоциации и константой электролитической диссоциации.

Степень электролитической диссоциации α представляет собой отношение числа молекул, распавшихся на ионы, к общему числу молекул растворенного электролита:

Степень диссоциации показывает, какая часть от общего количества растворенного электролита распадается на ионы и зависит от природы электролита и растворителя, а также от концентрации вещества в растворе, имеет безразмерную величину, хотя обыкновенно ее выражают в процентах. При бесконечном разбавлении раствора электролита степень диссоциации приближается к единице, что соответствует полной, 100%-ной, диссоциации молекул растворенного вещества на ионы. Для растворов слабых электролитов α <<1. Сильные электролиты в растворах диссоциируют полностью (α =1). Если известно, что в 0,1 М растворе уксусной кислоты степень электрической диссоциации α =0,0132, это означает, что 0,0132 (или 1,32%) общего количества растворённой уксусной кислоты продиссоциировало на ионы, а 0,9868 (или 98,68%) находится в виде недиссоциированных молекул. Диссоциация слабых электролитов в растворе подчиняется закону действия масс.



В общем виде обратимую химическую реакцию можно представить как:

a A + b B D d D + e E

Скорость реакции прямо пропорциональна произведению концентрации реагирующих частиц в степенях их стехиометрических коэффициентов. Тогда для прямой реакции

V 1 =k 1 [A] a [B] b ,

а скорость обратной реакции

V 2 =k 2 [D] d [Е] е.

В некоторый момент времени скорости прямой и обратной реакции выровняются, т.е.

Такое состояние называют химическим равновесием. Отсюда

k 1 [A] a [B] b = k 2 [D] d [Е] е

Сгруппировав постоянные величины с одной стороны, а переменные- с другой стороны, получим:

Таким образом, для обратимой химической реакции в состоянии равновесия произведение равновесных концентраций продуктов реакции в степенях их стехиометрических коэффициентов, отнесенное к такому же произведению для исходных веществ есть величина постоянная при данных температуре и давлении. Численное значение константы химического равновесия К не зависит от концентрации реагирующих веществ. Например, константу равновесия диссоциации азотистой кислоты в соответствии с законом действия масс можно записать в виде:

HNO 2 + H 2 OD H 3 O + + NO 2 -

.

Величину К а называют константой диссоциации кислоты, в данном случае азотистой.

Аналогично выражается и константа диссоциации слабого основания. Например, для реакции диссоциации аммиака:

NH 3 + H 2 O DNH 4 + + OH -

.

Величину К b называют константой диссоциации основания, в данном случае аммиака. Чем выше константа диссоциации электролита, тем сильнее электролит диссоциирует и тем выше концентрации его ионов в растворе при равновесии. Между степенью диссоциации и константой диссоциации слабого электролита существует взаимосвязь:

Это математическое выражение закона разбавления Оствальда: при разбавлении слабого электролита степень его диссоциации увеличивается.Для слабых электролитов при К ≤1∙ 10 -4 и С ≥0,1 моль/л используют упрощенное выражение:

К = α 2 С или α

Пример1 . Вычислите степень диссоциации и концентрацию ионов и [ NH 4 + ] в 0,1 М растворе гидроксида аммония, если К NH 4 OH =1,76∙10 -5


Дано: NH 4 OH

К NH 4 OH =1,76∙10 -5

Решение :

Так как электролит является достаточно слабым (К NH 4 OH =1,76∙10 –5 <1∙ 10 - 4) и раствор его не слишком разбавлен, можно принять, что:


или 1,33%

Концентрация ионов в растворе бинарного электролита равна C ∙α, так как бинарный электролит ионизирует с образованием одного катиона и одного аниона, то = [ NH 4 + ]=0,1∙1,33∙10 -2 =1,33∙10 -3 (моль/л).

Ответ: α=1,33 %; = [ NH 4 + ]=1,33∙10 -3 моль/л.

Теория сильных электролитов

Сильные электролиты в растворах и расплавах полностью диссоциируют на ионы. Однако экспериментальные исследования электропроводности растворов сильных электролитов показывают, что ее величина несколько занижена по сравнению с той электропроводностью, которая должна бы быть при 100 % диссоциации. Такое несоответствие объясняется теорией сильных электролитов, предложенной Дебаем и Гюккелем. Согласно этой теории, в растворах сильных электролитов между ионами существует электростатическое взаимодействие. Вокруг каждого иона образуется “ионная атмосфера” из ионов противоположного знака заряда, которая тормозит движение ионов в растворе при пропускании постоянного электрического тока. Кроме электростатического взаимодействия ионов, в концентрированных растворах нужно учитывать ассоциацию ионов. Влияние межионных сил создает эффект неполной диссоциации молекул, т.е. кажущейся степени диссоциации. Определенная на опыте величина α всегда несколько ниже истинной α. Например, в 0,1 М растворе Na 2 SO 4 экспериментальная величина α =45 %. Для учета электростатических факторов в растворах сильных электролитов пользуются понятием активности (а). Активностью иона называют эффективную или кажущуюся концентрацию, согласно которой ион действует в растворе. Активность и истинная концентрация связаны между собой выражением:

где f – коэффициент активности, который характеризует степень отклонения системы от идеальной из-за электростатических взаимодействий ионов.

Коэффициенты активности ионов зависят от величины µ, называемой ионной силой раствора. Ионная сила раствора является мерой электростатического взаимодействия всех ионов, присутствующих в растворе и равнаполовине суммы произведений концентраций (с) каждого из присутствующих в растворе ионов на квадрат его зарядового числа (z) :

.

В разбавленных растворах (µ<0,1М) коэффициенты активности меньше единицы и уменьшаются с ростом ионной силы. Растворы с очень низкой ионной силой (µ < 1∙10 -4 М) можно считать идеальными. В бесконечно разбавленных растворах электролитов активность можно заменить истинной концентрацией. В идеальной системе a = c и коэффициент активности равен 1. Это означает, что электростатические взаимодействия практически отсутствуют. В очень концентрированных растворах (µ>1М) коэффициенты активности ионов могут быть больше единицы. Связь коэффициента активности с ионной силой раствора выражается формулами:

при µ <10 -2

при 10 -2 ≤ µ ≤ 10 -1

+ 0,1z 2 µ при 0,1<µ <1

Константа равновесия, выраженная через активности, называется термодинамической. Например, для реакции

a A + b B d D + e E

термодинамическая константа имеет вид:

Она зависит от температуры, давления и природы растворителя.

Поскольку активность частицы , то

где К С - концентрационная константа равновесия.

Значение К С зависит не только от температуры, природы растворителя и давления, но и от ионной силы m . Так как термодинамические константы зависят от наименьшего числа факторов то, следовательно, являются наиболее фундаментальными характеристиками равновесия. Поэтому в справочниках приводятся именно термодинамические константы. Величины термодинамических констант некоторых слабых электролитов приведены в приложении данного пособия. =0,024 моль/л.

С ростом заряда иона коэффициент активности и активность иона уменьшается.

Вопросы для самоконтроля:

  1. Что такое идеальная система? Назовите основные причины отклонения реальной системы от идеальной.
  2. Что называют степенью диссоциации электролитов?
  3. Приведите примеры сильных и слабых электролитов.
  4. Какая взаимосвязь существует между константой диссоциации и степенью диссоциации слабого электролита? Выразите её математически.
  5. Что такое активность? Как связаны активность иона и его истинная концентрация?
  6. Что такое коэффициент активности?
  7. Как влияет заряд иона на величину коэффициента активности?
  8. Что такое ионная сила раствора, ее математическое выражение?
  9. Запишите формулы для расчета коэффициентов активности индивидуальных ионов в зависимости от ионной силы раствора.
  10. Сформулируйте закон действия масс и выразите его математически.
  11. Что такое термодинамическая константа равновесия? Какие факторы влияют на ее величину?
  12. Что такое концентрационная константа равновесия? Какие факторы влияют на ее величину?
  13. Как связаны термодинамическая и концентрационная константы равновесия?
  14. В каких пределах могут изменяться величины коэффициента активности?
  15. В чем заключаются основные положения теории сильных электролитов?

Электролиты - это вещества, сплавы веществ или растворы, которые имеют способность электролитически проводить гальванический ток. Определить, к каким электролитам относится вещество, можно применяя теорию электролитической диссоциации.

Инструкция

  • Суть данной теории заключается в том, что при расплавлении (растворении в воде) практически все электролиты раскладываются на ионы, которые бывают как положительно, так и отрицательно заряженные (что и называется электролитической диссоциацией). Под воздействием электрического тока отрицательные (анионы «-») движутся к аноду (+), а положительно заряженные (катионы, «+»), движутся к катоду (-). Электролитическая диссоциация – это обратимый процесс (обратный процесс носит название «моляризация»).
  • Степень (a) электролитической диссоциации находится в зависимости от природы самого электролита, растворителя, и от их концентрации. Это отношение числа молекул (n) , которые распались на ионы к общему числу введенных в раствор молекул (N). Получаете: a = n / N
  • Таким образом, сильные электролиты - вещества, полностью распадающиеся на ионы при растворении в воде. К сильным электролитам, как правило, относятся вещества с сильнополярными или ионными связями: это соли, которые хорошо растворимы, сильные кислоты (HCl, HI, HBr, HClO4, HNO3, H2SO4), а также сильные основания (KOH, NaOH, RbOH, Ba(OH)2, CsOH, Sr(OH)2, LiOH, Ca(OH)2). В сильном электролите вещество, растворенное в нем, находится по большей части в виде ионов (анионов и катионов); молекул, которые недиссоциированные - практически нет.
  • Слабые электролиты - такие вещества, которые диссоциируют на ионы лишь частично. Слабые электролиты вместе с ионами в растворе содержат молекулы недиссоциированные. Слабые электролиты не дают в растворе сильной концентрации ионов.К слабым относятся:
    - органические кислоты (почти все) (C2H5COOH, CH3COOH и пр.);
    - некоторые из неорганических кислот (H2S, H2CO3 и пр.);
    - практически все соли, малорастворимые в воде, гидроксид аммония, а также все основания (Ca3(PO4)2; Cu(OH)2; Al(OH)3; NH4OH);
    - вода.Они практически не проводят электрический ток, или проводят, но плохо.
error: